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In this work, we give sufficient conditions to investigate the existence and uniqueness of solution to fractional-order Langevin
equation involving two distinct fractional orders with unprecedented conditions (three-point boundary conditions including two
nonlocal integrals). The problem is introduced to keep track of the progress made on exploring the existence and uniqueness of
solution to the fractional-order Langevin equation. As a result of employing the so-called Krasnoselskii and Leray-Schauder
alternative fixed point theorems and Banach contraction mapping principle, some novel results are presented in regarding to
our main concern. These results are illustrated through providing three examples for completeness.

1. Introduction

Unquestionably, the fractional calculus, which requires the
order of the functional operator of calculus to be turned into
the fractional case, is a forceful mathematical argument for
providing much and more flexibility in dealing with many
real-world applications [1, 2]. More particularly, the
fractional-order differential equations (FODEs), which are
considered a cornerstone of this field, have been extensively
employed in modeling several phenomena and numerous
scientific applications such as diffusion modeling [3], robot
manipulators [4], economics [5], and many more [6–9]. In
view of its outstanding importance, lots of mathematicians
have paid their attentions to deeply explore the initial and/or
boundary value problems (BVPs) established based on such
equations (see [10–13]). Actually, these problems, which
may have different boundary conditions, describe several
physical real-world issues like thermoelasticity, underground
water flow, and heat conduction. One of the most significant
of those problems is known as the Langevin equation which
was formulated for the first time in 1908 by Langevin, who
still much earlier described the progress of some physical
matters in fluctuating settings [14, 16]. It came out, later

on, that such equation had assisted physicians successfully
to identify some techniques related to the abnormal diffu-
sion. It also, afterward, succeeded in describing some other
techniques in economic field that contain the cost index
operating [17]. Besides, its generalization played, and still
plays, a significant duty in describing the noise causes in
the field of critical dynamics [18]. In 1996, Mainardi and Pir-
oni fractionalized such equation and hence turned it into the
fractional-order case to be named later the fractional-order
Langevin equation (FoLE) [19]. Several articles then made
this equation up at the top of their works (see, e.g., [20–
22]). It has been recently shown that such equation, for
example, but not limited to, plays notable role in outlining
the reaction-diffusion models [23, 24] and describes some
processes associated with porous media [25, 26].

In the same framework, many efforts have been under-
way to explore the two most main aspects associated with
the solutions of the FoLEs: the existence and uniqueness
[27]. In view of studying such two aspects, several recent arti-
cles have been published. In particular, through using some
special boundary conditions, some applicable results related
to the existence of solutions for the FoLE have been reported
in [28]. Both aspects have been investigated when the
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coupled incommensurate fractional-order systems were han-
dled by Salem and Alnegga and Salem et al. in [15, 29]. How-
ever, in more recent times, numerous outcomes associated
with those aspects have, moreover, been informed widely
(see [1, 14, 21, 30–34]). In more concrete terms, some useful
theoretical tools, like the so-called Banach contraction prin-
ciple and Krasnoselskii’s fixed point theorem, have been
employed to explore the existence and uniqueness of solu-
tions for several nonlinear FODEs such as the implicit
FODEs [35], the fractional-order Cauchy problems [36].

As per the best of our knowledge, there are few published
works that address the FoLE with nonlocal integral boundary
conditions as informed in [14]. In view of this motivation,
this work examines the existence and uniqueness of solution
for the nonlinear FoLE with three-point boundary conditions
involving two nonlocal integrals. Actually, this boundary
value problem, with two different values of fractional order,
has the following form:

cDr cDs + ℓð Þz tð Þ = f t, z tð Þ,cDρz tð Þð Þ, t ∈ 0, T½ �, ð1Þ

where cDr is the Caputo derivative operator of order r in
which k − 1 < r ≤ k and k ∈ℕ. In this work, we assume that
the function f : ½0, T� ×ℝ ×ℝ→ℝ is a continuous function,
and 1 < r < 2, 0 < ρ ≤ s ≤ 1, and ℓ ∈ℝ are the dissipative
parameters. We take here the function f , in general form,
constitutes from position (displacement) zðtÞ and fractional
velocity cDρzðtÞof the particle at time t ∈ ½0, T�, T > 0. This
function perhaps contains external force field, position-
dependent phenomenological fluid friction coefficient, inten-
sity of the stochastic force, or zero-mean Gaussian white
noise term.

The equation (1) subjects to the following boundary con-
ditions:

z 0ð Þ = 0, z Tð Þ = α
ðT
0
z uð Þdu, z ζð Þ = β

ðζ
0
z uð Þdu, ð2Þ

where α, β ∈ℝ and 0 < ζ < T . It is remarkable to see that the
first condition indicates the particle begins its motion from
the origin point. Also, all conditions can be interpreted infor-
mally as “the displacement of the particle at a certain point
proportionates the signed area of the region in the tz-plane
that is bounded by the graph of z and the t-axis from the ori-
gin to this certain point”.

One more observation should be recorded; all hypotheses
and conditions in this work are assumed on the basis of the
various views inspired by the aforementioned cited articles.
Anyhow, here is how the rest of this paper is arranged. Sec-
tion 2 introduces some primary preliminaries associated with
fractional calculus and some fixed point theorems, while Sec-
tion 3 deduces some auxiliary lemmas that pave the way for
establishing novel theorems related to the existence and
uniqueness of the solution for our main problem. Such theo-
rems are illustrated and shown in Section 4, while Section 5
involves one illustrative example to verify all findings,
followed by the last section that summarizes the achieve-
ments of the whole work.

2. Preliminaries

In the whole of this work, the Caputo derivative operator and
its inverse operator, the Riemann-Liouville (R-L) integral, are
adopted since they suite most physical systems. These two
operators as well as some basic concepts and essential prelim-
inaries about fractional calculus are briefly presented here
together with some theoretical results associated with the
fixed point theorem.

Definition 1. [37]. The R-L integral operator of order r for a
continuous function z : ½0,∞Þ→ℝ is outlined as

Irz tð Þ = 1
Γ rð Þ

ðt
0

t − vð Þr−1z vð Þdv, ð3Þ

where r > 0.

Definition 2. [37]. The R-L derivative operator of order r for a
k -times absolutely continuous function z : ½0,∞Þ→ℝ is out-
lined as

Drz tð Þ = 1
Γ k − rð Þ

d
dt

� �kðt
0

t − vð Þk−r−1z vð Þdv = d
dt

� �k

Ik−rz tð Þ,

ð4Þ

where k − 1 ≤ r < k and k ∈ℕ.

Definition 3. [37]. The Caputo derivative operator of order r
for a k-times absolutely continuous function z : ½0,∞Þ→ℝ
is outlined as

cDrz tð Þ = 1
Γ k − rð Þ

ðt
0

t − vð Þk−r−1z kð Þ vð Þdv, ð5Þ

where k − 1 < r ≤ k and k ∈ℕ.

The following remark states some important relations
chosen from the famous books [37]. Actually, such relations
will be used during the whole of this work.

Remark 4. Suppose that z : ½0,∞Þ→ℝ is a continuous func-
tion, r is a positive real. Then,

(i) IrIszðtÞ = Ir+szðtÞ, s > 0
(ii) cDrIszðtÞ = Is−rzðtÞ, for r ∈ ½0, s�, while cDrIrzðtÞ = z

ðtÞ
(iii) Irtρ = Γðρ + 1ÞΓðρ + r + 1Þtρ+r , ρ > −1
(iv) cDrtρ = Γðρ + 1ÞΓðρ − r + 1Þtρ−r , ρ > −1, ρ ≠ 0, 1,⋯,

½r�
(v) cDrtρ = 0, ρ = 0, 1,⋯, ½r�

Lemma 5. Suppose cDrz is a continuous function, then

IrcDrz tð Þ = z tð Þ + c0 + c1t+⋯+ck−1tk−1 ð6Þ

for k ∈ℕ, where k − 1 < r ≤ k.
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Next, some primary keys and essential theorems related
to the fixed point theorem are stated for the purpose of get-
ting novel results.

Definition 6. [38, 39]. A contraction of a normed space X is a
mapping S : X→X that meets

Sz1 − Sz2k k ≤ δ z1 − z2k k,∀z1, z2 ∈X ð7Þ

for some δ < 1.

Theorem 7. (Banach fixed point theorem, Granas and
Dugundji [38, 39]). There is a unique fixed point for every
contraction mapping on a complete metric space.

Theorem 8. (Krasnoselskii fixed point theorem [38]). For a
convex set Bε of a Banach space X and a mapping Sz = S1z
+ S2z such that

(1) S1z1 + S2z2 ∈Bε, for each z1, z2 ∈Bε

(2) S2 represents a contraction mapping

(3) S1 is continuous and compact

Then, S has a fixed point.

Theorem 9. [39]. Let O be an open set of the Banach space
X = Cð½0, T�,ℝ+Þ such that O ≠ ϕ. If the operator S : �O→X

is relatively compact, then either

(1) S has a fixed point z∗ ∈ �O, or

(2) There exists γ ∈ ð0, 1Þ and z∗ ∈ ∂O such that γSðzÞ = z,
where ∂O is the boundary of O itself

3. Some Deduced Auxiliary Lemmas

In this part, some auxiliary lemmas are introduced in order to
pave the way for exploring the existence and uniqueness of
the solution for our main problem. In other words, such
lemmas will play a major role in transforming the main issue
to a fixed point problem. For this purpose, let us introduce
the following two results, with noting that the function f ðt,
zðtÞ,cDρzðtÞÞ given in (1) will be indicated by f ðtÞ for
simplicity.

Lemma 10. Let f ∈ Cð½0, T�,ℝÞ. Then, the unique root of the
problem given in (1)-(2) can be expressed as

z tð Þ = Is+r f tð Þ − ℓIsz tð Þ + χ1 tð ÞΛα Tð Þ + χ2 tð ÞΛβ ζð Þ, ð8Þ

where

χ1 tð Þ = ts t − ζð Þ
T − ζð ÞTs , ð9Þ

χ2 tð Þ = ts T − tð Þ
T − ζð Þζs , ð10Þ

Λα tð Þ = αIz tð Þ − Is+r f tð Þ + ℓIsz tð Þ: ð11Þ
Proof. Applying the integral operator Ir to both sides of (1)
and then using Lemma 5. yield

cDsz tð Þ = −ℓIz tð Þ + Ir f tð Þ + c2t + c1: ð12Þ

Again, applying Ir to both sides of (12) gives

z tð Þ = Is+r f tð Þ − ℓIsz tð Þ + c2t
s+1

Γ s + 2ð Þ + c1t
s

Γ s + 1ð Þ + c0, ð13Þ

where ci
’s are arbitrary constants, and i = 1, 2, 3. Applying the

first condition of (2) yields c0 = 0, and hence

z tð Þ = Is+r f tð Þ − ℓIsz tð Þ + c2t
s+1

Γ s + 2ð Þ + c1ts
Γ s + 1ð Þ : ð14Þ

By using the two other conditions given in (2), we obtain
the following:

c1T
s

Γ s + 1ð Þ +
c2T

s+1

Γ s + 2ð Þ =Λα Tð Þ, ð15Þ

c1ζ
s

Γ s + 1ð Þ + c2ζ
s+1

Γ s + 2ð Þ =Λβ ζð Þ: ð16Þ

Solving the two equations (15) and (16) gives the follow-
ing:

c1
Γ s + 1ð Þ = T

T − ζð Þζs Λβ ζð Þ − ζ

T − ζð ÞTs Λα Tð Þ, ð17Þ

c2
Γ s + 2ð Þ = 1

T − ζð ÞTs Λα Tð Þ − 1
T − ζð Þζs Λβ ζð Þ: ð18Þ

Substituting (17) and (18) into (14) yields the result. Con-
versely, it is easy by aiding with Remark 4. and Lemma 5. to
see that the solution (8) satisfies the fractional differential
equation (1) and the boundary conditions in (2).

Lemma 11. Let χ1 and χ2 be defined as given in (9) and (10),
respectively. Then,

χ1 = max
t∈ 0,T½ �

χ1 tð Þj j =max ζs+1ss

s + 1ð Þs+1 T − ζð ÞTs
, 1

( )
, ð19Þ

χ2 = max
t∈ 0,T½ �

χ2 tð Þj j = Ts+1ss

s + 1ð Þs+1 T − ζð Þζs : ð20Þ

Proof. Let t, ζ ∈ ½0, T�. Define the function uðtÞ as follows:

u tð Þ = ts∣t − ζ∣ = ts ζ − tð Þ, 0 ≤ t ≤ ζ, ts t − ζð Þ, ζ ≤ t ≤ T:f
ð21Þ
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One observes that when 0 ≤ t ≤ ζ, we have u′ðtÞ = ts−1ðs
ζ − ðs + 1ÞtÞ, which means that uðtÞ is increasing on ð0, t0Þ
and it is decreasing on ðt0, ζÞ, where t0 = sζ/ðs + 1Þ. Hence,
we can deduce that uðtÞ has a maximum value at t = t0. On
the other hand, when ζ < t ≤ T , we obtain u′ðtÞ = ts−1ððs + 1
Þt − sζÞ, which implies that uðtÞ is increasing on ðζ, TÞ, and
so uðtÞ has a maximum value at t = T . Therefore, the result
holds due to the following:

χ1 = max u t0ð Þ
T − ζð ÞTs ,

u Tð Þ
T − ζð ÞTs

� �
: ð22Þ

In similar manner, one can deduce the second statement
of this lemma.

To follow up on the progress made in exploring the exis-
tence and uniqueness of solutions for the FoLEs, some fur-
ther results are established below, which will surely serve us
in the next sections. In this regard, let C = Cð½0, T�,ℝÞ be
Banach space of continuous real-valued functions equipped
with the usual supremum norm

zk k = sup
0≤t≤T

z tð Þj j, z ∈C : ð23Þ

Define the following set

P = z tð Þ: z tð Þ ∈C ,cDρz tð Þ ∈Cf g, t ∈ 0, T½ �: ð24Þ

One can easily verify that P is a Banach subspace
equipped with the following norm:

zk kP =max zk k, cDρzk kf g
=max sup

0≤t≤T
∣ z tð Þ , sup

0≤t≤T

����
����
c

Dρ z tð Þð ∣
� �

:
ð25Þ

In view of Lemma 10., the main problem given in (1)-(2)
will be transformed into its equivalent fixed point problem.
In other words, the function zðtÞ should satisfy the two state-
ments; SzðtÞ = zðtÞ and cDρSzðtÞ= cDρzðtÞ, for all t ∈ ½0, T�,
where S : C →C is an operator defined on the Banach space
C . In order to achieve this goal, consider the operator S as
defined a little while ago. That is,

Szð Þ tð Þ = Is+r f tð Þ − ℓIsz tð Þ + χ1 tð ÞΛα Tð Þ + χ2 tð ÞΛβ ζð Þ,
ð26Þ

cDρSzð Þ tð Þ = Is+r−ρ f tð Þ − ℓIs−ρz tð Þ
+ χ3 tð ÞΛα Tð Þ + χ4 tð ÞΛβ ζð Þ, ð27Þ

where Λαð·Þ is defined in (11) and

χ3 tð Þ= cDρχ1 tð Þ = Γ s + 2ð Þts−ρ
Γ s − ρ + 2ð Þ T − ζð ÞTs t −

ζ s + 1 − ρð Þ
s + 1

� �
,

ð28Þ

χ4 tð Þ= cDρχ2 tð Þ = −
Γ s + 2ð Þts−ρ

Γ s − ρ + 2ð Þ T − ζð Þζs t −
T s + 1 − ρð Þ

s + 1

� �
:

ð29Þ
Next, we introduce the following auxiliary result based on

all provided aforementioned principles.

Lemma 12. Let χ3ðtÞ and χ4ðtÞ are defined as in (28) and
(29), respectively. Then,

χ3 = χ3k k
= Γ s + 1ð Þ
Γ s − ρ + 2ð Þ T − ζð Þ max

� ζs−ρ+1

Ts
s − ρ

s + 1

	 
s−ρ
, s + 1ð ÞT − s − ρ + 1ð Þζ

Tρ

( )
,

ð30Þ

χ4 = χ4k k = Γ s + 1ð ÞTs−ρ+1

Γ s − ρ + 2ð Þ T − ζð Þζs max s − ρ

s + 1

	 
s−ρ
, ρ

n o
:

ð31Þ
Proof. Let t0 = ζðs + 1 − ρÞ/ðs + 1Þ. Define the function

u tð Þ = ts−ρ t − t0j j, t ∈ 0, T½ �: ð32Þ

If 0 ≤ t ≤ t0, then uðtÞ = ts−ρðt0 − tÞ and

u′ tð Þ = ts−ρ−1 s − ρð Þt0 − s − ρ + 1ð Þt½ � ð33Þ

which leads to uðtÞ is increasing on ð0, t1Þ and is decreasing
on ðt1, t0Þ where

t1 = s − ρs − ρ + 1t0 = ζ s − ρð Þs + 1 < t0: ð34Þ

This concludes that uðt1Þ is a maximum value.
If t0 < t ≤ T , then uðtÞ = ts−ρðt − t0Þ and

u′ tð Þ = ts−ρ−1 s − ρ + 1ð Þt − s − ρð Þt0½ � > ts−ρ−1t0 > 0 ð35Þ

which leads to uðtÞ is increasing on ðt0, TÞ. This concludes
that uðTÞ is a maximum value. In similar manner, one can
deduce the second statement of this lemma.

4. Existence and Uniqueness Results

This section proposes some theoretical results related to the
existence and uniqueness of the solution for the main target
problem, the FoLE given in (1)-(2). First of all, we establish
some mathematical assumptions that will be used from
now on. Such assumptions are given below.

Δ = ℓj jΔ sð Þ + αj jχ1T + βj jχ2ζ, ð36Þ

Δ′ = ∣ℓ∣Δ′ sð Þ + ∣α∣χ3T + ∣β∣χ4ζ: ð37Þ
where

Δ sð Þ = 1 + χ1ð ÞTs + χ2ζ
sΓ s + 1ð Þ, ð38Þ
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Δ′ sð Þ = Ts−ρΓ s − ρ + 1ð Þ + χ3T
s + χ4ζ

sΓ s + 1ð Þ, ð39Þ
and χi, i = 1, 2, 3, 4 are given in (19), (20), (30), and (31),
respectively.

In the same vein, we also introduce some further condi-
tions below to establish our proposed results. In fact, these
conditions have been recently introduced in [40] for the pur-
pose of investigating the same issue of ours, but they were
adopted for handling another problem.

H1 The function f ðt, zðtÞ,cDρzðtÞÞ is continuous on ½0, T�
H2 There exist a positive function ψ : ½0, T�→ℝ+ such

that

∣f t, z tð Þ,cDρz tð Þð Þ∣q tð Þ ð40Þ

H3 There exist two constants M1,M2 > 0 such that

∣f t, z1 tð Þ,cDρz1ð Þ − f t, z2,cDρz2ð Þ∣
≤M1∣z1 − z2∣ +M2 cDρz1−cDρz2

�� ��, t ∈ 0, T½ � ð41Þ

H4 There exist a positive function h : ½0, T�→ℝ+ and
other nondecreasing function Ψ : ℝ+ →ℝ+ such that

∣f t, z tð Þ,cDρz tð Þð Þ∣ ≤ h tð ÞΨ zk kP
� �

, t ∈ 0, T½ � ð42Þ

On the other side, by going back to (26) and (27), one can
rewrite each of SzðtÞ and cDρSzðtÞ, as a sum of two operators
S1 and S2. In other words, SzðtÞ = ðS1z + S2zÞðtÞ and cDρSzð
tÞ = ðcDρS1z+cDρS2zÞðtÞ, where

S1zð Þ tð Þ = Is+r f tð Þ − χ1 tð ÞIs+r f Tð Þ − χ2 tð ÞIs+r f ζð Þ,

S2zð Þ tð Þ = −ℓIsz tð Þ + χ1 tð Þ αIz Tð Þ + ℓIsz Tð Þ½ �
+ χ2 tð Þ βIz ζð Þ + ℓIsz ζð Þ½ �,

cDρS1zð Þ tð Þ = Is+r−ρ f tð Þ − χ3 tð ÞIs+r f Tð Þ − χ4 tð ÞIs+r f ζð Þ,
cDρS2zð Þ tð Þ = −ℓIs−ρz tð Þ + χ3 tð Þ αIz Tð Þ + ℓIsz Tð Þ½ �

+ χ4 tð Þ βIz ζð Þ + ℓIsz ζð Þ½ �: ð43Þ

After this preparation, we find ourselves ready to present
the results that are at the heart of the matter. Here is the first
one that deduced on the basis of the Krasnoselskii theorem.

Theorem 13. Suppose H1 and H2 hold. If

max Δ, Δ′
n o

< 1, ð44Þ

where Δ and Δ′ are defined in (36) and (37), respectively, then
the problem given in (1)-(2) has at least one solution on ½0, T�.

Proof. To prove this theorem, define the closed ball, Bε, as
follows:

Bε = z tð Þ ∈P :cDρz tð Þ ∈P , z tð Þk kP ≤ ε
 �

, ð45Þ

where P and kzkP are defined in Section 3, with radius

ε ≥ qk k max Δ s + rð Þ, Δ′ s + rð Þ
n o

1 −max Δ, Δ′
n o

, ð46Þ

where Δð·Þ and Δ′ð·Þ are defined in (38) and (39),
respectively.

One can easily verify thatBε is a convex closed set. How-
ever, for the purpose of implementing on the Krasnoselskii
theorem given in 2.2, we need firstly to show that S1z1 + S2
z2 ∈Bε, for each z1ðtÞ, z2ðtÞ ∈Bε. To carry out this step,
we begin with

∣S1z1∣ ≤ Is+r f t, z1 tð Þ,Dρz1 tð Þð Þj j
+ ∣χ1 tð Þ Is+r f T , z1 Tð Þ,Dρz1 Tð Þð Þ∣k
+ χ2 tð Þj j Is+r f ζ, z1 ζð Þ,Dρz1 ζð Þð Þj j

≤ q tð ÞΓ s + rð Þ
ðt
0

t − vð Þs+r−1dv
�

+∣χ1 tð Þ ∣
ðT
0

T − vð Þs+r−1dv+∣χ2 tð Þ ∣
ðζ
0

ζ − vð Þs+r−1dv
#

= ts+r + χ1 tð Þj jTs+r + χ2 tð Þj jζs+r� �
Γ s + r + 1ð Þ��q tð Þj

≤ 1 + χ1 tð Þj jð ÞjTs+r + χ2 tð Þj jζs+rΓ s + r + 1ð Þ q tð Þj j,

∣S2z2∣ ≤ ∣ℓ∣Is∣z2 tð Þ∣ + ∣χ1 tð Þ∣ ∣α ∣ I ∣ z2 Tð Þ∣+∣ℓ ∣ Is ∣ z2 Tð Þ ∣½ �
+ ∣χ2 tð Þ∣ ∣β ∣ I ∣ z2 ζð Þ∣+∣ℓ ∣ Is ∣ z2 ζð Þ ∣½ �

≤ 1 + χ1 tð Þj jð ÞTs + χ2 tð Þj jζsΓ s + 1ð Þ ℓj j�
+ αj j χ1 tð Þj jT + βj j χ2 tð Þj jζ� z2j j:

ð47Þ

Due to z2ðtÞ ∈Bε, then ∣z2ðtÞ ∣ ≤kz2ðtÞk ≤ kz2ðtÞkP ≤ ε.
This matter implies to

S1z1 + S2z2j j ≤ 1 + χ1ð Þ∣Ts+r + χ2ζ
s+rΓ s + r + 1ð Þ qk k + 1 + χ1ð ÞTs½

+ χ2ζ
sΓ s + 1ð Þ ∣ ℓ∣+∣α ∣ χ1T+∣β ∣ χ2ζ

�
ε

= qk kΔ s + rð Þ + ∣ℓ ∣ Δ sð Þ+∣α ∣ χ1T+∣β ∣ χ2ζð Þε
= qk kΔ s + rð Þ + Δε:

ð48Þ

Thus, the last inequality implies kS1z1 + S2z2k ≤ ε. In a
similar manner, we can show that

∣cDρS1z1∣ ≤ Ts+r−ρΓ s + r − ρ + 1ð Þ + χ3T
s+rð

+ χ4ζ
s+r�Γ s + r + 1ð Þ� qk k,

∣cDρS2z2∣ ≤ Ts−ρΓ s − ρ + 1ð Þ + χ3T
sð½

+ χ4ζ
sΓ s + 1ð Þ� ℓj j + αj jχ3T + βj jχ4ζ�ε,

ð49Þ

which implies that

cDρS1z1+cDρS2z2j j ≤ qk kΔ′ s + rð Þ + ∣ℓ ∣ Δ′ sð Þ+∣α ∣ χ3T+∣β ∣ χ4ζ
	 


ε

= qk kΔ′ s + rð Þ + Δ′ε:
ð50Þ
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These conclude that

S1z1 + S2z2k kP =max sup
t∈ 0,T½ �

∣ S1z1 + S2z2 , sup
t∈ 0,T½ �

�����
�����
c

DρS1z1+cDρS2z2 ∣

( )

=max qk kΔ s + rð Þ + Δε, qk kΔ′ s + rð Þ + Δ′ε
n o

= qk k max Δ s + rð Þ, Δ′ s + rð Þ
n o

+max +Δ, Δ′
n o

ε ≤ ε,

ð51Þ

which means that S1z1 + S2z2 ∈Bε for each z1ðtÞ, z2ðtÞ ∈Bε.
Thus, the first part of Krasnoselskii Theorem 8 has been shown.
The next step is to show that the operator S2 is contraction. For
this purpose, we estimate ∣S2z1 − S2z2 ∣ as follows:

S2z1 − S2z2j j ≤ ℓIs z1 tð Þ − z2 tð Þj j + χ1 tð Þj j αj jI z1 Tð Þ − z2 Tð Þj jð
+ ℓIs z1 Tð Þ − z2 Tð Þj jÞ + χ2 tð Þj j βj jI z1 ζð Þjð
− z2 ζð Þj + ℓIs z1 ζð Þ − z2 ζð Þj jÞ

≤ 1 + χ1ð ÞTs + χ2ζ
sΓ s + 1ð Þ ℓj j�

+ αj jχ1T + βj jχ2ζ� z1 − z2j j
≤ ℓj jΔ sð Þ + αj jχ1T + βj jχ2ζ½ � z1 − z2k kP
= Δ z1 − z2k kP :

ð52Þ

Similarly, we can prove that

∣cDρS2z1−
cDρS2z2∣

≤ ∣ℓ ∣ Δ′ sð Þ+∣α ∣ χ3T+∣β ∣ χ4ζ
h i

z1k
− z2kP = Δ′ z1 − z2k kP :

ð53Þ

These lead to

S2z1 − S2z2k kP ≤max Δ, Δ′
n o

z1 − z2k kP , ð54Þ

which implies that S2 is contraction ifmax fΔ, Δ′g < 1. At the
same time, as the function f is assumed to be continuous
according to the assumptionH1, the operator S1 is also contin-
uous onBε. To complete the proof of this theorem, it remains
to show that S1 is compact. In regard to Arzela-Ascoli theorem,
it is enough to show that S1Bε is uniformly bounded and equi-
continuous. For the boundedness, one can easily verify that S1z
satisfies the following perspective.

S1zk kP ≤ qk k max Δ s + rð Þ, Δ′ s + rð Þ
n o

: ð55Þ

In the meantime, to show that S1 is an equicontinuous
operator, let t1, t2 ∈ ½0, T� such that t1 < t2. Then, we have

∣S1z t2ð Þ − S1z t1ð Þ∣ ≤ 1
Γ s + rð Þ

ðt1
0

t2 − τð Þs+r−1 − t1 − τð Þs+r−1�� ��
× ∣f τ, z τð Þ,Dρz τð Þð Þ∣dτ

+ 1
Γ s + rð Þ

ðt2
t1

t2 − τð Þs+r−1∣f τ, z τð Þ,Dρz τð Þð Þ∣dτ

+ ∣χ1 t1ð Þ − χ1 t2ð Þ ∣
Γ s + rð Þ

ðT
0

T − τð Þs+r−1∣f τ, z τð Þ,Dρz τð Þð Þ∣dτ

+ ∣χ2 t1ð Þ − χ2 t2ð Þ ∣
Γ s + rð Þ

ðζ
0

ζ − τð Þs+r−1∣f τ, z τð Þ,Dρz τð Þð Þ∣dτ:

ð56Þ

Again, using condition H2 to turn the inequality above to
be in the form

∣S1z t2ð Þ − S1z t1ð Þ∣ ≤ qk k
Γ s + rð Þ

ðt1
0

t2 − τð Þs+r−1��

− t1 − τð Þs+r−1�dτ + ðt2
t1

t2 − τð Þs+r−1dτ

+ ∣ts2 t2 − ζð Þ − ts1 t1 − ζð Þ ∣
Ts T − ζð Þ

ðT
0

T − τð Þs+r−1dτ

+ ∣ts2 T − t2ð Þ − ts1 T − t1ð Þ ∣
ζs T − ζð Þ

ðζ
0

ζ − τð Þs+r−1dτ
#
:

ð57Þ

Consequently, the above inequality leads us to another one
of the form

∣S1z t2ð Þ − S1z t1ð Þ∣
≤

qk k
Γ s + r + 1ð Þ

� ts+r2 − ts+r1 +
ts+12 − ts+11
� �

Tr + ζr
� �

+ ζT t2 − t1ð Þ Tr−1 + ζr−1
	 


T − ζ

2
4

3
5:

ð58Þ

Observe that as t2 → t1, the right-hand side goes to zero
uniformly. This means that such side does not depend never
on z. Therefore, as per Arzela-Ascoli theorem, the operator
S1 is equicontinuous. Hence, in view of Krasnoselskii theorem,
we conclude that (1)-(2) has at least one solution.

In the next argument, we will investigate the uniqueness
of solution for the problem under consideration. Of course,
Banach fixed point theorem, reported in Theorem 7, will be
utilized in this investigation. However, the following result
is established for achieving that purpose.

Theorem 14. Suppose H1 and H3 hold. If

Ψ = M1 +M2ð Þ max Δ s + rð Þ, Δ′ s + rð Þ
n o

+max Δ, Δ′
n o

< 1:
ð59Þ

Then, the problem given in (1)-(2) has a unique solution
on ½0, T�.

6 Advances in Mathematical Physics



Proof. Consider the set Bε as given in (45) with

ε ≥
W max Δ s + rð Þ, Δ′ s + rð Þ

n o
1 −Ψ

, ð60Þ

whereW = sup0t T ∣ f ðt, 0, 0Þ ∣ . For each t ∈ ½0, T� and z ∈Bε,
one might estimate the term ∣f ðt, zðtÞ,cDρzðtÞÞ ∣ as follows:

∣f t, z tð Þ,cDρz tð Þð Þ∣ = ∣f t, z tð Þ,cDρz tð Þð Þ − f t, 0, 0ð Þ + f t, 0, 0ð Þ∣
≤ ∣f t, z tð Þ,cDρz tð Þð Þ − f t, 0, 0ð Þ∣ + ∣f t, 0, 0ð Þ∣
≤M1∣z tð Þ +M2j jcDρz tð Þ∣ +W

≤ M1 +M2ð Þ zk kP +W ≤ M1 +M2ð Þε +W:

ð61Þ

The next step is now to show that SBε ⊆Bε, ∀z ∈Bε.
Based on the arguments given in the previous theorem, one
can obtain the following assertions.

∣S1z tð Þ∣ ≤ M1 +M2ð Þε +Wð ÞΔ s + rð Þ,
∣cDρS1z tð Þ∣ ≤ M1 +M2ð Þε +Wð ÞΔ′ s + rð Þ,

∣S2z tð Þ∣ ≤ Δε,
∣cDρS2z tð Þ∣ ≤ Δ′ε:

ð62Þ

Applying the norm over t gives

S1zk kP ≤ M1 +M2ð Þε +Wð Þ max Δ s + rð Þ, Δ′ s + rð Þ
n o

,

S2zk kP ≤ ε max Δ, Δ′
n o

: ð63Þ

Therefore,

Szk kP ≤ S1zk kP + S2zk kP
≤ M1 +M2ð Þε +Wð Þ max
� Δ s + rð Þ, Δ′ s + rð Þ
n o

+ ε max Δ, Δ′
n o

=Ψε +W max Δ s + rð Þ, Δ′ s + rð Þ
n o

≤ ε:

ð64Þ

Now, in accordance to Theorem 7, we need to show that
the mapping S is contraction. In order to achieve this goal, we
should notice that the operator S2 is contraction as shown in
the previous theorem. Hence, it remains to verify that S1 is
also contraction. For this purpose, let z1, z2 ∈Bε, t ∈ ½0, T�
and consider ∣S1z1ðtÞ − S1z2ðtÞ ∣ as follows:

∣S1z1 tð Þ − S1z2 tð Þ∣ ≤ Is+r∣f t, z1 tð Þ,cDρz1 tð Þð Þ
− f t, z2 tð Þ,cDρz2 tð Þð Þ∣
+ ∣χ1 tð Þ∣Is+r∣f T , z1 Tð Þ,cDρz1 Tð Þð Þ
− f T , z2 Tð Þ,cDρz2 Tð Þð Þj
+ χ2 tð Þj jIs+rj f ζ, z1 ζð Þ,cDρz1 ζð Þð Þj
− f ζ, z2 ζð Þ,cDρz2 ζð Þð Þj:

ð65Þ

Using condition H3 yields

∣S1z1 tð Þ − S1z2 tð Þ∣ ≤ 1
Γ s + rð Þ

ðt
0

t − τð Þs+r−1

� M1 ∣ z1 − z2 +M2j jcDρz1−
cDρz2 ∣ð Þdτ

+ ∣χ1 tð Þ ∣
Γ s + rð Þ

ðT
0

T − τð Þs+r−1

� M1 ∣ z1 − z2 +M2j jcDρz1−
cDρz2 ∣ð Þdτ

+ ∣χ2 tð Þ ∣
Γ s + rð Þ

ðζ
0

ζ − τð Þs+r−1

� M1 ∣ z1 − z2 +M2j jcDρz1−
cDρz2 ∣ð Þdτ,

≤ M1 ∣ z1 tð Þ − z2 tð Þ +M2j jcDρz1 tð Þð
−cDρz2 tð Þ ∣ ÞΔ s + rð Þ:

ð66Þ

Similarly, we can obtain the following inequality:

∣cDρS1z1 tð Þ−cDρS1z2 tð Þ∣
≤ M1 ∣ z1 tð Þ − z2 tð Þ +M2j jcDρz1 tð Þð
−cDρz2 tð Þ ∣ ÞΔ′ s + rð Þ:

ð67Þ

Taking under the normk·kP implies

S1z1 − S1z2k kP ≤ M1 +M2ð Þ max Δ s + rð Þ, Δ′ s + rð Þ
n o

z1 − z2k kP :
ð68Þ

Using the two deduced assertions in (54) and (68) implies

Sz1 − Sz2k kP ≤ S1z1 − S1z2k kP + S2z1 − S2z2k kP
≤ M1 +M2ð Þ max Δ s + rð Þ, Δ′ s + rð Þ

n oh
+max Δ, Δ′

n oi
z1 − z2k kP ≤Ψ z1 − z2k kP ,

ð69Þ

which shows that S is a contraction mapping, and this fin-
ishes the proof.

In the same context, we introduce the following further
result which also explores the existence matter of our main
problem by taking into account, this time, Theorem 9.
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Theorem 15. Suppose H1 and H4 hold. If

λ

max hk kΨ zk kP
� �

Δ s + rð Þ + Δ
� �

, hk kΨ zk kP
� �

Δ′ s + rð Þ + Δ′
	 
n o > 1:

ð70Þ

Then, the problem given in (1)-(2) has at least one solution
on ½0, T�, for some λ, ε > 0, where Δ, Δ, Δð·Þ and Δ′ð·Þ are
defined, respectively, in (36), (37), (38) and (39).

Proof. Suppose O = fz ∈C :cDρz ∈C , kzkP < λg is an open
subset of the Banach space in C = Cð½0, T�,ℝ+Þ. Assume that
S : �O→ ∈C is an operator defined as given in (26) with its
fractional derivatives in (27), which are also previously defined
as a sum of two operators S1 and S2. Observe that S is contin-
uous since S1 and S2 are so. From this point, we find that, it is
the right time, to apply on Theorem 9. For that purpose and
according to Arzela-Ascoli theorem, we need to show that S
is compact. In other words, we need to show that such opera-
tor is bounded and also equicontinuous. For the boundedness,
let t ∈ ½0, T� and consider the term ∣SzðtÞ ∣ as follows:

∣Sz tð Þ∣ ≤ Is+r∣f t, z tð Þ,Dρz tð Þð Þ∣ + ∣ℓ∣Is∣z tð Þ∣
+ ∣χ1 tð Þ∣ ∣α ∣ I ∣ z Tð Þ∣+Is+r ∣ f T , z Tð Þ,Dρz Tð Þð Þ∣½
+∣ℓ ∣ Is ∣ z Tð Þ ∣ � + ∣χ2 tð Þ∣ ∣β ∣ I ∣ z ζð Þ∣½
+Is+r ∣ f ζ, z ζð Þ,Dρz ζð Þð Þ∣+∣ℓ ∣ Is ∣ z ζð Þ ∣ �:

ð71Þ

Using condition H4 yields

∣Sz tð Þ∣ ≤ hk kΨ zk kP
� �

Γ s + rð Þ
ðt
0

t − τð Þs+r−1dτ

+ ∣ℓ ∣ zk k
Γ s + 1ð Þ t

s + ∣χ1 tð Þ∣ ∣α ∣ T zk kP
�

+ hk kΨ zk kP
� �

Γ s + rð Þ
ðT
0

T − τð Þs+r−1dτ

+ ∣ℓ ∣ zk k
Γ s + 1ð ÞT

s
�
+ ∣χ2 tð Þ∣ ∣β ∣ ζ zk kP

�

+ hk kΨ zk kP
� �

Γ s + rð Þ
ðζ
0

ζ − τð Þs+r−1dτ + ∣ℓ ∣ zk k
Γ s + 1ð Þ ζ

s

#
:

ð72Þ

Consequently, the above inequality leads to the following
assertion.

Sz tð Þk k = sup
0tT

∣Sz tð Þ∣ ≤ hk kΨ zk kP
� �

Δ s + rð Þ + zk kPΔ:

ð73Þ

Similarly, we can easily obtain the following other assertion.

cDρSzk k = sup
0tT

����
c

DρSz tð Þ∣ ≤ hk kΨ zk kP
� �

Δ′ s + rð Þ + zk kPΔ′:

ð74Þ

By the last two inequalities, one can deduce that the opera-
tor S is bounded. On the other hand, to prove that this operator
is also equicontinuous, we should recall that it has been previ-
ously formulated as a sum of two operators S1 and S2, with not-
ing that the first one, S1, has appeared as an equicontinuous
operator through the proof of Theorem 13.. Therefore, to com-
plete the proof of this theorem, it remains to show that S2 is also
equicontinuous. In order to achieve this objective, let t1, t2 ∈ ½
0, T� such that t1 < t2. Then, we have

∣S2z t2ð Þ − S2z t1ð Þ∣ ≤ ∣ℓ ∣
Γ sð Þ ×

ðt1
0

t1 − τð Þs−1��
− t2 − τð Þs−1� ∣ z τð Þ ∣ dτ

+
ðt2
t1

t2 − τð Þs−1 ∣ z τð Þ ∣ dτ
#

+ ∣χ1 t2ð Þ − χ1 t1ð Þ∣ ∣α ∣
ðT
0

∣ z τð Þ ∣ dτ
�

+ ∣ℓ ∣
Γ sð Þ

ðT
0

T − τð Þs−1 ∣ z τð Þ ∣ dτ
�

+ ∣χ2 t2ð Þ − χ2 t1ð Þ∣ ∣β ∣
ðζ
0
∣ z τð Þ ∣ dτ

"

+ ∣ℓ ∣
Γ sð Þ

ðζ
0

ζ − τð Þs−1 ∣ z τð Þ ∣ dτ
#
:

ð75Þ

Actually, the above inequality leads to the following other
one

∣S2z t2ð Þ − S2z t1ð Þ∣ ≤ zk k ∣ℓ ∣
Γ s + 1ð Þ 2 t2 − t1ð Þsð

�

+ ts1 − ts2Þ +
∣ts2 t2 − ζð Þ − ts1 t1 − ζð Þ ∣

Ts T − ζð Þ
� ∣α ∣ T + ∣ℓ ∣ Ts

Γ s + 1ð Þ
� �

+ ∣ts2 T − t2ð Þ − ts1 T − t1ð Þ ∣
ζs T − ζð Þ

� ∣β ∣ ζ + ∣ℓ ∣ ζs

Γ s + 1ð Þ
� ��

≤ zk k 2 ∣ ℓ ∣
Γ s + 1ð Þ t2 − t1ð Þs

�

+ ts+12 − ts+11 + ζ ts2 − ts1ð Þ
Ts T − ζð Þ

� ∣α ∣ T + ∣ℓ ∣ Ts

Γ s + 1ð Þ
� �

+ ts+12 − ts+11 + T ts2 − ts1ð Þ
ζs T − ζð Þ

� ∣β ∣ ζ + ∣ℓ ∣ ζs

Γ s + 1ð Þ
� ��

:

ð76Þ
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One observes that the right-hand side of inequality above
goes to zero uniformly as t2 → t1. This, however, implies that
S2 is definitely equicontinuous via Arzela-Ascoli theorem. The
last step in this proof that should be considered is showing
the boundedness of the solution of the equation z = γSz, where
γ ∈ ½0, 1�. In this regard, let t ∈ ½0, T� and z be such solution,
then by considering (4.12, 4.12), we have

zk kP = γ Szk kP
≤ Szk kP
=max Szk k, cDρSzk kf g
≤ hk kΨ zk kP

� �
max

� Δ s + rð Þ, Δ′ s + rð Þ
n o

+ zk kP max Δ, Δ′
n o

:

ð77Þ

Using the previous inequality allows one to reveal the fol-
lowing inequality.

z tð Þk kP
hk kΨ zk kP

� �
max Δ s + rð Þ, Δ′ s + rð Þ

n o
+ zk kP max Δ, Δ′

n o ≤ 1:

ð78Þ

Obviously, due to kzðtÞkP < λ as previously defined in O,
then the last assertion contradicts assumption (70). Hence, by
Theorem 9, one can conclude that S has a fixed point z ∈ �O,
which finishes the proof.

5. Illustrative Examples

This section introduces three examples to demonstrate the
proposed results related to the main issue in this work. For
simplicity in calculations, these three examples are unified
under the same values of our problem’s parameters (1)–(2).
In other words, we take r = 8/5, s = 2/3, ρ = 1/2, ζ = 1/2, T
= 1, ℓ = 1/75, α = 1/150 and β = 3/200. Setting these values
in the terms (19), (20), (30) and (31) simplifies their expres-
sions to be in the following forms χ1 = 1, χ2 = 1:03413, χ3
= 1:80715 and χ4 = 1:80456. Accordingly, the following
terms are also estimated via (36)-(39) as Δðs = 2/3Þ = 2:937,
Δðs + r = 34/15Þ = 0:854, Δ = 0:054, Δ′ðs = 2/3Þ = 4:339, Δ′ð
s + r = 34/15Þ = 1:455 and Δ′ = 0:083.

Example 1. Consider the following problem.

D8/5 D2/3 + 1
75

� �
z tð Þ = e−t

7 + etð Þ
∣z tð ÞD1/2z tð Þ ∣

1+∣z tð ÞD1/2z tð Þ ∣
� �

, t ∈ 0, 1½ �,

ð79Þ

subject to the following conditions

z 0ð Þ = 0, z 1ð Þ = 1
150

ð1
0
z uð Þdu, z

1
2

� �
= 3
200

ð1/2
0

z uð Þdu:

ð80Þ

Comparing (79)-(80) with (1)-(2) yields the following
continuous function on ½0, 1�

f t, z tð Þ,D1/2z tð Þ� �
= e−t

7 + etð Þ
∣z tð ÞD1/2z tð Þ ∣

1+∣z tð ÞD1/2z tð Þ ∣
� �

: ð81Þ

Note that H1 is satisfied, and, on the other hand, we have

∣f t, z tð Þ,D1/2z tð Þ� �
∣ ≤

e−t

7 + etð Þ
����

���� ∣z tð ÞD1/2z tð Þ ∣
1+∣z tð ÞD1/2z tð Þ ∣

����
����, ð82Þ

which implies

∣f t, z tð Þ,D1/2z tð Þ� �
∣ ≤ q tð Þ = e−t

7 + et
: ð83Þ

Therefore, condition H2 is also satisfied with kqk = 1/8.
Now, based on the above estimations, one can verify the fol-
lowing statement:

max Δ, Δ′
n o

= 0:083 < 1: ð84Þ

This means that the problem given in (79)-(80) has a
unique solution on ½0, 1�, as per Theorem 13..

Example 2. Consider the following problem:

D8/5 D2/3 + 1
75

� �
z tð Þ

= ln t
2t :

∣z tð Þ ∣
2+∣z tð Þ ∣

+ ∣D1/2z tð Þ ∣
10 1 + tð Þ2 ∣D1/2z tð Þ∣+1� � ,

ð85Þ

subject to the same conditions given in (80). One can notice
that the function f has the form

f t, z tð Þ,D1/2z tð Þ� �
= ln t

2t :
∣z tð Þ ∣

2+∣z tð Þ ∣ + ∣D1/2z tð Þ ∣
10 1 + tð Þ2 ∣D1/2z tð Þ∣+1� � ,

ð86Þ

which satisfies H1 and implies

∣f t, z1 tð Þ,D1/2z1 tð Þ� �
− f t, z2 tð Þ,D1/2z2 tð Þ� �

∣

≤
1
4 ∣z1 − z2∣ +

1
10 D1/2z1 −D1/2z2

�� ��: ð87Þ

This definitely means that condition H3 is hold, with
M1 = 1/4 andM2 = 1/10. Besides, one can have the following
assertion.

Ψ = M1 +M2ð Þ max Δ s + rð Þ, Δ′ s + rð Þ
n o

+max Δ, Δ′
n o

= 0:5926 < 1,
ð88Þ
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which implies that the problem (85) has a unique solution on
½0, 1� according to Theorem 14.

Example 3. Consider the following problem.

D8/5 D2/3 + 1
75

� �
z tð Þ

=
e−t

4 max sup
0≤t≤1

∣ z tð Þ , sup
0≤t≤1

����
����
c

D1/2 z tð Þð Þ ∣
� �

5
ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p ,

ð89Þ

subject to the same conditions given in (80). In this example,
we have the function f is of the form

f t, z tð Þ,D1/2z tð Þ� �

=
e−t

4 max sup
0≤t≤1

∣ z tð Þ , sup
0≤t≤1

����
����
c

D1/2 z tð Þð Þ ∣
� �

5
ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p :

ð90Þ

In fact, the above function satisfies H1 and implies

∣f t, z tð Þ,D1/2z tð Þ� �
∣ ≤ h tð ÞΨ zk kP

� �
, ð91Þ

where hðtÞ = e−t
4 /5

ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p
and ΨðkzkP Þ = kzkP < λ, in

which λ is assumed as given in (70). In other words, condi-
tion H4 is satisfied with khk = 1/5, while the assumption
given in (70) will be hold if

max 0:1708 zk kP + 0:054
� �

, 0:291 zk kP + 0:083
� � �

< λ:

ð92Þ

This, consequently, implies λ > 0:117. It means that the
problem (89), in view of Theorem 15., has at least one solu-
tion on ½0, 1�, for λ > 0:117.

6. Conclusion

The existence and uniqueness of solution for the fractional-
order Langevin equation have been studied and explored in
this article. This problem has been addressed subject to novel
three-point boundary conditions involving two nonlocal
integrals. In view of this study, some new applicable condi-
tions and results have been established associated with our
main target. These results have been illustrated through three
numerical examples.
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