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This paper deals with the existence and uniqueness of solutions for a new class of coupled systems of Hilfer fractional pantograph
differential equations with nonlocal integral boundary conditions. First of all, we are going to give some definitions that are necessary for
the understanding of the manuscript; second of all, we are going to prove our main results using the fixed point theorems, namely,
Banach’s contraction principle and Krasnoselskii’s fixed point theorem; in the end, we are giving two examples to illustrate our results.

1. Introduction

Differential equations play a very important role in the
understanding of qualitative features of many phenomenon
and processes in different areas and practical fields. A lot of
works have been done concerning these equations in the
recent years for their importance in applied sciences; for
more details about differential equations and their applica-
tions, we refer the readers to [1–7].

A more general way to describe natural differential equa-
tions is through fractional calculus. Fractional calculus has
attracted many researchers recently; this branch of mathe-
matics is used in the modelling of many problems in various
fields, like biology, physics, control theory, and economics;
for more details, we give the following classical references
[8–13].

There are many different definitions of fractional inte-
grals and derivatives in the literature [12]; the most popular
definitions are the Riemann-Liouville and the Caputo frac-
tional derivatives. A generalization of these derivatives was
introduced by Hilfer in [14], known by the Hilfer fractional
derivative of order α and type β ∈ ½0, 1�, and we can find the
Riemann-Liouville fractional derivative when β = 0, and the
Caputo fractional derivative when β = 1. Fractional differen-

tial equations involving the Hilfer fractional derivative have
many applications, see [15–18] and the references therein.

On the other hand, another important class of differential
equations are called pantograph equations, which are a spe-
cial class of delay differential equations arising in determinis-
tic situations and are of the form

g′ tð Þ = kg tð Þ + lg λtð Þ, t ∈ 0, b½ �, b > 0, 0 < λ < 1,
g 0ð Þ = g0:

(
ð1Þ

They are also called equations with proportional delays. This
class of differential equations was not properly investigated
under fractional derivatives. Pantograph is a device used in
drawing and scaling. But, recently, this device is being used
in electric trains [19, 20]. Many researchers studied the pan-
tograph differential equations and their applications in many
sciences such as biology, physics, economics, and electrody-
namics. For more details, please see [21, 22].

In [23], the authors studied nonlocal boundary value
problems for the Hilfer fractional derivative. Initial value
problems involving Hilfer fractional derivatives were studied
in [24–26]. Initial value problems for pantograph equations
with the Hilfer fractional derivative were studied in [22, 27].
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To the best of our knowledge, there is no work involv-
ing systems of integral boundary value problems for pan-
tograph equations with the Hilfer fractional derivative.
Thus, the objective of this work is to introduce a new class
of coupled systems of Hilfer fractional differential panto-
graph equations with nonlocal integral boundary condi-
tions of the form

HD
α1,β1x tð Þ = f1 t, x tð Þ, x λ1tð Þ, y tð Þð Þ t ∈ a, b½ �,

HD
α2,β2y tð Þ = f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þ t ∈ a, b½ �,

x að Þ = 0, A1x bð Þ + B1I
δ1x μ1ð Þ = C1, μ1 ∈ a, bð Þ,

y að Þ = 0, A2y bð Þ + B2I
δ2y μ2ð Þ = C2, μ2 ∈ a, bð Þ,

8>>>>>><
>>>>>>:

ð2Þ

where HDα1,β1 , HDα2,β2 are the Hilfer fractional derivatives
of order α1 and α2, 1 < α1, α2 < 2 and parameter β1, β2,
0 < β1, β2 < 1, respectively, f1, f2 : ½a, b� ×ℝ ×ℝ ×ℝ→ℝ
are two continuous functions; Iδ1 , Iδ2 are the Riemann-
Liouville fractional integrals of order δ1 and δ2, respec-
tively, a ≥ 0, A1, A2, B1, B2, C1, C2 ∈ℝ, and 0 < λ1, λ2 < 1.

This paper is organized as follows: we first give some def-
initions and notions that will be used throughout the work,
after that we will establish the existence and uniqueness
results by means of the fixed point theorems, and last but
not least, we will give some examples that illustrate the
results.

2. Preliminaries and Notations

In this section, we introduce some notations and definitions
related to fractional calculus that we will use throughout this
paper.

We first define the following spaces:
Cð½a, b�,ℝÞ with a ≥ 0 is the Banach space of all continu-

ous functions from ½a, b� toℝ, Lða, bÞ is the space of Lebesgue
integrable functions on a finite closed interval ½a, b�ðb > aÞ of
the real line ℝ, and ACk½a, b� is the space of real-valued func-
tions f ðtÞ which have continuous derivatives up to order k
− 1 on ½a, b� such that f ðk−1ÞðtÞ belongs to the space of abso-
lutely continuous functions AC½a, b�.

Definition 1. (see [8, 11]). The Riemann-Liouville fractional
integral of order α > 0 of a continuous function f : ½a,∞Þ
→ℝ, is defined by

Iα = 1
Γ αð Þ

ðt
a
t − sð Þα−1 f sð Þds, ð3Þ

provided the right-hand side exists on ða,∞Þ.

Definition 2 (see [8, 11]). The Riemann-Liouville fractional
derivative of order α > 0 of a continuous function f , is
defined by

RLDα f tð Þ≔DnIn−α f tð Þ = 1
Γ n − αð Þ

d
dt

� �nðt
a

t − sð Þn−α−1 f sð Þds,

ð4Þ

where n = ½α� + 1, ½α� denotes the integer part of the real
number α, provided the right-hand side is pointwise defined
on ða,∞Þ.

Definition 3 (see [8, 11]). The Caputo fractional derivative of
order α > 0 of a continuous function f , is defined by

CDα f tð Þ≔ In−αDnf tð Þ = 1
Γ n − αð Þ

ðt
a

t − sð Þn−α−1

� d
dt

� �n

f sð Þds, n − 1 < α < n,
ð5Þ

provided the right-hand side is pointwise defined on ða,∞Þ.

Definition 4 (see [14]). The Hilfer fractional derivative of
order α and parameter β of a function f is given by

HDα,β f tð Þ = Iβ n−αð ÞDnI 1−βð Þ n−αð Þ f tð Þ, ð6Þ

where n − 1 < α < n, 0 ≤ β ≤ 1, t > a, and D = d/dt.

Remark 5. When β = 0, the Hilfer fractional derivative
becomes the Riemann-Liouville fractional derivative, while
when β = 1, the Hilfer fractional derivative becomes the
Caputo fractional derivative.

The following lemma gives a composition between the
Riemann-Liouville fractional integral operator and the Hilfer
fractional derivative operator.

Lemma 6 (see [15]). Let f ∈ Lða, bÞ, n − 1 < α < n, n ∈ℕ, 0
< β < 1, Iðn−αÞð1−βÞ f ∈ ACk½a, b�; then, we have

IαHDα,β f
� �

tð Þ = f tð Þ − 〠
n−1

k=0

t − að Þk− n−αð Þ 1−βð Þ

Γ k − n − αð Þ 1 − βð Þ + 1ð Þ limt→a+

� d
k

dtk
I 1−βð Þ n−αð Þ f
� �

tð Þ:
ð7Þ
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Now, we give a lemma which is the solution of a variant of
the integral boundary value coupled systems (2).

Lemma 7. Let a ≥ 0, for i = 1, 2, 1 < αi < 2, γi = αi + 2βi − αiβi,
hi ∈ Cð½a, b�,ℝÞ, and

Λi =
Ai b − að Þγi−1

Γ γið Þ + Bi μi − að Þγi+δi−1
Γ γi + δið Þ ≠ 0: ð8Þ

Then, the following problem

HD
α1 ,β1x tð Þ = h1 tð Þ, t ∈ a, b½ �,

HD
α2 ,β2y tð Þ = h2 tð Þ, t ∈ a, b½ �,

x að Þ = 0, A1x bð Þ + B1I
δ1x μ1ð Þ = C1, μ1 ∈ a, bð Þ,

y að Þ = 0, A2y bð Þ + B2I
δ2y μ2ð Þ = C2, μ2 ∈ a, bð Þ,

8>>>>>><
>>>>>>:

ð9Þ

is equivalent to the system of equations:

x tð Þ = Iα1h1 tð Þ + t − að Þγ1−1
Λ1Γ γ1ð Þ C1 − A1I

α1h1 bð Þ − B1I
α1+δ1h1 μ1ð Þ

h i
,

y tð Þ = Iα2h2 tð Þ + t − að Þγ2−1
Λ2Γ γ2ð Þ C2 − A2I

α2h2 bð Þ − B2I
α2+δ2h2 μ2ð Þ

h i
:

8>>>><
>>>>:

ð10Þ

Proof. Let us assume that ðx, yÞ is a solution of problem (9).
Applying the fractional integrals Iα1 and Iα2 on both sides
of the equations in (9) and using Lemma 6, we obtain

x tð Þ = c01
t − að Þ− 2−α1ð Þ 1−β1ð Þ

Γ 1 − 2 − α1ð Þ 1 − β1ð Þð Þ + c11
t − að Þ1− 2−α1ð Þ 1−β1ð Þ

Γ 2 − 2 − α1ð Þ 1 − β1ð Þð Þ + Iα1h1 tð Þ,

y tð Þ = c02
t − að Þ− 2−α2ð Þ 1−β2ð Þ

Γ 1 − 2 − α2ð Þ 1 − β2ð Þð Þ + c12
t − að Þ1− 2−α2ð Þ 1−β2ð Þ

Γ 2 − 2 − α2ð Þ 1 − β2ð Þð Þ + Iα2h2 tð Þ:

8>>>><
>>>>:

ð11Þ

Since for i = 1, 2, ð1 − βiÞð2 − α1Þ = 2 − γi, we obtain

x tð Þ = c01
t − að Þγ1−2
Γ γ1 − 1ð Þ + c11

t − að Þγ1−1
Γ γ1ð Þ + Iα1h1 tð Þ,

y tð Þ = c02
t − að Þγ2−2
Γ γ2 − 1ð Þ + c12

t − að Þγ2−1
Γ γ2ð Þ + Iα2h2 tð Þ,

8>>>><
>>>>:

ð12Þ

where for i = 1, 2, c0i, c1i are real constants.

Since we have xð0Þ = yð0Þ = 0 and limt→aðt − aÞγ1−2 =
limt→aðt − aÞγ2−2 =∞, we can obtain that c01 = c02 = 0.

Then, we get

x tð Þ = c11
t − að Þγ1−1
Γ γ1ð Þ + Iα1h1 tð Þ,

y tð Þ = c12
t − að Þγ2−1
Γ γ2ð Þ + Iα2h2 tð Þ,

8>>>><
>>>>:

ð13Þ

from the conditions: A1xðbÞ + B1I
δ1xðμ1Þ = C1 and A2yðbÞ

+ B2I
δ2yðμ2Þ = C2; we can find that

c11 =
1
Λ1

C1 − A1I
α1h1 bð Þ − B1I

α1+δ1h1 μ1ð Þ
h i

,

c12 =
1
Λ2

C2 − A2I
α2h2 bð Þ − B2I

α2+δ2h2 μ2ð Þ
h i

:

8>>><
>>>:

ð14Þ

By substituting the values above in (13), we obtain

x tð Þ = Iα1h1 tð Þ + t − að Þγ1−1
Λ1Γ γ1ð Þ C1 − A1I

α1h1 bð Þ − B1I
α1+δ1h1 μ1ð Þ

h i
,

y tð Þ = Iα2h2 tð Þ + t − að Þγ2−1
Λ2Γ γ2ð Þ C2 − A2I

α2h2 bð Þ − B2I
α2+δ2h2 μ2ð Þ

h i
,

8>>>><
>>>>:

ð15Þ

which is the solution to problem (9).
We get the converse by direct computations. This ends

the proof.

3. Main Results

The space X = fx : xðtÞ ∈ Cð½a, b�,ℝÞg endowed with the
norm kxk = sup fjxðtÞj, t ∈ ½a, b�g and the space Y = fy : yðt
Þ ∈ Cð½a, b�,ℝÞg endowed with the norm kyk = sup fjyðtÞj, t
∈ ½a, b�g are two Banach spaces. Moreover, the product space
ðX × Y , kðx, yÞkÞ is a Banach space with the norm kðx, yÞk
= kxk + kyk.

In view of Lemma 7, we define the operator T : X × Y
→ X × Y by

T x, yð Þ tð Þ = U x, yð Þ tð Þ, V x, yð Þ tð Þð Þ, ð16Þ

where
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We should note that problem (2) has a solution ðx, yÞ if
and only if the operator T has a fixed point.

In what is coming, for convenience, we set the following:
For i = 1, 2,

Ωi =
b − að Þγi−1
Λij jΓ γið Þ Aij j b − að Þαi

Γ αi + 1ð Þ
�

+ Bij j μi − að Þαi+δi
Γ αi + δi + 1ð Þ

#
+ b − að Þαi
Γ αi + 1ð Þ :

ð18Þ

We are going to prove the existence and uniqueness as
well as the existence results for problem (2) by using the
Banach contraction principle and Krasnoselskii’s fixed point
theorem.

The first result is based on Banach’s fixed point theorem.

Theorem 8. Assume that
ðH1Þ For all x, �x, y, �y ∈ℝ,t ∈ ½a, b� there exist Lf1

, Lf2
> 0

such that

f1 t, x tð Þ, x λ1tð Þ, y tð Þð Þ − f1 t, �x tð Þ, �x λ1tð Þ, �y tð Þð Þj j
≤ Lf1

2 x − �xj j + y − �yj j½ �,

f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þ − f1 t, �x tð Þ, �y tð Þ, �y λ2tð Þð Þj j
≤ Lf2

x − �xj j + 2 y − �yj j½ �, ð19Þ

in addition, if we have

3 Lf1
Ω1 + Lf2

Ω2

� �
< 1, ð20Þ

where Ω1,Ω2 are defined by (18); then, the boundary coupled
systems (2) has a unique solution ðx∗, y∗Þ on ½a, b�.

Proof.We transform the boundary value coupled systems (2)
into a fixed point problem. Applying the Banach contraction

mapping principle, we show that T defined by (16) and (17)
has a unique fixed point. We let supt∈ða;bÞj f1ðt, 0, 0, 0Þj =M1 and
sup
t∈ða;bÞj f2ðt, 0, 0, 0Þj =M2 and choose

r0 ≥
M1Ω1 +M2Ω2 + C1j j b − að Þγ1−1/ Λ1j jΓ γ1ð Þ + C2j j b − að Þγ2−1/ Λ2j jΓ γ2ð Þ

1 − 3 Lf1
Ω1 + Lf2

Ω2
� � :

ð21Þ

We first show that TBr0
⊂ Br0

, where Br0
= fðx, yÞ ∈ X ×

Y : kðx, yÞk ≤ r0g.
For any ðx, yÞ ∈ Br0

, we have

U x, yð Þ tð Þj j ≤ sup
t∈ a,b½ �

t − að Þγ1−1
Λ1Γ γ1ð Þ C1j j + A1j jIα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j bð Þð

"

+ B1j jIα1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j μ1ð Þ
�

+ Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j tð Þ
#

≤
b − að Þγ1−1
Λ1Γ γ1ð Þ C1j j + A1j jIα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þjðð

"

− f1 s, 0, 0, 0ð Þj + f1 s, 0, 0, 0ð Þj jÞ bð Þ
+ B1j jIα1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ − f1 s, 0, 0, 0ð Þj jð
+ f1 s, 0, 0, 0ð Þj jÞ μ1ð ÞÞ + Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þjð

− f1 s, 0, 0, 0ð Þj + f1 s, 0, 0, 0ð Þj jÞ bð Þ
#

≤ Lf1
2 xk k + yk kð Þ +M1

� � b − að Þγ1−1
Λ1Γ γ1ð Þ

"

� A1j j b − að Þα1
Γ α1 + 1ð Þ + B1j j μ1 − að Þα1+δ1

Γ α1 + δ1 + 1ð Þ

 !
+ b − að Þα1
Γ α1 + 1ð Þ

#

+ C1j j b − að Þγ1−1
Λ1Γ γ1ð Þ ≤ 3r0Lf1

+M1
� �

Ω1 + C1j j b − að Þγ1−1
Λ1Γ γ1ð Þ :

ð22Þ

Similarly, we get

V x, yð Þ tð Þj j ≤ 3r0Lf2
+M2

� �
Ω2 + C2j j b − að Þγ2−1

Λ2Γ γ2ð Þ : ð23Þ

U x, yð Þ tð Þ = t − að Þγ1−1
Λ1Γ γ1ð Þ C1 − A1I

α1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ bð Þ − B1I
α1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ μ1ð Þ

h i
+ Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ tð Þ,

V x, yð Þ tð Þ = t − að Þγ2−1
Λ2Γ γ2ð Þ C2 − A2I

α2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ bð Þ − B2I
α2+δ2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ μ2ð Þ

h i
+ Iα2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ tð Þ:

8>>>><
>>>>:

ð17Þ
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Finally,

T x, yð Þ tð Þj j ≤ 3r0Lf1
+M1

� �
Ω1 + 3r0Lf2

+M2
� �

Ω2

+ C1j j b − að Þγ1−1
Λ1Γ γ1ð Þ + C2j j b − að Þγ2−1

Λ2Γ γ2ð Þ ≤ r0,

ð24Þ

which implies that TBr0
⊂ Br0

.
Next, we show that the operator T is a contraction; we let

ðx, yÞ, ð�x, �yÞ ∈ X × Y ; then for t ∈ ½a, b�, we have

U x, yð Þ tð Þ −U �x, �yð Þ tð Þj j

≤
b − að Þγ1−1
Λ1Γ γ1ð Þ A1j jIα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þjð

"

− f1 s, �x sð Þ, �x λ1sð Þ, �y sð Þð Þj bð Þ
+ B1j jIα1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj
− f1 s, �x sð Þ, �x λ1sð Þ, �y sð Þð Þj μ1ð ÞÞ
+Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj

− f1 s, �x sð Þ, �x λ1sð Þ, �y sð Þð Þj bð Þ
#

≤ Lf1

b − að Þγ1−1
Λ1Γ γ1ð Þ A1j j b − að Þα1

Γ α1 + 1ð Þ + B1j j μ1 − að Þα1+δ1
Γ α1 + δ1 + 1ð Þ

 !"

+ b − að Þα1
Γ α1 + 1ð Þ

#
2 x − �xk k + y − �yk kð Þ

≤ Lf1
Ω1 2 x − �xk k + y − �yk kð Þ ≤ 3Lf1

Ω1 x − �xk k + y − �yk kð Þ,
ð25Þ

with a similar method, we also get

V x, yð Þ tð Þ −V �x, �yð Þ tð Þj j ≤ 3Lf2
Ω2 x − �xk k + y − �yk kð Þ: ð26Þ

Finally, we can obtain

T x, yð Þ tð Þ − T �x, �yð Þ tð Þj j ≤ 3 Lf1
Ω1 + Lf2

Ω2
� �

x − �xk k + y − �yk kð Þ:
ð27Þ

And since, 3ðLf1
Ω1 + Lf2

Ω2Þ < 1, then the operator T is a
contraction.

Therefore, we conclude by Banach’s contractionmapping
principle that T has a fixed point which is the unique solution
ðx∗, y∗Þ of problem (2). The proof is completed.

Next, we present a result based on Krasnoselskii’s fixed
point theorem.

Theorem 9. Let f : ½a, b� ×ℝ ×ℝ ×ℝ→ℝ be a continuous
function that satisfies ðH1Þ.

In addition, we assume that
ðH2Þj f1ðt, xðtÞ, xðλ1tÞ, yðtÞÞj ≤ 2Cf1

jxj +Df1
jyj +Mf1

,

f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þj j ≤ Cf2
xj j + 2Df2

yj j +Mf2
, ð28Þ

for all x, y ∈ℝ, 0 < λ1, λ2 < 1 and t ∈ ½a, b�, with Cf1
, Cf2

,Df1
,Df2

,Mf1
,Mf2

are positive real numbers.
Then, problem (2) has at least a solution ðx, yÞ on ½a, b�,

provided

〠
2

i=1
3Lf i

b − að Þγi−1
Λij jΓ γið Þ Aij j b − að Þαi

Γ αi + 1ð Þ + Bij j μi − að Þαi+δi
Γ αi + δi + 1ð Þ

" #
< 1:

ð29Þ

Proof. We set ε0 ≥ ððMf1
Ω1 + jC1jððb − aÞγ1−1/jΛ1jΓðγ1ÞÞÞ/ð

1 − 2Cf1
−Df1

ÞÞ + ððMf2
Ω2 + jC2jððb − aÞγ2−1/jΛ2jΓðγ2ÞÞÞ/ð1

− Cf2
− 2Df2

ÞÞ, whereΩ1,Ω2 are defined in (18), and we con-
sider Bε0

= fðx, yÞ ∈ X × Y : kðx, yÞk ≤ ε0g.
We define the operator T by Tðx, yÞðtÞ = ðUðx, yÞðtÞ, Vð

x, yÞðtÞÞ, for any ðx, yÞ ∈ Bε0
, and t ∈ ½a, b� where

U x, yð Þ tð Þ = t � að Þγ1�1

Λ1Γ γ1ð Þ C1 � A1I
α1 f 1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ bð Þ½

� B1I
α1+δ1 f 1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ μ1ð Þ�

+ Iα1 f 1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ tð Þ,

V x, yð Þ tð Þ = t � að Þγ2�1

Λ2Γ γ2ð Þ C2 � A2I
α2 f 2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ bð Þ½

� B2I
α2+δ2 f 2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ μ2ð Þ�

+ Iα2 f 2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ tð Þ,
ð30Þ

by splitting the two operators above, we have

U1 x, yð Þ tð Þ = Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ tð Þ,

U2 x, yð Þ tð Þ = t − að Þγ1−1
Λ1Γ γ1ð Þ C1 − A1I

α1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ bð Þ½

− B1I
α1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þ μ1ð Þ

i
,

V1 x, yð Þ tð Þ = Iα2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ tð Þ,
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V2 x, yð Þ tð Þ = t − að Þγ2−1
Λ2Γ γ2ð Þ C2 − A2I

α2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ bð Þ½

− B2I
α2+δ2 f2 s, x sð Þ, y sð Þ, y λ2sð Þð Þ μ2ð Þ

i
:

ð31Þ

This upcoming part of the proof requires us to rewrite the
operator T as

T x, yð Þ tð Þ = T1 x, yð Þ tð Þ + T2 x, yð Þ tð Þ, ð32Þ

where

T1 x, yð Þ tð Þ = U1 x, yð Þ tð Þ, V1 x, yð Þ tð Þð Þ,
T2 x, yð Þ tð Þ = U2 x, yð Þ tð Þ, V2 x, yð Þ tð Þð Þ:

ð33Þ

For any ðx, yÞ ∈ Bε0
, we have

T1 x, yð Þ tð Þj j ≤ sup
t∈ a,b½ �

t − að Þγ1−1
Λ1Γ γ1ð Þ

"

� C1j j + A1j jIα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j bð Þð
+ B1j jIα1+δ1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j μ1ð Þ

�

+ Iα1 f1 s, x sð Þ, x λ1sð Þ, y sð Þð Þj j tð Þ
#

≤ 2Cf1
xk k +Df1

yk k +Mf1

� �
Ω1 + C1j j b − að Þγ1−1

Λ1j jΓ γ1ð Þ ,

ð34Þ

Similarly, we have

T2 x, yð Þ tð Þj j ≤ Cf2
xk k + 2Df2

yk k +Mf2

� �
Ω2

+ C2j j b − að Þγ2−1
Λ2j jΓ γ2ð Þ ,

ð35Þ

Since ε0 ≥ ððMf1
Ω1 + jC1jððb − aÞγ1−1/jΛ1jΓðγ1ÞÞÞ/ð1 − 2

Cf1
−Df1

ÞÞ + ðMf2
Ω2 + jC2jððb − aÞγ2−1/jΛ2jΓðγ2ÞÞÞ/ð1 − Cf2

− 2Df2
Þ.

Then, this shows that Tðx, yÞ ∈ Bε0
.

Next, we show that T2 is a contraction mapping.

For all ðx, yÞ, ð�x, �yÞ ∈ X × Y , and for t ∈ ½a, b�, we have

U2 x, yð Þ tð Þ −U2 �x, �yð Þ tð Þj j

≤ 3Lf1

b − að Þγ1−1
Λ1j jΓ γ1ð Þ A1j j b − að Þα1

Γ α1 + 1ð Þ
�

+ B1j j μ1 − að Þα1+δ1
Γ α1 + δ1 + 1ð Þ

#
x − �xk k + y − �yk kð Þ:

ð36Þ

Similarly,

V2 x, yð Þ tð Þ − V2 �x, �yð Þ tð Þj j

≤ 3Lf2

b − að Þγ2−1
Λ2j jΓ γ2ð Þ A2j j b − að Þα2

Γ α2 + 1ð Þ
�

+ B2j j μ2 − að Þα2+δ2
Γ α2 + δ2 + 1ð Þ

#
x − �xk k + y − �yk kð Þ:

ð37Þ

It is easy to see, using (29), that T2 is a contraction
mapping.

The continuity of the functions f1 and f2 implies the con-
tinuity of the operator T1. In addition, T1 is uniformly
bounded on Bε0

as

T1 x, yð Þ tð Þj j ≤ U1 x, yð Þ tð Þj j + V1 x, yð Þ tð Þj j
≤

b − að Þα1
Γ α1 + 1ð Þ 2Cf1

xk k +Df1
yk k +Mf1

� �

+ b − að Þα2
Γ α2 + 1ð Þ Cf2

xk k + 2Df2
yk k +Mf2

� �
≤ ε0:

ð38Þ

Now we prove the compactness of the operator T1.
For any t1, t2 ∈ ½a, b�, with t1 < t2, we have

U1 x, yð Þ t2ð Þ −U1 x, yð Þ t1ð Þj j
= 1
Γ α1ð Þ

ðt1
a

t2 − sð Þα1−1 − t1 − sð Þα1−1� �
f1

				
� t, x sð Þ, x λ1sð Þ, y sð Þð Þds

+
ðt2
t1

t2 − sð Þα1−1 f1 t, x sð Þ, x λ1sð Þ, y sð Þð Þds
					

≤
2Cf1

�
xk k +Df1

yk k +Mf1

Γ α1 + 1ð Þ
� 2 t2 − t1ð Þα1 + t2 − að Þα1 − t1 − að Þα1j j½ �,

ð39Þ

which tends to zero as t2 − t1 → 0 independently of ðx, yÞ.
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Similarly, we have jV1ðx, yÞðt2Þ − V2ðx, yÞðt1Þj→ 0 as t2
− t1 → 0.

Finally, the operator T1 is equicontinuous, which means
that T1 is relatively compact on Bε0

. Hence, by Arzela-
Ascoli theorem, T1 is compact on Bε0

. Thus, all the assump-
tions of Krasnoselskii’s fixed point theorem are satisfied. So,

the boundary value coupled systems (2) have at least a solu-
tion ðx, yÞ on ½a, b�.

4. Examples

Example 1. We first consider the following problem:

where, α1 = α2 = 3/2, β1 = β2 = 2/5, λ1 = λ2 = 1/3, a = 1/2, b
= 5/2, A1 = A2 = 2/3, B1 = B2 = 3/4, δ1 = δ2 = 1/2, μ1 = μ2 = 3
/2, and C1 = C2 = 4/5.

The setting yields γ1 = γ2 = 17/10, Λ1 =Λ2 =
1:872599119, and Ω1 =Ω2 = 4:129461300.

Now, we put

f1 t, x tð Þ, x λ1tð Þ, y tð Þð Þ = t3 + sin x tð Þj j + cos y tð Þj j
90 + sin x t/3ð Þj j

100 ,

f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þ = cos x tð Þ + y tð Þj j
50 + y t/3ð Þj j

t3 + 5ð Þ4
, ð41Þ

which satisfies ðH1Þ as

f1 t, x tð Þ, x λ1tð Þ, y tð Þð Þ − f1 t, �x tð Þ, �x λ1tð Þ, �y tð Þð Þj j
≤ 0:0111 2 x − �xj j + y − �yj j½ �,

f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þ − f1 t, �x tð Þ, �y, �y λ2tð Þð Þj j
≤ 0:020 x − �xj j + 2 y − �yj j½ �, ð42Þ

Setting: Lf1
= 0:0111, Lf2

= 0:020, we obtain 3ðLf1
Ω1

+ Lf2
Ω2Þ ≃ 0:3852787392 < 1, which shows that inequal-

ity (20) is verified. Then, by Theorem 8, we can con-
clude that problem (40) has a unique solution ðx∗, y∗Þ
on ½1/2, 5/2�.

We now consider the following problem:

where, α1 = α2 = 5/3, β1 = β2 = 1/2, λ1 = λ2 = 1/4, a = 1/3, b
= 5/3, A1 = A2 = 3/5, B1 = B2 = 1/4, δ1 = δ2 = 3/2, μ1 = μ2 = 2
/3, and C1 = C2 = 3/4.

The setting yields γ1 = γ2 = 11/6, Λ1 =Λ2 =
0:8175877260.

The function f1, f2 verify ðH1Þ as
f1 t, x tð Þ, x λ1tð Þ, y tð Þð Þ − f1 t, �x tð Þ, �x λ1tð Þ, �y tð Þð Þj j
≤

1
90 2 x − �xj j + y − �yj j½ �,

HD
3/2,2/5

x tð Þ = t3 + sin x tð Þj j + cos y tð Þj j
90 + sin x t/3ð Þj j

100 , t ∈
1
2 ,

5
2

� 

,

HD
3/2,2/5

y tð Þ = cos x tð Þ + y tð Þj j
50 + y t/3ð Þj j

t3 + 5ð Þ4
, t ∈

1
2 ,

5
2

� 

,

x
1
2

� �
= 0, 2

3 x
5
2

� �
+ 3
4 I

1/2x
3
2

� �
= 4
5 ,

y
1
2

� �
= 0, 2

3 y
5
2

� �
+ 3
4 I

1/2y
3
2

� �
= 4
5 ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð40Þ

HD
5/3,1/2

x tð Þ = sin x tð Þj j + sin x t/4ð Þj j
100 + sin y tð Þj j

90 + e1−3t , t ∈
1
3 ,

5
3

� 

,

HD
5/3,1/2

y tð Þ = sin x tð Þj j + sin y tð Þj j
90 + sin y t/4ð Þj j

100 + e1−3t , t ∈
1
3 ,

5
2

� 

,

x
1
3

� �
= 0, 3

5 x
5
3

� �
+ 1
4 I

3/2x
2
3

� �
= 3
4 ,

y
1
3

� �
= 0, 3

5 y
5
3

� �
+ 1
4 I

3/2y
2
3

� �
= 3
4 ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð43Þ
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f2 t, x tð Þ, y tð Þ, y λ2tð Þð Þ − f1 t, �x tð Þ, �y, �y λ2tð Þð Þj j
≤

1
90 x − �xj j + 2 y − �yj j½ �:

ð44Þ

Hence, Lf1
= Lf2

= 1/90, by the definitions of f1 and f2 the
conditon ðH2Þ is also satisfied and we have

〠
2

i=1
3Lf i

b − að Þγi−1
Λij jΓ γið Þ Aij j b − að Þαi

Γ αi + 1ð Þ
�

+ Bij j μi − að Þαi+δi
Γ αi + δi + 1ð Þ

#
≃ 0:07108034 < 1,

ð45Þ

which shows that problem (43) has at least a solution ðx, yÞ
on ½1/3, 5/3�.
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