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In this paper, we gave a form of rational solution and their interaction solution to a nonlinear evolution equation. The rational
solution contained lump solution, general lump solution, high-order lump solution, lump-type solution, etc. Their interaction
solution contained the classical interaction solution, such as the lump-kink solution and the lump-soliton solution. As the
example, by using the generalized bilinear method and symbolic computation Maple, we obtained abundant high-order
lump-type solutions and their interaction solutions between lumps and other function solutions under certain constraints of the
(3 + 1)-dimensional Jimbo-Miwa equation. Via three-dimensional plots, contour plots and density plots with the help of Maple,
the physical characteristics and structures of these waves are described very well. These solutions have greatly enriched the exact
solutions of the (3 + 1)-dimensional Jimbo-Miwa equation on the existing literature.

1. Introduction

Nonlinear phenomena have a lot of significant applications
in different sides of physics with natural and engineering
fields. Basically, all the fundamental equations of physics
are nonlinear and, generally, such types of nonlinear evolu-
tion equations (NLEEs) are often very tough to solve clearly.
The exact solutions of NLEEs play a crucial role in the study
of nonlinear physical or natural phenomena. In the recent
decade, several direct methods for finding the exact solutions
to NLEEs have been proposed [1–9]. Thousands of examples
have shown that these methods are powerful for obtaining
exact solutions of NLEEs, such as soliton [10–14], rogue wave
[15, 16], breather solution [17], periodic wave solution [18–
21], and optical solution [22, 23].

The lump solution has attracted a great deal of attention
since lump solutions were firstly discovered [24]. The
research to lump solution has not been well developed,
because it is very complex to solve the lump solution of
NLEEs. Recently, based on the Hirota bilinear method, Ma
and Zhou introduced a new way to get the lump solution of
NLEEs by using symbolic computation and gave a theoretical

testimony [25, 26]. By using this method, researchers suc-
cessfully obtained the lump solutions and interaction solu-
tions of NLEEs [27–57]. In the present paper, we will
propose the form of rational solution and their interaction
solution to NLEE. The rational solution contains lump solu-
tion, general lump solution, high-order lump solutions,
lump-type solution, etc. Their interaction solution contains
the classical interaction solution, such as the lump-kink solu-
tion and the lump-soliton solution.

The rest of the paper is organized as follows. In Section 2,
we will give the form of rational solution and their interac-
tion solution to NLEE. In Section 3, by using the generalized
bilinear method and symbolic computation Maple, we will
obtain the high-order lump-type solutions of the (3 + 1)-
dimensional Jimbo-Miwa equation. In Section 4, by using
the symbolic computation Maple, we will get abundant inter-
action solutions between the high-order lump-type solution
and other function solutions. Via three-dimensional plots,
contour plots, and density plots with the help of Maple, the
physical characteristics and structures of these waves are
described very well. In Section 5, a few of the conclusions
and outlook will be given.
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2. Rational Solution and Their
Interaction Solution

Consider a Kth order NLEE ðK ≥ 2Þ

F x, u, ∂u, ∂2u,⋯, ∂Ku
� �

= 0, ð1Þ

where x = ðx1, x2,⋯,xnÞ are n independent variables and
xiði ≠ 1Þ contain time variable t. u is the dependent variable.

2.1. Rational Solution. In order to get the rational solution of
NLEE (1), we take its main steps as follows.

Step 1. Under dependent variable transformation,

u xð Þ = 2 ln f xð Þ½ �x1 ,
or u xð Þ = 2 ln f xð Þ½ �x1x1 :

ð2Þ

Equation (1) is transformed into the following bilinear
form:

G x, f , ∂f , ∂2 f ,⋯, ∂J f
� �

= 0: ð3Þ

Step 2. We suppose that Equation (3) has the following gen-
eral positive quadratic function solution:

f = a0 + 〠
N

i=1
ξ2nii , ð4Þ

where

ξi = ai0 + 〠
n

j=1
aijxj, ð5Þ

where a0, aijði = 1,⋯,N ; j = 0, 1,⋯,nÞ are arbitrary real
constants.

Step 3. By substituting (4) and (5) into Equation (3), collect-
ing all terms with the same order of xi together, the left-hand
side of Equation (3) is converted into another polynomial in
xi. Equating each coefficient of this different power terms to
zero yields a set of nonlinear algebraic equations for a0, aij.
With the aid of Maple (or Mathematica), we solve the above
nonlinear algebraic equations.

Step 4. By substituting a0, aij into expression (4) and using
bilinear transformation (2), we can obtain rational solution
(4) of Equation (1).

Remark 1. When choosing N = 2, ni = 1 in expression (4),
the rational solution is reduced to the lump solution
[24–40, 45–57].

Remark 2.When choosing N = 3, ni = 1 in expression (4), we
obtain the lump-type solution of Refs. [41–43]. When N = 3,

n1 = 2, n2 = 1, n3 = 1, we obtain the high-order lump-type of
Ref. [50].

2.2. General Interaction Solution. In order to obtain the gen-
eral interaction solution, we take its main steps as follows:

Step 1. By using transformation (2), Equation (1) is trans-
formed into bilinear form (3).

Step 2. We suppose that Equation (3) has the following
solution:

f = a0 + 〠
N

i=1
ξ
2ni
i + 〠

M

j=1
gj ηj

� �
, ð6Þ

where ξi is given in (5), and

η j = bj0 + 〠
n

k=1
bjkxk, ð7Þ

where bjkðj = 1,⋯,M ; k = 0, 1,⋯,nÞ are arbitrary real
constants.

Step 3. By substituting (6) and (7) into Equation (3), collect-
ing all terms with the same order of xi, gjðη jÞ, gj

′ðηjÞ, gj
′′ðηjÞ,

⋯ together, the left-hand side of Equation (3) is converted
into another polynomial in xi, gjðηjÞ, gj

′ðη jÞ, gj
′′ðη jÞ,⋯.

Equating each coefficient of this different power terms to zero
yields a set of nonlinear algebraic equations for a0, aij, bjk.
With the aid of Maple (or Mathematica), we solve the above
nonlinear algebraic equations.

Step 4. By substituting a0, aij, bjk into (6) and using bilinear
transformation (2), we can obtain the general interaction
solution (6) of Equation (1).

Remark 3. When choosing N = 2, n1 = n2 = 1, and M = 1, g1
ðη1Þ = eη1 or g1ðη1Þ = cosh ðη1Þ, interaction solution (6) is
reduced to the lump-kink solution and the lump-soliton
solution [37–40, 42, 47, 48, 52–56].

Remark 4. When choosing N = 2, n1 = n2 = 1 and M = 1,
g1ðη1Þ = cos η1 or g1ðη1Þ = c1e

η1 + c2e
−η1 or g1ðη1Þ = sinh

ðη1Þ or g1ðη1Þ = sin ðη1Þ, we obtain the interaction solu-
tions of Refs. [42, 43, 47, 57], respectively.

Remark 5. In Step 3, the connection between gjðη jÞ and

gj
′ðηjÞ, gj

′′ðηjÞ,⋯ must be considered when we take a coef-

ficient of different power terms to gjðηjÞ, gj
′ðη jÞ, gj

′′ðη jÞ,⋯
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3. High-Order Lump-Type Solutions of the
(3 + 1)-Dimensional Jimbo-Miwa Equation

We consider the (3 + 1)-dimensional Jimbo-Miwa equation
[58]:

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0: ð8Þ

Equation (8) is the second equation in the well known
KP-hierarchy of integrable systems [11, 12, 58], which are
used to describe certain interesting (3 + 1)-dimensional
waves in physics. Although Equation (8) is nonintegrable,
the exact solutions of the Jimbo-Miwa equation have been
investigated by using various methods [6, 7]. Recently,
researchers studied the solitary wave solutions of Equation
(8) in [13, 14]. Based on the bilinear method, we obtained
several interaction solutions and the periodic lump wave
solutions for Equation (8) [20, 21]. The classes of lump
solutions, lump-type solutions, general lump-type solu-
tions, and interaction solutions for Equation (8) were pre-
sented in [36–41].

3.1. Bilinear Form. Under the Cole-Hopf transformation,

u x, y, z, tð Þ = 2 ln f x, y, z, tð Þ½ �x: ð9Þ

Equation (8) becomes the generalized Hirota bilinear
equation:

GBJM fð Þ≔ D3
p,xDp,y + 2Dp,yDp,t − 3Dp,xDp,z

� �
f · f , ð10Þ

where p, being an arbitrarily natural number, is often a prime
number. D is a generalized bilinear differential operator as
follows [3]:

Dm
p,x1D

n
p,x2 f · f = ∂x1 + αp∂xj′

� �m
∂x2 + αp∂x2′
� �n

f x1, x2ð Þf

� x1′ , x2′
� �

j
x1′=x1,x2′=x2

= 〠
m

i=0
〠
n

j=0

m

i

 !
n

j

 !

�αipαj
p
∂m+n−i−j f x1, x2ð Þ

∂xm−i
1 ∂xn−j2

∂xi+j f x1, x2ð Þ
∂xi1∂x

j
2

,

ð11Þ

where m, n ≥ 0, αsp = ð−1ÞrpðsÞ, if s ≡ rpðsÞ mod p.
When taking p = 2, we obtain theHirota bilinear equation:

GBJM fð Þ≔ D3
xDy + 2DyDt − 3DxDz

� �
f · f

= 2 f f xxxy − f y f xxx + 2 f ty f − f t f y
� �h

+ 3 f xy f xx − f x f xxy − f xz f + f x f z
� �i

= 0:

ð12Þ

When taking p = 3, we can obtain the generalized bilinear

Jimbo-Miwa equation:

GBJM fð Þ≔ D3
3,xD3,y + 2D3,yD3,t − 3D3,xD3,z

� �
f · f

= 2 3f xx f xy + 2 f yt f − f y f t
� �

+ 3 f x f z − f xz fð Þ
h i

= 0:

ð13Þ

By using transformation (9), generalized bilinear Jimbo-
Miwa equation (13) is transformed into the following form:

GPJM uð Þ≔ 9
8 u

2uxv +
3
8 u

3uy +
3
4 uvuxx +

3
4 u

2
xv +

3
4 u

2uxy

+ 9
4 uuxuy +

3
2 uxxuy +

3
2 uxuxy + 2uyt − 3uxz = 0,

ð14Þ

where uy = vx. Transformation (9) is also a characteristic one
in establishing Bell polynomial theories of soliton equations
[59], and an accurate relation is

GPJM uð Þ = GBJM fð Þ
f 2

� �
x

: ð15Þ

Hence, if f solves generalized bilinear Jimbo-Miwa equa-
tion (13), Jimbo-Miwa equation (14) will be solved.

3.2. High-Order Lump-Type Solutions. In the section, we will
study the high-order lump-type solutions of (3 + 1)-dimen-
sional Jimbo-Miwa equation (8) by constructing positive
quadratic function solutions to the corresponding general-
ized bilinear equation (13).

Step 1. By using the Cole-Hopf transformation (9), Equation
(8) is transformed into generalized bilinear equation (13).

Step 2. To get the positive quadratic function solution of gen-
eralized bilinear equation (13), we take N = 3, n1 = 2, n2 = 1,
n3 = 1 in expression (4),

f = a0 + ξ41 + ξ22 + ξ23, ð16Þ

where

ξi = ai0 + ai1x + ai2y + ai3z + ai4t, i = 1, 2, 3: ð17Þ

where aijði = 1, 2, 3 ; j = 0, 1, 2, 3, 4Þ are arbitrary real con-
stants, and

〠
4

j=1
a2ij ≠ 0 i = 1, 2, 3ð Þ,

〠
3

i=1
a2ij ≠ 0 j = 1, 2, 3, 4ð Þ:

ð18Þ

Step 3. By substituting (16) and (17) into Equation (13),
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collecting all terms with the same order of x, y, z, t together,
the left-hand side of Equation (13) is converted into another
polynomial in x, y, z, t. Equating each coefficient of this dif-
ferent power terms to zero yields a set of nonlinear algebraic
equations for a0, aij.

Solving the algebraic equations by Maple yields the
following sets of solutions,

Case 1.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0, a31a34 ≠ 0

ð19Þ

Case 2.

a11 = 0,

a12 =
a32a13
a33

,

a14 = 0,

a22 = −
a31a32
a21

,

a23 = −
a31a33
a21

,

a24 =
3a21a33
2a32

,

a30 =
a20a31
a21

,

a34 =
3a31a33
2a32

, a21a32a33 ≠ 0

ð20Þ

Case 3.

a11 = 0,
a14 = 0,

a22 = −
a31a32
a21

,

a23 = −
a13a31a32
a12a21

,

a24 =
3a13a21
2a12

,

a33 =
a32a13
a12

,

a34 =
3a13a31
2a12

, a12a21 ≠ 0
ð21Þ

where other parameters in Cases 1–3 are arbitrary real
constants.

If we consider the special solutions a11 = a12 = a13 =
a14 = 0, we obtain the following solutions which are differ-
ent from those solutions given in [36–41],

Case 4.

a21 = 0,

a23 = −
2a22 2a410a224 − 3a331a34 + 2a0a224

� �
9a431

,

a32 = −
2a22a24 a410 + a0

� �
3a331

,

a33 = −
2a22a24 2a410a34 + 3a331 + 2a0a34

� �
9a431

, a31 ≠ 0

ð22Þ

Case 5.

a22 = −
2a32a34 a410 + a0

� �
3a321

,

a23 = −
2a32a34 2a410a24 + 3a321 + 2a24a0

� �
9a421

,

a30 = 0,
a31 = 0,

a33 = −
2a32 2a410a234 − 3a321a24 + 2a0a234

� �
9a421

, a21 ≠ 0

ð23Þ

Case 6.

a23 =
a22a33
a32

+ a222 + a232
� �

a21a22 + a31a32ð Þ a221 + a231
� �

a32 a410 + a0
� �

a21a32 − a22a31ð Þ ,

a24 =
3a21a33
2a32

+ 3 a221 + a231
� �

a21a22 + a31a32ð Þ2
2a32 a410 + a0

� �
a21a32 − a22a31ð Þ ,

a30 =
a20a31
a21

,

a34 =
3a31a33
2a32

−
3 a221 + a231
� �

a21a22 + a31a32ð Þ
2a32 a410 + a0

� � ,

  a32 a410 + a0
� �

a21a32 − a22a31ð Þ ≠ 0
� �

ð24Þ
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Case 7.

a0 = −a410 +
a21a22 a221 + a231

� �
a31a33

,

a23 = −
3a21a33 − 2a22a34

3a31
,

a24 = −
3a221a33 − 2a21a22a34 + 3a231a33

2a22a31
,

a30 =
a20a31
a21

,

a32 = 0, a21a22a31 ≠ 0

ð25Þ

where other parameters in Cases 4–7 are arbitrary real
constants.

Step 4. By substituting a0, aij in Cases 1–3 into (16) and (17)
and using transformation (9), we obtain the following high-
order lump-type solutions for Jimbo-Miwa equation (8).

ui x, y, z, tð Þ = 2f ix x, y, z, tð Þ
f i x, y, z, tð Þ , i = 1, 2, 3 ð26Þ

where f iðx, y, z, tÞ are the positive quadratic function
solutions to the generalized bilinear Jimbo-Miwa equation
(13), and

f1 x, y, z, tð Þ = a12y +
2a12a34
3a31

z + a10

� 	4
+ 3a23a31

2a34
y + a23z + a20

� 	2

+ a31x + a34t + a30ð Þ2 + a0,

f2 x, y, z, tð Þ = a13a32
a33

y + a13z + a10

� 	4
+ a21x −

a31a32
a21

y
�

+ 3a21a33
2a32

t −
a31a33
a21

z + a20

	2

+ a31x + a32y +
3a31a33
2a32

t + a33z + a30

� 	2
+ a0,

f3 x, y, z, tð Þ = a12y + a13z + a10ð Þ4 + a21x −
a31a32
a21

y + 3a13a21
2a12

t
�

−
a13a31a32
a12a21

z + a20

	2
+ a31x + a32y +

3a13a31
2a12

t
�

+ a32a13
a12

z + a30

	2
+ a0:

ð27Þ

It is also readily observed that at any given time t,
the above high-order lump-type solutions ui → 0 if and
only if the corresponding sum of squares ξ41 + ξ22 + ξ23
→∞, namely,

lim
x2+y2+z2→+∞

ui x, y, z, tð Þ = 0: ð28Þ

In order to exhibit the dynamical characteristics of
these waves, we plot various three-dimensional, contour,
and density plots as follows. We choose the following
parameters to illustrate the high-order lump-type solu-
tion u2ðx, y, z, tÞ for Jimbo-Miwa equation (8),

a0 = 2,
a10 = 1,
a13 = 2,
a20 = −1,
a21 = 3,
a30 = 2,
a31 = 4,
a32 = −5,
a33 = 3,
z = y:

ð29Þ

The physical properties and structures for the high-
order lump-type solution u2ðx, y, z, tÞ are described in
Figure 1. Figure 1 shows the three-dimensional dynamic
graphs A1, B1, C1, corresponding contour maps A2, B2, C2,
and density plots A3, B3, C3 in the ðx, yÞ plane when t =
−6, 0, 6, respectively. The three-dimensional graphs reflect
the localized structures, and the density plots show the
energy distribution.

Remark 6. By substituting a0, aij in Cases 4–7 to (16) and (17)
and using bilinear transformation (9), we obtain the new
lump solutions for Jimbo-Miwa equation (8). Due to the lack
of space, we omit the expressions of lump solutions.

4. Interaction Solutions between Lump and
Soliton Solutions of the (3 + 1)-
Dimensional Jimbo-Miwa Equation

In this section, we will study the general interaction solu-
tions between the high-order lump-type solutions and
other function solutions of (3 + 1)-dimensional Jimbo-Miwa
equation (8).

Step 1.We use generalize bilinear Jimbo-Miwa equation (13).

Step 2. To get general interaction solutions, we take N = 3,
M = 4, n1 = 2, n2 = 1, n3 = 1 in (6), namely,

f = a0 + 〠
3

i=1
ξ
2ni
i + 〠

4

j=1
mjgj η j

� �
, ð30Þ

where ξiði = 1, 2, 3Þ are given in (17), and

η j = bj0 + bj1x + bj2y + bj3z + bj4t, j = 1, 2, 3, 4, ð31Þ
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where mj, bjk ðj = 1, 2, 3, 4 ; k = 0, 1, 2, 3, 4Þ are arbitrary real
constants. In order to obtain the interaction solution
between the high-order lump-type solution and the double
exponential function, the trigonometric function, and the
hyperbolic function of (3 + 1)-dimensional Jimbo-Miwa
equation (8), we suppose

g1 η1ð Þ = eη1 , g2 η2ð Þ = e−η2 , g3 η3ð Þ = tan η3, g4 η4ð Þ = tanh η4:

ð32Þ

The interaction solution of generalized bilinear equa-
tion (13) is written the following form:

f = a0 + ξ41 + ξ22 + ξ23 +m1e
η1 +m2e

−η2

+m3 tan η3 +m4 tanh η4:
ð33Þ

Step 3. By substituting (33) into Equation (13), collecting
all terms with the same order of x, y, z, t, eη1 , e−η2 , tan η3,
tanh η4 together, the left-hand side of Equation (13) is
converted into another polynomial in x, y, z, t, eη1 , e−η2 , tan
η3, tanh η4. Equating each coefficient of this different
power terms to zero yields a set of nonlinear algebraic
equations for a0, aij, bjk,mj. Solving the algebraic equations
by Maple, yields the following sets of solutions.
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Figure 1: Three-dimensional plots, contour plots, and density plots of the wave with the parameters (29) at times t = −6 (A1,A2,A3), t = 0 (B1,
B2, B3), and t = 6 (C1, C2, C3).
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4.1. Between Lump and a Pair of Line-Soliton Solutions.
When m2 =m1ðm1 ≠ 0Þ,m3 =m4 = 0 in (33), solution (33)
represents the interaction solutions between the high-order
lump-type solution and a pair of line-soliton solution f =
a0 + ξ41 + ξ22 + ξ23 +m1e

η1 +m1e
−η2 ,

Case 1.

a11 = 0,

a13 =
2a12a24
3a21

,

a14 = 0,
a22 = 0,
a23 = 0,
a31 = 0,

a33 =
2a24a32
3a21

,

a34 = 0,
b12 = 0,
b13 = 0,

b14 =
a24b11
a21

,

b22 = 0,
b23 = 0,

b24 =
a24b21
a21

, a21 ≠ 0

ð34Þ

Case 2.

a11 = 0,
a14 = 0,

a21 =
2a12a24
3a13

,

a22 = 0,
a23 = 0,

a31 =
2a12a34
3a13

,

a32 = 0,
a33 = 0,
b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b22 = 0,
b23 = 0,

b24 =
3a13b21
2a12

, a12a13 ≠ 0

ð35Þ

Case 3.

a10 = 0,
a11 = 0,

a12 =
3a13a31
2a34

,

a14 = 0,
a21 = 0,
a22 = 0,
a23 = 0,
a24 = 0,
a32 = 0,
a33 = 0,
b12 = 0,
b13 = 0,

b14 =
a34b11
a31

,

b22 = 0,
b23 = 0,

b24 =
a34b21
a31

, a31a34 ≠ 0

ð36Þ

Case 4.

a11 = 0,
a14 = 0,
a21 = 0,
a22 = 0,
a23 = 0,
a24 = 0,
a31 = 0,

a33 =
a13a32
a12

,

a34 = 0,
b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b22 = 0,
b23 = 0,

b24 =
3a13b21
2a12

, a12 ≠ 0

ð37Þ
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Case 5.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,

a21 = −
a31a32
a22

,

a23 =
2a22a34
3a31

,

a24 = −
a32a34
a22

,

a33 =
2a32a34
3a31

,

b12 = 0,
b13 = 0,

b14 =
b11a34
a31

,

b20 = b10,
b21 = b11,
b22 = 0,
b23 = 0,

b24 =
b11a34
a31

, a22a31 ≠ 0

ð38Þ

Case 6.

a11 = 0,
a14 = 0,
a21 = 0,

a23 =
a13a22
a12

,

a24 = 0,
a31 = 0,

a32 =
a12a33
a13

,

a34 = 0,
b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b20 = b10,
b21 = b11,
b22 = 0,
b23 = 0,

b24 =
3a13b11
2a12

, a12a13 ≠ 0

ð39Þ

Case 7.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0,
b11 = 0,

b13 =
2a34b12
3a31

,

b14 = 0,
b20 = b10,
b21 = 0,
b22 = b12,

b23 =
2a34b12
3a31

,

b24 = 0, a31a34 ≠ 0

ð40Þ

where other parameters in Cases 1–7 are arbitrary real
constants.

4.2. Between Lump and One Line-Soliton Solutions. When
m1 = 0 or m2 = 0 and m3 =m4 = 0 in (33), solution (33) rep-
resents the interaction solutions between the high-order
lump-type solution and one line-soliton solution f = a0 + ξ41
+ ξ22 + ξ23 +m1e

η1 ,

Case 1.

m2 = 0,
a11 = 0,
a14 = 0,

a22 = −
a31a32
a21

,

a23 = −
a13a31a32
a12a21

,

a24 =
3a13a21
2a12

,

a33 =
a13a32
a12

,

a34 =
3a13a31
2a12

,

b11 = 0,

b13 =
a13b12
a12

,

b14 = 0, a12a21 ≠ 0

ð41Þ
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Case 2.

m2 = 0,
a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0,
b11 = 0,

b13 =
2a34b12
3a31

,

b14 = 0, a31a34 ≠ 0

ð42Þ

Case 3.

m2 = 0,
a11 = 0,

a13 =
2a12a24
3a21

,

a14 = 0,
a22 = 0,
a23 = 0,
a31 = 0,

a33 =
2a24a32
3a21

,

a34 = 0,
b12 = 0,
b13 = 0,

b14 =
a24b11
a21

, a21 ≠ 0

ð43Þ

Case 4.

m2 = 0,
a11 = 0,
a14 = 0,

a21 =
2a12a24
3a13

,

a22 = 0,

a23 = 0,

a31 =
2a12a34
3a13

,

a32 = 0,

a33 = 0,

b12 = 0,

b13 = 0,

b14 =
3a13b11
2a12

, a12a13 ≠ 0

ð44Þ

Case 5.

m2 = 0,
a11 = 0,

a12 =
3a13a31
2a34

,

a14 = 0,
a21 = 0,
a22 = 0,
a23 = 0,
a24 = 0,
a32 = 0,
a33 = 0,
b12 = 0,
b13 = 0,

b14 =
a34b11
a31

, a31a34 ≠ 0

ð45Þ

Case 6.

m2 = 0,
a11 = 0,
a14 = 0,
a21 = 0,
a22 = 0,
a23 = 0,
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a24 = 0,

a31 = 0,

a33 =
a13a32
a12

,

a34 = 0,

b12 = 0,

b13 = 0,

b14 =
3a13b11
2a12

, a12 ≠ 0

ð46Þ

where other parameters in Cases 1–6 are arbitrary real
constants.

Remark 7. When m1 = 0, η2 = η1, we can obtain the same
solutions as Cases 1–6.

4.3. Between Lump and Periodic Solitary Wave Solutions.
When η3 = η2 = η1,m2 =m3 =m4 =m1 ≠ 0 in (33), the solu-
tion (33) represents the interaction solutions between
the high-order lump-type solution and periodic solitary
wave solutions f = a0 + ξ41 + ξ22 + ξ23 +m1e

η1 +m1e
−η1 +m1

tan η1 +m1 tanh η4,

Case 1.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0,
b11 = 0,

b13 =
2a34b12
3a31

,

b14 = 0,
b41 = 0,

b43 =
2a34b42
3a31

,

b44 = 0, a31a34 ≠ 0

ð47Þ

Case 2.

a11 = 0,
a14 = 0,
a22 = 0,
a23 = 0,

a24 =
3a13a21
2a12

,

a31 =
2a12a34
3a13

,

a32 = 0,
a33 = 0,
b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b42 = 0,
b43 = 0,

b44 =
3a13b41
2a12

, a12a13 ≠ 0

ð48Þ

Case 3.

a11 = 0,
a14 = 0,

a22 = −
a31a32
a21

,

a23 = −
a13a31a32
a12a21

,

a24 =
3a13a21
2a12

,

a33 =
a13a32
a12

,

a34 =
3a13a31
2a12

,

b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b42 = 0,
b43 = 0,

b44 =
3a13b41
2a12

, a12a21 ≠ 0

ð49Þ
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Case 4.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a23 =
2a22a34
3a31

,

a24 = 0,
a32 = 0,
a33 = 0,
b12 = 0,
b13 = 0,

b14 =
a34b11
a31

,

b41 = b11,
b42 = 0,
b43 = 0,

b44 =
a34b41
a31

, a31 ≠ 0

ð50Þ

Case 5.

a11 = 0,

a13 =
a12a33
a32

,

a14 = 0,
a21 = 0,

a23 =
a22a33
a32

,

a24 = 0,
a31 = 0,
a34 = 0,
b12 = 0,
b13 = 0,

b14 =
3a33b11
2a32

,

b41 = b11,
b42 = 0,
b43 = 0,

b44 =
3a33b41
2a32

, a32 ≠ 0

ð51Þ

Case 6.

a11 = 0,
a14 = 0,
a21 = 0,

a23 =
a13a22
a12

,

a24 = 0,
a31 = 0,

a32 =
a12a33
a13

,

a34 = 0,
b12 = 0,
b13 = 0,

b14 =
3a13b11
2a12

,

b41 = b11,
b42 = 0,
b43 = 0,

b44 =
3a13b41
2a12

, a12a13 ≠ 0,

ð52Þ

where other parameters are arbitrary real constants.

4.4. Between Lump and Solitary Wave Solutions. When η2
= η1,m2 =m1 ≠ 0,m3 = 0 in (33), the solution (33) repre-
sents the interaction solutions between the high-order
lump-type solution and solitary wave solutions:

f = a0 + ξ41 + ξ22 + ξ23 +m1e
η1 +m1e

−η1 +m4 tanh η4 ð53Þ

Case 1.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0,
b11 = 0,

b13 =
2a34b12
3a31

,

b14 = 0,
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b41 = 0,

b42 = b12,

b43 =
2a34b42
3a31

,

b44 = 0, a31a34 ≠ 0, ð54Þ

where other parameters are arbitrary real constants.

Remark 8. In addition to the above result Case 1, we can also
get the same solutions as Cases 1–4 and 6 in Section 4.3 when
m4 =m1 and the special result of Case 5 in Section 4.3
when m4 =m1, a22 = 0, respectively.

4.5. Between Lump and Tan Function Solutions. When η2 =
η1,m2 =m1 ≠ 0,m4 = 0 in (33), the solution (33) represents
the interaction solutions between the high-order lump-type
solution and tan function solutions f = a0 + ξ41 + ξ22 + ξ23 +
m1e

η1 +m1e
−η1 +m3 tan η3,

Case 1.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a22 =
3a23a31
2a34

,

a24 = 0,
a32 = 0,
a33 = 0,
b11 = 0,

b13 =
2a34b12
3a31

,

b14 = 0,
b31 = 0,
b32 = b12,

b33 =
2a34b32
3a31

,

b34 = 0, a31a34 ≠ 0,

ð55Þ

where other parameters are arbitrary real constants.

Remark 9. In addition to the above result Case 1, we can also
get the same solutions as Cases 1–6 in Section 4.3 when
m3 =m1, η3 = η4, respectively.

4.6. Between Lump and Tan-Tanh Wave Solutions. When
m1 =m2 = 0,m4 =m3 ≠ 0 in (33), the solution (33) represents
the interaction solutions between the high-order lump-type
solution and tan-tanh wave solutions f = a0 + ξ41 + ξ22 + ξ23 +
m3 tan η3 +m3 tanh η4,

Case 1.

a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,
a21 = 0,

a23 =
2a22a34
3a31

,

a24 = 0,
a32 = 0,
a33 = 0,
b32 = 0,
b33 = 0,

b34 =
a34b31
a31

,

b42 = 0,
b43 = 0,

b44 =
a34b41
a31

, a31 ≠ 0

ð56Þ

Case 2.

a11 = 0,
a14 = 0,
a21 = 0,

a23 =
a13a22
a12

,

a24 = 0,
a31 = 0,

a33 =
a13a32
a12

,

a34 = 0,
b32 = 0,
b33 = 0,

b34 =
3a13b31
2a12

,

b42 = 0,
b43 = 0,

b44 =
3a13b41
2a12

, a12 ≠ 0

ð57Þ
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Case 3.

a10 = 0,
a11 = 0,

a13 =
2a12a34
3a31

,

a14 = 0,

a21 = −
a31a32
a22

,

a23 =
2a22a34
3a31

,

a24 = −
a32a34
a22

,

a33 =
2a32a34
3a31

,

b32 = 0,
b33 = 0,

b34 =
a34b31
a31

,

b42 = 0,
b43 = 0,

b44 =
a34b41
a31

, a22a31 ≠ 0

ð58Þ

Case 4.

a10 = 0,
a11 = 0,

a12 =
3a13a31
2a34

,

a14 = 0,

a21 = −
a31a32
a22

,

a23 =
2a22a34
3a31

,

a24 = −
a32a34
a22

,

a30 =
a20a32
a22

,

a33 =
2a32a34
3a31

,

b32 = 0,
b33 = 0,

b34 =
a34b31
a31

,

b42 = 0,
b43 = 0,

b44 =
a34b41
a31

, a22a31a34 ≠ 0

ð59Þ

Case 5.

a10 = 0,
a11 = 0,
a14 = 0,

a21 =
2a12a24
3a13

,

a22 = 0,
a23 = 0,

a31 =
2a12a34
3a13

,

a32 = 0,
a33 = 0,
b32 = 0,
b33 = 0,

b34 =
3a13b31
2a12

,

b42 = 0,
b43 = 0,

b44 =
3a13b41
2a12

, a12a13 ≠ 0

ð60Þ

Case 6.

a10 = 0,
a11 = 0,

a13 =
a12a33
a32

,

a14 = 0,

a21 =
2a24a32
3a33

,

a22 = 0,
a23 = 0,
a31 = 0,
a34 = 0,
b32 = 0,
b33 = 0,

b34 =
3a33b31
2a32

,

b42 = 0,
b43 = 0,

b44 =
3a33b41
2a32

, a32a33 ≠ 0,

ð61Þ

where other parameters are arbitrary real constants.
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Remark 10. In addition to the above results Cases 1–6, we can
also get the same solutions as Cases 1–3 in Section 4.3 when
η3 = η1, respectively.

Step 4. By substituting the parameters a0, aij, bjk,mj in the
Sections 4.1–4.6 into the solution (33) and using transforma-
tion (9), we can obtain abundant interaction solutions of
Jimbo-Miwa equation (1).

These sets of solutions for the parameters generate 42
classes of combination solutions f i, 1 ≤ i ≤ 42 to the general-
ized bilinear Jimbo-Miwa equation (13), and then, the result-
ing combination solutions present 42 classes of interaction
solutions ui, 1 ≤ i ≤ 42 to Equation (8) under transformation
(9). Therefore, various kinds of interaction solutions could
be constructed explicitly this way.

As the example, substituting (38) into (33), we can get f
as follows:

f x, y, z, tð Þ = a0 + a10 + a12y +
2a12a34
3a31

z
� 	4

+ a20 −
a31a32
a22

x + a22y +
2a22a34
3a31

z −
a32a34
a22

t
� 	2

+ a30 + a31x + a32y +
2a32a34
3a31

z + a34t
� 	2

+m1e
η1 +m1e

−η2 ,
ð62Þ

where

η1 = b10 + b11x +
b11a34
a31

t, η2 = b10 + b11x +
b11a34
a31

t: ð63Þ

By using transformation (9), we get the interaction solu-
tion between the high-order lump-type solutions and a pair
of line-soliton solution of (3 + 1)-dimensional Jimbo-Miwa
equation (8)

u x, y, z, tð Þ = 2f x x, y, z, tð Þ
f x, y, z, tð Þ , ð64Þ

where f ðx, y, z, tÞ is given in (62).
In order to exhibit the dynamical characteristics of these

waves, we plot various three-dimensional, contour, and den-
sity plots as follows. We choose the following parameters to
illustrate interaction solution (64),

a0 = 0:5,
a10 = 1,
a12 = 1,
a20 = −1,
a22 = −1,
a30 = 1,

a31 = −2,
a32 = −2,
a34 = −10,
b10 = −1,
b11 = 1:3,
m1 = 1, z = y: ð65Þ

The physical properties and structures for interaction
solution (64) are shown in Figure 2. Figure 2 shows the
three-dimensional dynamic graphs A1, B1, C1, corresponding
contour maps A2, B2, C2, and density plots A3, B3, C3 in the
ðx, yÞ-plane when t = −1,0, and 1, respectively. The three-
dimensional graphs reflect the localized structures, and the
density plots show the energy distribution. We can see that
the high-order lump-type wave and the exponential function
wave react with each other.

When we choose the following parameters and t = −2, we
illustrate interaction solution (64) of (3 + 1)-dimensional
Jimbo-Miwa equation (8),

a0 = 5,
a10 = 6,
a12 = 2,
a20 = 1,
a22 = −1,
a30 = 1,
a31 = 5,
a32 = 2,
a34 = −1,
b10 = −1,
b11 = 1:5,
m1 = −1, z = y:

ð66Þ

The physical properties and structures for interaction
solution (64) are shown in Figure 3. Figure 3 shows the
three-dimensional dynamic graph D1, corresponding con-
tour map D2, and density plot D3 in the ðx, yÞ-plane,
respectively.

5. Conclusion

In this paper, we gave the form of rational solution and their
interaction solution to NLEE. The rational solution con-
tained lump solution, general lump solution, high-order
lump solution, lump-type solution, etc. The general interac-
tion solution contain the classical interaction solution, such
as the lump-kink solution and the lump-soliton solution.
As the example, by using the generalized bilinear method
and symbolic computationMaple, we successfully constructed
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Figure 2: Three-dimensional plots, contour plots, and density plots of the wave with parameters (65) at times t = −1 (A1,A2,A3), t = 0 (B1, B2,
B3), and t = 1 (C1, C2, C3).
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Figure 3: Three-dimensional plot, contour plot, and density plot of the wave with parameters (66) at time t = −2.
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the high-order lump-type solutions and their interaction solu-
tions between lumps and other function solutions under cer-
tain constraints of (3 + 1)-dimensional Jimbo-Miwa equation.
Three-dimensional plots, contour plots, and density plots of
these waves are observed in Figures 1–3, respectively. We
can find the physical structure and characteristics of the inter-
actions between the high-order lump-type solutions and the
exponential function wave.

Many researchers have studied the exact solutions of
(3 + 1)-dimensional Jimbo-Miwa equation, such as the gen-
eralized solitary solutions [6]; the various travelling wave
solutions [7]; and one-soliton, two-soliton and dromion
solutions [11], and multiple-soliton solutions [12, 13]; peri-
odic solitary wave solutions [14]; several interaction solu-
tions (the interaction phenomenon between the exponential
function, the cosine function, and the hyperbolic cosine func-
tion; the interaction phenomenon between the exponential
function, the sine function, and the hyperbolic sine function)
[20, 21]; lump-type solutions (N = 2, n1 = n2 = 1); lump-kink
solution (N = 2, n1 = n2 = 1,M = 1, g1ðη1Þ = eη1); and lump-
soliton solution [36–41]

N = 2, n1 = n2 = 1,M = 1, g1 η1ð Þ = cosh η1: ð67Þ

The obtained new high-order lump-type solutions (16)
and their interaction solutions (33) in this paper are different
from the lump-type solutions and the interaction solutions in
[36–41]. These solutions will greatly expand the exact solu-
tions of (3 + 1)-dimensional Jimbo-Miwa equation on the
existing literature [6, 7, 11–14, 20, 21, 36–41, 58]. These
results are significant to understand the propagation pro-
cesses for nonlinear waves in fluid mechanics and the expla-
nation of some special physical problems.
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