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This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters

Dα1
0+ðφp1

ðDβ1
0+uðtÞÞÞ + λf ðt, uðtÞ, vðtÞÞ = 0, 0 < t < 1,

Dα2
0+ðφp2

ðDβ2
0+vðtÞÞÞ + μgðt, uðtÞ, vðtÞÞ = 0, 0 < t < 1,

uð0Þ = uð1Þ = u′ð0Þ = u′ð1Þ = 0,Dβ1
0+uð0Þ = 0,Dβ1

0+uð1Þ = b1D
β1
0+uðη1Þ,

vð0Þ = vð1Þ = v′ð0Þ = v′ð1Þ = 0,Dβ2
0+vð0Þ = 0,Dβ2

0+vð1Þ = b2D
β2
0+vðη2Þ,

8>>>>>>><
>>>>>>>:

where αi ∈ ð1, 2�, βi ∈ ð3, 4�, Dαi
0+ and Dβi

0+ are the standard

Riemann-Liouville derivatives, φpi
ðsÞ = jsjpi−2s, pi > 1, φ−1

pi
= φqi

, ð1/piÞ + ð1/qiÞ = 1, ηi ∈ ð0, 1Þ, bi ∈ ð0, ηið1−αiÞ/ðpi−1ÞÞ, i = 1, 2, and f ,
g ∈ Cð½0, 1� × ½0,+∞Þ × ½0,+∞Þ, ½0,+∞ÞÞ and λ and μ are two positive parameters. We obtain the existence and uniqueness of
positive solutions depending on parameters for the system by utilizing a recent fixed point theorem. Furthermore, an example is
present to illustrate our main result.

1. Introduction

During the past several decades, many fractional problems
with differential equations have been paid much attention,
see [1–10] for example. Also, much attention has been
focused on the existence of positive solutions for such equa-
tions, see [3–29] and the references therein. As we know,
the p-Laplacian operator has very a important position in
theoretical research and engineering applications. In 1945,
to discuss turbulent flow in a porous medium, a basic
mechanical problem, Leibenson [30] introduced a differen-
tial equation with a p-Laplacian operator:

φp u′ tð Þ
� �� �

′ = f t, u tð Þð Þ: ð1Þ

Since then, there are many papers investigating differen-
tial equations with p-Laplacian operators. Recently, the study
of fractional equations with a p-Laplacian operator has also
gained plenty of attention, see [19, 20, 31–40] for instance.
In [35], the authors studied a fractional equation with a
p-Laplacian operator:

−Dα
0+ φp Dβ

0+u tð Þ
� �� �

= f t, u tð Þð Þ, 0 < t < 1,

u 0ð Þ = u 1ð Þ = u′ 0ð Þ = u′ 1ð Þ = 0,Dβ
0+u 0ð Þ = 0,Dβ

0+u 1ð Þ = bDβ
0+u ηð Þ,

8<
:

ð2Þ

where α ∈ ð1, 2�, β ∈ ð3, 4�, Dα
0+ and Dβ

0+ denote the
Riemann-Liouville derivatives, b ∈ ð0, ηð1−αÞ/ðp−1ÞÞ, and f ∈
Cð½0, 1� × ½0,+∞Þ, ½0,+∞ÞÞ. Based on Schauder’s fixed
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point theorem and by using the upper-lower solution
method, they obtained the existence and uniqueness of
solutions.

Recently, fractional differential systems have been also
studied by many people because of their great application
value, see [5, 20, 23–30]. So, the results on fractional systems
with p-Laplacian operator are many, see [11, 41–45]. For
example, Rodica [41] discussed a fractional differential system:

Dα1
0+ φr1

Dβ1
0+u tð Þ

� �� �
+ λf t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

Dα2
0+ φr2

Dβ2
0+v tð Þ

� �� �
+ μg t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

u jð Þ 0ð Þ = 0, j = 0,⋯, n − 2 ;Dβ1
0+u 0ð Þ = 0,Dp1

0+u 1ð Þ = 〠
N

i=1
aiD

q1
0+u ξið Þ,

v jð Þ 0ð Þ = 0, j = 0,⋯,m − 2 ;Dβ2
0+v 0ð Þ = 0,Dp2

0+v 1ð Þ = 〠
M

i=1
biD

q2
0+v ηið Þ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

where α1, α2 ∈ ð0, 1�, β1 ∈ ðn − 1, n�, β2 ∈ ðm − 1,m�, n,m ∈ℕ
, n,m ≥ 3, p1, p2, q1, q2 ∈ℝ, p1 ∈ ½1, n − 2�, p2 ∈ ½1,m − 2�, q1
∈ ½0, p1�, q2 ∈ ½0, p2�, ξi, ai ∈ℝ for all i = 1,⋯,NðN ∈ℕÞ, 0 <
ξ1 <⋯<ξN ≤ 1, ηi, bi ∈ℝ for all i = 1,⋯,MðM ∈ℕÞ, 0 < η1
<⋯<ηM ≤ 1, r1, r2 > 1, λ, μ > 0, and f , g ∈ Cð½0, 1� × ½0,∞Þ
× ½0,∞Þ, ½0,∞ÞÞ. The existence of solutions was obtained via
Guo-Krasnosel’skii’s fixed point theorem.

From literature, we see that most results are the existence
of solutions, but the uniqueness is scarce. Inspired by [34], we
discuss the following system of fractional differential equa-
tions with p-Laplacian operators:

Dα1
0+ φp1

Dβ1
0+u tð Þ

� �� �
+ λf t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

Dα2
0+ φp2

Dβ2
0+v tð Þ

� �� �
+ μg t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

u 0ð Þ = u 1ð Þ = u′ 0ð Þ = u′ 1ð Þ = 0,Dβ1
0+u 0ð Þ = 0,Dβ1

0+u 1ð Þ = b1D
β1
0+u η1ð Þ,

v 0ð Þ = v 1ð Þ = v′ 0ð Þ = v′ 1ð Þ = 0,Dβ2
0+v 0ð Þ = 0,Dβ2

0+v 1ð Þ = b2D
β2
0+v η2ð Þ,

8>>>>>>>><
>>>>>>>>:

ð4Þ

where αi ∈ ð1, 2�, βi ∈ ð3, 4�, Dαi
0+ and Dβi

0+ denote the standard
Riemann-Liouville derivatives, φpi

ðsÞ = jsjpi−2s, pi > 1, φ−1
pi
=

φqi
, ð1/piÞ + ð1/qiÞ = 1, ηi ∈ ð0, 1Þ, bi ∈ ð0, ηið1−αiÞ/ðpi−1ÞÞ, i = 1,

2 and f , g ∈ Cð½0, 1� × ½0,+∞Þ × ½0,+∞Þ, ½0,+∞ÞÞ, and λ and
μ are two positive parameters. It should be pointed out, in
[45], that Hao et al. investigated the existence of solutions
for system (4) without considering the uniqueness. They used
Guo-Krasnosel’skii’s fixed point theorem to get some exis-
tence results for positive solutions under different values of
λ and μ. In this paper, based upon a recent fixed point theo-
rem, we aim to present the existence and uniqueness of pos-
itive solutions for system (4) depending on fixed positive
constants λ and μ. Our results can tell us that the unique pos-
itive solution exists in a product set and can be approximated
by giving an iterative sequence for any initial point in the
product set. Therefore, our result is an extension and

improvement of the previous works. At the end, an example
is given to illustrate the result.

2. Preliminaries

Lemma 1 (see [45]). Assume α1 ∈ ð1, 2�, β1 ∈ ð3, 4�, p1 > 1
, ð1/p1 Þ + ð1/q1Þ = 1, η1 ∈ ð0, 1Þ, b1 ∈ ð0, η1ð1−α1Þ/ðp1−1ÞÞ. If y ∈
C½0, 1�, then the unique solution of the following problem:

Dα1
0+ φp1

Dβ1
0+u tð Þ

� �� �
+ y tð Þ = 0, 0 < t < 1,

u 0ð Þ = u 1ð Þ = u′ 0ð Þ = u′ 1ð Þ = 0,Dβ1
0+u 0ð Þ = 0,Dβ1

0+u 1ð Þ = b1D
β1
0+u η1ð Þ,

8<
:

ð5Þ

is

u tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þy τð Þdτ

� �
ds, ð6Þ

where

G1 t, sð Þ = 1
Γ β1ð Þ

tβ1−2 1 − sð Þβ1−2 s − tð Þ + β1 − 2ð Þ 1 − tð Þs½ �, 0 ≤ t ≤ s ≤ 1,

tβ1−2 1 − sð Þβ1−2 s − tð Þ + β1 − 2ð Þ 1 − tð Þs½ � + t − sð Þβ1−1, 0 ≤ s ≤ t ≤ 1,

(

ð7Þ

H1 t, sð Þ = h1 t, sð Þ + bp1−11 tα1−1

1 − bp1−11 ηα1−11

h1 η1, sð Þ, ð8Þ

h1 t, sð Þ = 1
Γ α1ð Þ

t 1 − sð Þ½ �α1−1, 0 ≤ t ≤ s ≤ 1,
t 1 − sð Þ½ �α1−1 − t − sð Þα1−1, 0 ≤ s ≤ t ≤ 1:

(

ð9Þ
For convenience, we can easily give the following Lemma

by using Lemma 1.

Lemma 2. Let α2 ∈ ð1, 2�, β2 ∈ ð3, 4�, p2 > 1, ð1/p2Þ + ð1/q2Þ
= 1, η2 ∈ ð0, 1Þ, b2 ∈ ð0, η2ð1−α2Þ/ðp2−1ÞÞ. If y ∈ C½0, 1�, then

Dα2
0+ φp2

Dβ2
0+v tð Þ

� �� �
+ y tð Þ = 0, 0 < t < 1,

v 0ð Þ = v 1ð Þ = v′ 0ð Þ = v′ 1ð Þ = 0,Dβ2
0+v 0ð Þ = 0,Dβ2

0+v 1ð Þ = b2D
β2
0+v η2ð Þ,

8<
:

ð10Þ

has a unique solution

v tð Þ =
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þy τð Þdτ

� �
ds, ð11Þ

where

G2 t, sð Þ = 1
Γ β2ð Þ

tβ2−2 1 − sð Þβ2−2 s − tð Þ + β2 − 2ð Þ 1 − tð Þs½ �, 0 ≤ t ≤ s ≤ 1,

tβ2−2 1 − sð Þβ2−2 s − tð Þ + β2 − 2ð Þ 1 − tð Þs½ � + t − sð Þβ2−1, 0 ≤ s ≤ t ≤ 1,

(

ð12Þ
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H2 t, sð Þ = h2 t, sð Þ + bp2−12 tα2−1

1 − bp2−12 ηα2−12

h2 η2, sð Þ, ð13Þ

h2 t, sð Þ = 1
Γ α2ð Þ

t 1 − sð Þ½ �α2−1, 0 ≤ t ≤ s ≤ 1,
t 1 − sð Þ½ �α2−1 − t − sð Þα2−1, 0 ≤ s ≤ t ≤ 1:

(

ð14Þ

By Lemmas 4 and 5 in [45], the following conclusion is clear.

Lemma 3. The functions Giðt, sÞ, i = 1, 2 defined by (7) and
(12) have several properties:

(i) Giðt, sÞ is continuous on ½0, 1� × ½0, 1� and Giðt, sÞ > 0
for ðt, sÞ ∈ ð0, 1Þ × ð0, 1Þ

(ii) ðβi − 2ÞkiðtÞliðsÞ ≤ ΓðβiÞGiðt, sÞ ≤MiliðsÞ, ðt, sÞ ∈ ½0,
1� × ½0, 1�

(iii) ðβi − 2ÞkiðtÞliðsÞ ≤ ΓðβiÞGiðt, sÞ ≤MikiðsÞ, ðt, sÞ ∈ ½0
, 1� × ½0, 1�, where

ki tð Þ = tβi−2 1 − tð Þ2, li sð Þ = s2 1 − sð Þβi−2,Mi =max βi − 1, βi − 2ð Þ2� �
ð15Þ

Suppose that ðX, k·kÞ is a real Banach space with a partial
order induced by a cone P ⊂ X. For any x, y ∈ X, the notation
x ~ y denotes that there exist λ > 0 and μ > 0 such that λx ≤
y ≤ μx. For h > θ (i.e., h ≥ θ and h ≠ θ), define a set Ph = fx
∈ X ∣ x ~ hg. Evidently, Ph ⊂ P. For h1, h2 ∈ P with h1, h2 ≠ θ.
Suppose h = ðh1, h2Þ, then h ∈ �P≔ P × P. If P is normal, then
�P = ðP, PÞ is normal.

Lemma 4 (see [46, 47]). �Ph = fðx, yÞ: x ∈ Ph1
, y ∈ Ph2

g = Ph1
× Ph2

.

Lemma 5 (see [47]). Let P be a normal cone in a Banach space
X and h = ðh1, h2Þ ∈ P × P with h1, h2 ≠ θ. Operators A, B : P
× P⟶ P are increasing and satisfy the following:

ðM1Þ There exist φ1, φ2 : ð0, 1Þ⟶ ð0, 1Þ such that

A rx, ryð Þ ≥ φ1 rð ÞA x, yð Þ, B rx, ryð Þ ≥ φ2 rð ÞB x, yð Þ, x, y ∈ P
ð16Þ

where φiðrÞ > r, r ∈ ð0, 1Þ, i = 1, 2;
ðM2Þ There is ðe1, e2Þ ∈ �Ph such that Aðe1, e2Þ ∈ Ph1

, B
ðe1, e2Þ ∈ Ph2

.
Then,

(a) A : Ph1
× Ph2

⟶ Ph1
, B : Ph1

× Ph2
⟶ Ph2

, and exist
x1, y1 ∈ Ph1

, x2, y2 ∈ Ph2
, γ ∈ ð0, 1Þ such that γðy1, y2Þ

≤ ðx1, x2Þ ≤ ðy1, y2Þ and x1 ≤ Aðx1, x2Þ ≤ y1, x2 ≤ Bð
x1, x2Þ ≤ y2

(b) for any given λ, μ > 0, the equation ðx, yÞ = ðλAðx, yÞ,
μBðx, yÞÞ has a unique solution ðx∗λ,μ, y∗λ,μÞ in �Ph. More-

over, take any fixed point ðx0, y0Þ ∈ �Ph, let

xn, ynð Þ = λA xn−1, yn−1ð Þ, μB xn−1, yn−1ð Þð Þ, n = 1, 2,⋯ ð17Þ

then ∥xn − x∗λ,μ∥⟶0, ∥yn − y∗λ,μ∥⟶0, as n⟶∞.

3. Positive Solutions Depending on Parameters

Let X = C½0, 1�, a Banach space with the norm ∥u∥ = sup f∣u
ðtÞ∣ : t ∈ ½0, 1�g. We study (4) in the product space X × X.
For ðu, vÞ ∈ X × X, let ∥ðu, vÞ∥ =max f∥u∥,∥v∥g. Then, ðX ×
X,∥ð·, · Þ∥Þ is a Banach space. Let �P = fðu, vÞ ∈ X × X ∣ uðtÞ
≥ 0, vðtÞ ≥ 0, t ∈ ½0, 1�g, P = fu ∈ X ∣ uðtÞ ≥ 0, t ∈ ½0, 1�g, then
�P ⊂ X × X is a cone and �P = P × P is normal, and the space
X × X has a partial order:

u1, v1ð Þ ≤ u2, v2ð Þ⇔ u1 tð Þ ≤ u2 tð Þ, v1 tð Þ ≤ v2 tð Þ, t ∈ 0, 1½ �:
ð18Þ

Lemma 6. Let f ðt, u, vÞ, gðt, u, vÞ be continuous. By using
Lemmas 1 and 2 and some results in [45], ðu, vÞ ∈ P × P is a
positive solution of (4) if and only if ðu, vÞ ∈ P × P is a solution
of the following equations:

u tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þλf τ, u τð Þ, v τð Þð Þdτ

� �
ds,

v tð Þ =
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þμg τ, u τð Þ, v τð Þð Þdτ

� �
ds:

8>>><
>>>:

ð19Þ

Theorem 7. Let αi ∈ ð1, 2�, βi ∈ ð3, 4�, h1ðtÞ = tβ1−2ð1 − tÞ2, h2
ðtÞ = tβ2−2ð1 − tÞ2, t ∈ ½0, 1�. Assume that

ðH1Þf , g ∈ Cð½0, 1� × ½0,+∞Þ × ½0,+∞Þ, ½0,+∞ÞÞ and f ðt,
0, 0Þ ≢ 0, gðt, 0, 0Þ ≢ 0, t ∈ ½0, 1�

ðH2Þf , g are increasing with respect to the second, third
variables, i.e., f ðt, u1, v1Þ ≤ f ðt, u2, v2Þ, gðt, u1, v1Þ ≤ gðt, u2,
v2Þ for t ∈ ½0, 1�, 0 ≤ u1 ≤ u2, 0 ≤ v1 ≤ v2

ðH3Þ for r ∈ ð0, 1Þ, there is ψiðrÞ: ð0, 1Þ⟶ ð0, 1Þ, i = 1, 2,
such that ψiðrÞ > r1/ðqi−1Þ and

f t, ru, rvð Þ ≥ ψ1 rð Þf t, u, vð Þ, g t, ru, rvð Þ ≥ ψ2 rð Þg t, u, vð Þ,
ð20Þ

for t ∈ ½0, 1�, u, v ∈ ½0,+∞Þ
Then

(a) there are u1, v1 ∈ Ph1
, u2, v2 ∈ Ph2

, γ ∈ ð0, 1Þ such that
γðv1, v2Þ ≤ ðu1, u2Þ ≤ ðv1, v2Þ and

3Advances in Mathematical Physics



u1 tð Þ ≤
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u1 τð Þ, u2 τð Þð Þdτ

� �
ds ≤ v1 tð Þ, t ∈ 0, 1½ �,

u2 tð Þ ≤
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, u1 τð Þ, u2 τð Þð Þdτ

� �
ds ≤ v2 tð Þ, t ∈ 0, 1½ �,

ð21Þ

where Gi, i = 1, 2, are the Green functions in Lemmas 1 and 2

(b) System (4) has a unique positive solution ðx∗λ,μ, y∗λ,μÞ
depending on λ, μ > 0 in �Ph, where hðtÞ = ðtβ1−2

ð1 − tÞ2, tβ2−2ð1 − tÞ2Þ, t ∈ ½0, 1�
(c) Take any initial point ðu0, v0Þ ∈ �Ph, let

un+1 tð Þ = λq1−1
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

vn+1 tð Þ = μq2−1
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

ð22Þ

then unðtÞ⟶ x∗λ,μðtÞ, vnðtÞ⟶ y∗λ,μðtÞ as n⟶∞

Proof. We consider three operators A, B : P × P⟶ X and
T : P × P⟶ X × X defined by

A u, vð Þ tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u τð Þ, v τð Þð Þdτ

� �
ds,

B u, vð Þ tð Þ =
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, u τð Þ, v τð Þð Þdτ

� �
ds,

T u, vð Þ tð Þ = ~λA u, vð Þ tð Þ, ~μB u, vð Þ tð Þ
� �

,

ð23Þ

where ~λ≔ λq1−1, ~μ≔ μq2−1, Gi,Hi, and i = 1, 2 are defined by
(7) and (12). From Lemma 3 and ðH1Þ, it is clear that A, B
: �P⟶ P and T : �P⟶ �P. From our above discussion, we
can easily claim that ðu, vÞ ∈ �P is a solution of system (4) if
and only if ðu, vÞ ∈ �P is a fixed point of operator T . Next,
we only need to prove that all assumptions of Lemma 5 are
satisfied for operators A, B.

We first show that A, B are increasing. To do this, for ui
, vi ∈ P, i = 1, 2, with u1 ≤ u2, v1 ≤ v2, one has u1ðtÞ ≤ u2ðtÞ,
v1ðtÞ ≤ v2ðtÞ, t ∈ ½0, 1� and by ðH2Þ and Lemma 3,

A u1, v1ð Þ tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u1 τð Þ, v1 τð Þð Þdτ

� �
ds

≤ ≤
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u2 τð Þ, v2 τð Þð Þdτ

� �
ds

= A u2, v2ð Þ tð Þ,

B u1, v1ð Þ tð Þ =
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, u1 τð Þ, v1 τð Þð Þdτ

� �
ds

≤
ð1
0
G2 t, sð Þφq1

ð1
0
H2 s, τð Þg τ, u2 τð Þ, v2 τð Þð Þdτ

� �
ds

= B u2, v2ð Þ tð Þ:
ð24Þ

That is, Aðu1, v1Þ ≤ Aðu2, v2Þ and Bðu1, v1Þ ≤ Bðu2, v2Þ.
Second, we indicate that A, B satisfy condition ðM1Þ of

Lemma 5. Let Ψ1ðrÞ = φq1
ðψ1ðrÞÞ, Ψ2ðrÞ = φq2

ðψ2ðrÞÞ. Then,
for r ∈ ð0, 1Þ, by ðH2Þ, we have

Ψ1 rð Þ = ψ1 rð Þð Þq1−1 > r1/ q1−1ð Þ
� �q1−1 = r: ð25Þ

Similarly, Ψ2ðrÞ > r. For r ∈ ð0, 1Þ and u, v ∈ P, by ðH3Þ,
we obtain

A ru, rvð Þ tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, ru τð Þ, rv τð Þð Þdτ

� �
ds

≥
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þψ1 rð Þf τ, u τð Þ, v τð Þð Þdτ

� �
ds

= φq1
ψ1 rð Þð Þ

ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u τð Þ, v τð Þð Þdτ

� �
ds

=Ψ1 rð ÞA u, vð Þ tð Þ,

B ru, rvð Þ tð Þ =
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, ru τð Þ, rv τð Þð Þdτ

� �
ds

≥
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þψ2 rð Þg τ, u τð Þ, v τð Þð Þdτ

� �
ds

= φq2
ψ2 rð Þð Þ

ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, u τð Þ, v τð Þð Þdτ

� �
ds

=Ψ2 rð ÞB u, vð Þ tð Þ:
ð26Þ

That is,Aðru, rvÞ ≥Ψ1ðrÞAðu, vÞ,Bðru, rvÞ ≥Ψ2ðrÞBðu, vÞ
for r ∈ ð0, 1Þ, u, v ∈ P.

Set h = ðh1, h2Þ, where h1ðtÞ = tβ1−2ð1 − tÞ2, h2ðtÞ = tβ2−2

ð1 − tÞ2, t ∈ ½0, 1�. Then, ðh1, h2Þ ∈ �Ph. Now, we prove that A
ðh1, h2Þ ∈ Ph1

, Bðh1, h2Þ ∈ Ph2
. In view of ðH2Þ and Lemma

3, for t ∈ ½0, 1�, we have

A h1, h2ð Þ tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, h1 τð Þ, h2 τð Þð Þdτ

� �
ds

≥
ð1
0

β1 − 2ð Þk1 tð Þl1 sð Þ
Γ β1ð Þ φq1

�
ð1
0
H1 s, τð Þf τ, τβ1−2 1 − τð Þ2, τβ2−2 1 − τð Þ2

� �
dτ

� �
ds

≥
β1 − 2ð Þk1 tð Þ

Γ β1ð Þ
ð1
0
l1 sð Þφq1

ð1
0
H1 s, τð Þf τ, 0, 0ð Þdτ

� �
ds

= β1 − 2ð Þ
Γ β1ð Þ h1 tð Þ

ð1
0
l1 sð Þφq1

ð1
0
H1 s, τð Þf τ, 0, 0ð Þdτ

� �
ds,
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A h1, h2ð Þ tð Þ =
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, h1 τð Þ, h2 τð Þð Þdτ

� �
ds

≤
ð1
0

M1k1 tð Þ
Γ β1ð Þ φq1

�
ð1
0
H1 s, τð Þf τ, τβ1−2 1 − τð Þ2, τβ2−2 1 − τð Þ2

� �
dτ

� �
ds

≤
M1k1 tð Þ
Γ β1ð Þ

ð1
0
φq1

ð1
0
H1 s, τð Þf τ, 1, 1ð Þdτ

� �
ds

= M1
Γ β1ð Þ h1 tð Þ

ð1
0
φq1

ð1
0
H1 s, τð Þf τ, 1, 1ð Þdτ

� �
ds:

ð27Þ

Noting that ðH1Þ and ðH2Þ guarantee that f ðt, 1, 1Þ ≥
f ðt, 0, 0Þ ≥ 0 and f ðt, 0, 0Þ≡0, t ∈ ½0, 1�. Because l1ðsÞ = s2

ð1 − sÞβ1−2 ≤ 1, s ∈ ½0, 1�, then
ð1
0
φq1

ð1
0
H1 s, τð Þf τ, 1, 1ð Þdτ

� �
ds

≥
ð1
0
l1 sð Þφq1

ð1
0
H1 s, τð Þf τ, 0, 0ð Þdτ

� �
ds > 0:

ð28Þ

So, we have

m1 ≔
β1 − 2ð Þ
Γ β1ð Þ

ð1
0
l1 sð Þφq1

ð1
0
H1 s, τð Þf τ, 0, 0ð Þdτ

� �
ds > 0,

m2 ≔
M1

Γ β1ð Þ
ð1
0
φq1

ð1
0
H1 s, τð Þf τ, 1, 1ð Þdτ

� �
ds > 0:

ð29Þ

By the definition ofM1, it is clear thatM1 ≥ β1 − 2; then, we
have m1 ≤m2, so m1h1ðtÞ ≤ Aðh1, h2ÞðtÞ ≤m2h1ðtÞ, t ∈ ½0, 1�,
that is, Aðh1, h2Þ ∈ Ph1

. Similarly, from Lemma 3 and ðH1Þ −
ðH2Þ, we get Bðh1, h2Þ ∈ Ph2

.
Now, by Lemma 5, we obtain the following conclusions:

(1) We can find u1, v1 ∈ Ph1
, u2, v2 ∈ Ph2

, γ ∈ ð0, 1Þ such
that γðv1, v2Þ ≤ ðu1, u2Þ ≤ ðv1, v2Þ and u1 ≤ Aðu1, u2Þ
≤ v1, u2 ≤ Bðu1, u2Þ ≤ v2, that is,

u1 tð Þ ≤
ð1
0
G1 t, sð Þφq1

ð1
0
H1 s, τð Þf τ, u1 τð Þ, u2 τð Þð Þdτ

� �
ds

≤ v1 tð Þ, t ∈ 0, 1½ �,

u2 tð Þ ≤
ð1
0
G2 t, sð Þφq2

ð1
0
H2 s, τð Þg τ, u1 τð Þ, u2 τð Þð Þdτ

� �
ds

≤ v2 tð Þ, t ∈ 0, 1½ �
ð30Þ

(2) The operator equation ðu, vÞ = ð~λAðu, vÞ, ~μBðu, vÞÞ
has a unique solution ðu∗λ,μ, v∗λ,μÞ depending on λ,
μ > 0 in �Ph, where ~λ = λq1−1, ~μ = μq2−1. That is, ðu∗,

v∗Þ = Tðu∗, v∗Þ. So, system (4) has a unique positive
solution ðu∗λ,μ, v∗λ,μÞ in �Ph

(3) Taking any initial point ðu0, v0Þ ∈ �Ph, let

un+1 tð Þ = λq1−1
ð1
0
G1 t, sð Þφq1

�
ð1
0
H1 s, τð Þf τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

vn+1 tð Þ = μq2−1
ð1
0
G2 t, sð Þφq2

�
ð1
0
H2 s, τð Þg τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

ð31Þ

then unðtÞ⟶ u∗λ,μðtÞ, vnðtÞ⟶ v∗λ,μðtÞ as n⟶∞

Taking λ = μ = 1, we have the following conclusion.

Corollary 8. Let αi ∈ ð1, 2�, βi ∈ ð3, 4�, h1ðtÞ = tβ1−2ð1 − tÞ2,
and h2ðtÞ = tβ2−2ð1 − tÞ2, t ∈ ½0, 1�. Assume that ðH1Þ, ðH2Þ,
and ðH3Þ hold. Then, the following system:

Dα1
0+ φp1

Dβ1
0+u tð Þ

� �� �
+ f t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

Dα2
0+ φp2

Dβ2
0+v tð Þ

� �� �
+ g t, u tð Þ, v tð Þð Þ = 0, 0 < t < 1,

u 0ð Þ = u 1ð Þ = u′ 0ð Þ = u′ 1ð Þ = 0,Dβ1
0+u 0ð Þ = 0,Dβ1

0+u 1ð Þ = b1D
β1
0+u η1ð Þ,

v 0ð Þ = v 1ð Þ = v′ 0ð Þ = v′ 1ð Þ = 0,Dβ2
0+v 0ð Þ = 0,Dβ2

0+v 1ð Þ = b2D
β2
0+v η2ð Þ,

8>>>>>>>><
>>>>>>>>:

ð32Þ

has a unique positive solution ðx∗, y∗Þ in �Ph. In addition, take
any given point ðu0, v0Þ ∈ �Ph, construct

un+1 tð Þ =
ð1
0
G1 t, sð Þφq1

�
ð1
0
H1 s, τð Þf τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

vn+1 tð Þ =
ð1
0
G2 t, sð Þφq2

�
ð1
0
H2 s, τð Þg τ, un τð Þ, vn τð Þð Þdτ

� �
ds, n = 1, 2,⋯,

ð33Þ

then unðtÞ⟶ x∗ðtÞ, vnðtÞ⟶ y∗ðtÞ as n⟶∞.
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4. An Example

Considering the following system:

D3/2
0+ φ3/2 D7/2

0+ u tð Þ� 	� 	
+ λ u1/3 + v1/3 + 2t2

� 	
= 0, 0 < t < 1,

D3/2
0+ φ3/2 D7/2

0+ v tð Þ� 	� 	
+ μ u1/4 + v1/4 + 3t3

� 	
= 0, 0 < t < 1,

u 0ð Þ = u 1ð Þ = u′ 0ð Þ = u′ 1ð Þ = 0,D7/2
0+ u 0ð Þ = 0,D7/2

0+ u 1ð Þ = b1D
7/2
0+ u 1/2ð Þ,

v 0ð Þ = v 1ð Þ = v′ 0ð Þ = v′ 1ð Þ = 0,D7/2
0+ v 0ð Þ = 0,D7/2

0+ v 1ð Þ = b2D
7/2
0+ v 1/3ð Þ,

8>>>>><
>>>>>:

ð34Þ

where α1 = α2 = 3/2, β1 = β2 = 7/2, λ, μ > 0, η1 = 1/2,
η2 = 1/3, b1 = 1/2, b2 = 1/3, p1 = p2 = 3/2, q1 = q2 = 3 and

f t, u, vð Þ = u1/3 + v1/3 + 2t2, g t, u, vð Þ = u1/4 + v1/4 + 3t3:
ð35Þ

Obviously, f , g ∈ Cð½0, 1�Þ × ½0,+∞Þ × ½0,+∞Þ, ½0,+∞ÞÞ
and f ðt, 0, 0Þ = 2t2≡0, gðt, 0, 0Þ = 3t3≡0:

Note that x1/3 and x1/4 are increasing in ½0, +∞Þ, it implies
that f ðt, u, vÞ, gðt, u, vÞ are increasing with respect to the sec-
ond and third variables for t ∈ ½0, 1�. Moreover, set ψ1ðrÞ =
r1/3, ψ2ðrÞ = r1/4, r ∈ ð0, 1Þ. Then, ψ1ðrÞ, ψ2ðrÞ ∈ ð0, 1Þ, ψ1ðrÞ
= r1/3 > r1/2 = r1/ðq1−1Þ, ψ2ðrÞ = r1/4 > r1/2 = r1/ðq2−1Þ, and

f t, ru, rvð Þ = r1/3 u1/3 + v1/3
� 	

+ 2t2 ≥ r1/3 u1/3 + v1/3
� 	

+ r1/32t2 = r1/3 f t, u, vð Þ = ψ1 rð Þf t, u, vð Þ,

g t, ru, rvð Þ = r1/4 u1/4 + v1/4
� 	

+ 3t3 ≥ r1/4 u1/4 + v1/4
� 	

+ r1/43t3 = r1/4g t, u, vð Þ = ψ2 rð Þg t, u, vð Þ,
ð36Þ

for t ∈ ½0, 1�, u, v ∈ ½0,+∞Þ. Hence, all conditions of Theo-
rem 7 are satisfied. Then, Theorem 7 shows that system
(34) has a unique positive solution ðu∗λ,μ, v∗λ,μÞ in �Ph, where

hðtÞ = ðt3/2ð1 − tÞ2, t3/2ð1 − tÞ2Þ, t ∈ ½0, 1�, and taking any
given point ðu0, v0Þ ∈ �Ph, let

un+1 tð Þ = λ2
ð1
0
G1 t, sð Þ

ð1
0
H1 s, τð Þ un τð Þ1/3 + vn τð Þ1/3�


+ 2τ2
	
dτ

�2
ds, n = 1, 2,⋯,

vn+1 tð Þ = μ2
ð1
0
G2 t, sð Þ

ð1
0
H2 s, τð Þ un τð Þ1/4 + vn τð Þ1/4�


+ 3τ3
	
dτ

�2
ds, n = 1, 2,⋯,

ð37Þ

then unðtÞ⟶ u∗λ,μðtÞ, vnðtÞ⟶ v∗λ,μðtÞ as n⟶∞, where

G1 t, sð Þ =G2 t, sð Þ = 1
Γ 7/2ð Þ

t3/2 1 − sð Þ3/2 s − tð Þ + 3/2 1 − tð Þs½ �, 0 ≤ t ≤ s ≤ 1,
t3/2 1 − sð Þ3/2 s − tð Þ + 3/2 1 − tð Þs½ � + t − sð Þ5/2, 0 ≤ s ≤ t ≤ 1,

(

H1 t, sð Þ = h1 t, sð Þ +
ffiffiffi
2

p
t1/2h1

1
2 , s

� �
,

h1 t, sð Þ = 1
Γ 3/2ð Þ

t 1 − sð Þ½ �1/2, 0 ≤ t ≤ s ≤ 1,
t 1 − sð Þ½ �1/2 − t − sð Þ1/2, 0 ≤ s ≤ t ≤ 1,

(

H2 t, sð Þ = h2 t, sð Þ +
ffiffiffi
3

p

2t1/2h1
1
3 , s

� �
,

h2 t, sð Þ = 1
Γ 3/2ð Þ

t 1 − sð Þ½ �1/2, 0 ≤ t ≤ s ≤ 1,
t 1 − sð Þ½ �1/2 − t − sð Þ1/2, 0 ≤ s ≤ t ≤ 1:

(

ð38Þ
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