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We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart
involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the
fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness
result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the
existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion
problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively.
Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified
under the following classification codes: 26A33; 34A08; 34A60; and 34B15.

1. Introduction

Fractional calculus is an emerging field in applied mathemat-
ics that deals with derivatives and integrals of arbitrary
orders. For details and applications, we refer the reader to
the texts in [1–6]. In the literature, there exist several defini-
tions of fractional integrals and derivatives, from the most
popular Riemann-Liouville and Caputo-type fractional
derivatives to others such as the Hadamard fractional
derivative and the Erdeyl-Kober fractional derivative. A gen-
eralization of both the Riemann-Liouville and Caputo deriv-
atives was given by Hilfer in [7], which is known as theHilfer
fractional derivative Dα,βxðtÞ of order α and type β ∈ ½0, 1�.
One can observe that the Hilfer fractional derivative interpo-
lates between the Riemann-Liouville and Caputo derivatives
as it reduces to the Riemann-Liouville and Caputo fractional

derivatives for β = 0 and β = 1, respectively. Some properties
and applications of the Hilfer derivative can be found in [8, 9]
and references cited therein.

One of the important equations governing several phe-
nomena occurring in physical sciences and electrical engineer-
ing is the Langevin differential equation, first formulated by
Langevin in 1908 [10]. In recent years, several fractional vari-
ants of the Langevin equation have been introduced and stud-
ied; see, for example, [11–19] and the references cited therein.

Initial value problems involving the Hilfer fractional
derivatives were studied by several authors; see for example
[20–22]. Nonlocal boundary value problems for the Hilfer
fractional differential equation have been discussed in [23].
In [24], the authors proved some results for initial value
problems of the Langevin equation with the Hilfer fractional
derivative.
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Exploring the literature on fractional order boundary
value problems, we find that there does not exist any work
on boundary value problems of the Langevin equation with
the Hilfer fractional derivative. Motivated by this observa-
tion, we fill this gap by introducing a new class of boundary
value problems of the Hilfer-type Langevin fractional differ-
ential equation with three-point nonlocal boundary condi-
tions. In precise terms, we investigate the existence and
uniqueness criteria for the solutions of the following nonlocal
boundary value problem:

HD
α1,β1 HD

α2,β2 + λ
� �

x tð Þ = f t, x tð Þð Þ, t ∈ a, b½ �, ð1Þ

x að Þ = 0,
x bð Þ = θx ηð Þ,

 θ ∈ℝ, η ∈ a, bð Þ,
ð2Þ

where HDαi ,βi , i = 1, 2 is the Hilfer fractional derivative of
order αi, 0 < αi < 1 and parameter βi, 0 ≤ βi ≤ 1, i = 1, 2, λ ∈
ℝ, a ≥ 0, and f : ½a, b� ×ℝ→ℝ is a continuous function.

In order to study problem (1)–(2), we convert it into
an equivalent fixed-point problem and then use Banach’s
fixed-point theorem to prove the uniqueness of its solu-
tions. We also obtain two existence results for problem
(1)–(2) by applying the nonlinear alternative of the
Leray-Schauder type [25] and Krasnoselskii’s fixed-point
theorem [26].

As a second problem, we switch onto the multivalued
analogue of (1) and (2) by considering the inclusion problem:

HD
α1,β1 HD

α2,β2 + λ
� �

x tð Þ ∈ F t, x tð Þð Þ, t ∈ a, b½ �, ð3Þ

x að Þ = 0,
x bð Þ = θx ηð Þ,

 θ ∈ℝ, η ∈ a, b½ �,
ð4Þ

where F : ½a, b� ×ℝ⟶P ðℝÞ is a multivalued map (P ðℝÞ
is the family of all nonempty subjects of ℝ).

Existence results for problem (3)–(4) with convex and
nonconvex valued maps are respectively derived by apply-
ing the nonlinear alternative for Kakutani’s maps and
Covitz and Nadler’s fixed-point theorem for contractive
maps.

The rest of the paper is organized as follows: Section 3
contains the main results for problem (1)–(2), while the
existence results for problem (3)–(4) are presented in
Section 4. We recall the related background material in
Section 2.

2. Preliminaries

In this section, we introduce some notations and definitions
of fractional calculus and multivalued analysis and present
preliminary results needed in our proofs later [1].

Definition 1. The Riemann-Liouville fractional integral of
order α > 0 for a continuous function u : ½a,∞Þ⟶ℝ is
defined by

Iαu tð Þ = 1
Γ αð Þ

ðt
a
t − sð Þα−1u sð Þds, ð5Þ

provided that the right-hand side exists on ða,∞Þ.

Definition 2. The Riemann-Liouville fractional derivative of
order α > 0 of a continuous function u is defined by

RLD
α
u tð Þ≔DnIn−αu tð Þ = 1

Γ n − αð Þ
d
dt

� �nðt
a
t − sð Þn−α−1u sð Þds,

 n − 1 < α < n,
ð6Þ

where n = ½α� + 1, ½α� denotes the integer part of real number
α, provided that the right-hand side is point-wise defined on
ða,∞Þ.

Definition 3. The Caputo fractional derivative of order α > 0
of a continuous function u is defined by

CD
α
u tð Þ≔ In−αDnu tð Þ = 1

Γ n − αð Þ
ðt
a
t − sð Þn−α−1 d

ds

� �n

u sð Þds,

 n − 1 < α < n,
ð7Þ

provided that the right-hand side is point-wise defined on
ða,∞Þ.

Definition 4 (Hilfer fractional derivative [7, 8]). The Hilfer
fractional derivative of order α and parameter β of a function
(also known as the generalized Riemann-Liouville fractional
derivative) is defined by

HD
α,β
u tð Þ = Iβ n−αð ÞDnI 1−βð Þ n−αð Þu tð Þ, ð8Þ

where n − 1 < α < n, 0 ≤ β ≤ 1, t > a, and D = ðd/dtÞ.

Remark 5.When β = 0, the Hilfer fractional derivative corre-
sponds to the Riemann-Liouville fractional derivative:

HD
α,0
u tð Þ =DnIn−αu tð Þ, ð9Þ

while β = 1 in the definition of the Hilfer fractional derivative
corresponds to the Caputo fractional derivative:

HD
α,1
u tð Þ = In−αDnu tð Þ: ð10Þ

In the following lemma, we present the compositional
property of the Riemann-Liouville fractional integral opera-
tor with the Hilfer fractional derivative operator.
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Lemma 6 (see [8]). Let f ∈ Lða, bÞ, n − 1 < α ≤ n, n ∈ℕ, 0 ≤
β ≤ 1, and Iðn−αÞð1−βÞ f ∈ ACk½a, b�. Then

IαHD
α,β

f
� �

tð Þ = f tð Þ − 〠
n−1

k=0

t − að Þk− n−αð Þ 1−βð Þ

Γ k − n − αð Þ 1 − βð Þ + 1ð Þ

� lim
t→a+

dk

dtk
I 1−βð Þ n−αð Þ f

� �
tð Þ:

ð11Þ

The following lemma deals with a linear variant of
boundary value problem (1)–(2).

Lemma 7. Let a ≥ 0, 0 < αi < 1, γi = αi + βi − αiβi, i = 1, 2,
γ1 + α2 > 1, and h ∈ Cð½a, b�,ℝÞ. Then, the function x is a
solution of the boundary value problem:

HD
α1 ,β1 HD

α2 ,β2 + λ
� �

x tð Þ = h tð Þ, ð12Þ

x að Þ = 0,
x bð Þ = θx ηð Þ,

ð13Þ

if and only if

x tð Þ = Iα1+α2h tð Þ − λIα2x tð Þ + t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ

� θIα1+α2h ηð Þ − λθIα2x ηð Þ − Iα1+α2h bð Þ + λIα2x bð Þ½ �,
ð14Þ

where it is assumed that

Λ = 1
Γ γ1 + α2ð Þ b − að Þγ1+α2−1 − θ η − að Þγ1+α2−1� �

≠ 0: ð15Þ

Proof. Applying the Riemann-Liouville fractional integral
of order α1 to both sides of (12), we obtain by using
Lemma 6

HD
α2,β2x tð Þ + λx tð Þ = c0

Γ γ1ð Þ t − að Þγ1−1 + Iα1h tð Þ, ð16Þ

where c0 is an arbitrary constant and ð2 − α1Þð1 − β1Þ =
2 − γ1. Applying the Riemann-Liouville fractional integral
of order α2 to both sides of (16), we obtain

Iα2HD
α2,β2x tð Þ = Iα1+α2h tð Þ − λIα2x tð Þ + c0

Γ γ1ð Þ I
α2 t − að Þγ1−1

= Iα1+α2h tð Þ − λIα2x tð Þ + c0
Γ γ1 + α2ð Þ t − að Þγ1+α2−1:

ð17Þ

Applying Lemma 6 to (17), we obtain

x tð Þ = Iα1+α2h tð Þ − λIα2x tð Þ + c0
Γ γ1 + α2ð Þ t − að Þγ1+α2−1

+ c1
Γ γ2ð Þ t − að Þγ2−1:

ð18Þ

Using xðaÞ = 0 in (18), we obtain c1 = 0, and hence we get

x tð Þ = Iα1+α2h tð Þ − λIα2x tð Þ + c0
Γ γ1 + α2ð Þ t − að Þγ1+α2−1:

ð19Þ

Next, combining the condition xðbÞ = θxðηÞ with (19), we
have

c0 =
1
Λ

θIα1+α2h ηð Þ − λθIα2x ηð Þ − Iα1+α2h bð Þ + λIα2x bð Þ½ �:
ð20Þ

Substituting the value of c0 in (19) yields the solution (14).
The converse follows by direct computation. This completes
the proof.

3. Existence and Uniqueness Results for Single-
Valued Problem (1)–(2)

In view of Lemma 7, we define an operator A : C ⟶C

associated with problem (1)–(2) by

Axð Þ tð Þ = Iα1+α2 f t, x tð Þð Þ − λIα2x tð Þ + t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ

� θIα1+α2 f η, x ηð Þð Þ − λθIα2x ηð Þ − Iα1+α2 f b, x bð Þð Þ½
+ λIα2x bð Þ�,

ð21Þ

where C = Cð½a, b�,ℝÞ denotes the Banach space of all con-
tinuous functions from ½a, b� into ℝ with the norm kxk≔
sup fjxðtÞj: t ∈ ½a, b�g. One can observe that the existence of
a fixed point of operatorA implies the existence of a solution
for problem (1)–(2).

For computational convenience, we introduce the follow-
ing notations:

Ω1 =
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + θj j η − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	

,
ð22Þ

Ω2 = λj j b − að Þα2
Γ α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ

(

� b − að Þα2
Γ α2 + 1ð Þ + θj j η − að Þα2

Γ α2 + 1ð Þ
� 	)

:

ð23Þ
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Now, we present our main results for boundary value
problem (1)–(2). Our first existence result is based on the
well-known Krasnoselskii’s fixed-point theorem [26].

Theorem 8. Assume that the following conditions hold:

(H1) f : ½a, b� ×ℝ⟶ℝ is a continuous function such
that j f ðt, xÞj ≤ φðtÞ, ∀ðt, xÞ ∈ ½a, b� ×ℝ, with φ ∈ Cð½a,
b�,ℝ+Þ
(H2) Ω2 < 1, where Ω2 is given by (23)

Then, there exists at least one solution for problems (1)
and (2) on ½a, b�:

Proof. In order to verify the hypothesis of Krasnoselskii’s
fixed-point theorem [26], we split operator A defined by
(21) into the sum of two operators A1 and A2 on the closed
ball Bρ = fx ∈C : kxk ≤ ρg with ρ ≥ ððkφkΩ1Þ/ð1 −Ω2ÞÞ,
supt∈½a,b�φðtÞ = kφk, where

A1x tð Þ = Iα1+α2 f t, x tð Þð Þ + t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ

� θIα1+α2 f η, x ηð Þð Þ − Iα1+α2 f b, x bð Þð Þ½ �, t ∈ a, b½ �,
ð24Þ

and

A2x tð Þ = −λIα2x tð Þ + t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ −λθIα2x ηð Þ + λIα2x bð Þ½ �,

 t ∈ a, b½ �:
ð25Þ

For any x, y ∈ Bρ, we have

A1xð Þ tð Þ + A2yð Þ tð Þj j ≤ sup
t∈ a,b½ �

Iα1+α2 f t, x tð Þð Þj j + λj jIα2 x tð Þj j



+ t − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ θj jIα1+α2 f η, x ηð Þð Þj j½

+ λj j θj jIα2 x ηð Þ + Iα1+α2j f b, x bð Þð Þj j
+ λj jIα2 x bð Þj j�

�
≤ φk kΩ1 + ρΩ2 ≤ ρ:

ð26Þ

This shows that A1x +A2y ∈ Bρ. By using (H2), it is easy
to establish that A2 is a contraction mapping.

Continuity of operator A1 follows from that of f . Also,
A1 is uniformly bounded on Bρ as

A1xk k ≤Ω1 φk k: ð27Þ

Now, we prove that operator A1 is compact. Setting
supðt,xÞ∈½a,b�×Bρ

j f ðt, xÞj = �f<∞, we obtain

A1xð Þ t2ð Þ − A1xð Þ t1ð Þj j
= 1
Γ α1 + α2ð Þ

ðt1
a

t2 − sð Þα1+α2−1 − t1 − sð Þα1+α2−1� �
f s, x sð Þð Þds

����
+
ðt2
t1

t2 − sð Þα1+α2−1 f s, x sð Þð Þdsj

+ t2 − að Þγ1+α2−1 − t1 − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

� θj j�f η − að Þα1+α2
Γ α1 + α2 + 1ð Þ + �f

b − að Þα1+α2
Γ α1 + α2 + 1ð Þ

� 	

≤
�f

Γ α1 + α2 + 1ð Þ 2 t2 − t1ð Þα1+α2½

+ t2 − að Þα1+α2 − t1 − að Þα1+α2�� ���
+ t2 − að Þγ1+α2−1 − t1 − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ
� θj j�f η − að Þα1+α2

Γ α1 + α2 + 1ð Þ + �f
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	

⟶ 0 as t2 − t1 ⟶ 0,

ð28Þ

independently of x ∈ Bρ. Thus, A1 is equicontinuous and
hence A1 is relatively compact on Bρ. In consequence, it fol-
lows from the Arzelá-Ascoli theorem that A1 is compact on
Bρ. In view of the foregoing arguments, we deduce that the
hypothesis of Krasnoselskii’s fixed-point theorem [26] holds
true and consequently its conclusion implies that problem
(1)–(2) has at least one solution on ½a, b�.

Example 9. Consider the three-point boundary value prob-
lem of the Langevin equation with the Hilfer fractional deriv-
ative of the form:

HD
4/5ð Þ, 3/4ð Þ HD

3/5ð Þ, 1/2ð Þ + 1
4

� �
x tð Þ = 3 sin2t

5 + 3t
x tð Þj j

1 + x tð Þj j
� �

+ 1
4 , t ∈

1
3 ,

5
3

� 	
,

x
1
3

� �
= 0, x

5
3

� �
= 2
7 x

2
3

� �
:

8>>><
>>>:

ð29Þ

Here, α1 = 4/5, α2 = 3/5, β1 = 3/4, β2 = 1/2, λ = 1/4, a = 1
/3, b = 5/3, η = 2/3, and θ = 2/7. Using the given values, it is
found that γ1 = 19/20, γ2 = 4/5, Λ ≈ 1:142227093, Ω1 ≈
2:650804917, and Ω2 ≈ 0:7638622147 < 1. Notice that

f t, xð Þj j ≤ 3 sin2t
5 + 3t + 1

4 ≔ φ tð Þ: ð30Þ

Clearly the hypothesis of Theorem 8 holds true and con-
sequently its conclusion implies that the boundary value
problem (29) has at least one solution on ½1/3, 5/3�.

The Leray-Schauder Nonlinear Alternative [25] is used
for our next existence result.

Theorem 10. Suppose that (H2) and the following conditions
hold:
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(H3) j f ðt, xÞj ≤ pðtÞψðjxjÞ for each ðt, xÞ ∈ ½a, b� ×ℝ,
where ψ : ½0,∞Þ⟶ ð0,∞Þ is a continuous nondecreas-
ing function and p ∈ Cð½a, b�,ℝ+Þ
(H4) There exists a constant M > 0, such that

1 −Ω2ð ÞM
ψ Mð Þ pk kΩ1

> 1, ð31Þ

where Ω1,Ω2 are respectively given by (22) and (23).

Then, there exists at least one solution for problem
(1)–(2) on ½a, b�.

Proof. Let us verify that operator A defined by (21) satisfies
the hypothesis of the Leray-Schauder Nonlinear Alternative
[25]. In our first step, we establish that operator A maps
bounded sets (balls) into a bounded set in C . For a number
r > 0, let Br = fx ∈C : kxk ≤ rg be a bounded ball in C . Then,
for t ∈ ½a, b�, we have

Axð Þ tð Þj j ≤ sup
t∈ a,b½ �

Iα1+α2 f t, x tð Þð Þj j + λj jIα2 x tð Þj j



+ t − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ θj jIα1+α2 f η, x ηð Þð Þj j + λj j θj jIα2 x ηð Þj j½

+ Iα1+α2 f b, x bð Þð Þj j + λj jIα2 x bð Þj j�
�
≤ pk kψ xk kð Þ

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ
�(

+ θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ

	)

+ xk k λj j b − að Þα2
Γ α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ

(

� λj j b − að Þα2
Γ α2 + 1ð Þ + λj j θj j η − að Þα2

Γ α2 + 1ð Þ
� 	)

= pk kψ xk kð ÞΩ1 + xk kΩ2,

ð32Þ

and consequently,

Axk k ≤ pk kψ rð ÞΩ1 + rΩ2: ð33Þ

Next, we will show that A maps bounded sets into equi-
continuous sets ofC . Let τ1, τ2 ∈ ½a, b�with τ1 < τ2 and x ∈ Br.
Then we have

Axð Þ τ2ð Þ − Axð Þ τ1ð Þj j ≤ pk kψ rð Þ
Γ α1 + α2 + 1ð Þ τ2 − að Þα1+α2½

− τ1 − að Þα1+α2 � + λj jr
Γ α2 + 1ð Þ τ2 − τ1ð Þα2

+ τ2 − að Þγ1+α2−1 − τ1 − að Þγ1+α2−1� �
Λj jΓ γ + α2ð Þ

� θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ pk kψ rð Þ + λj j θj j η − að Þα2

Γ α2 + 1ð Þ pk kψ rð Þ
�

+ b − að Þα1+α2
Γ α1 + α2 + 1ð Þ pk kψ rð Þ + λj j b − að Þα2

Γ α2 + 1ð Þ
	
:

ð34Þ

Observe that the right-hand side of the above inequality
tends to zero independently of x ∈ Br as τ2 − τ1 ⟶ 0. Thus,
the set ABr is equicontinuous. Therefore, the Arzelá-Ascoli
theorem applies and hence operator A is completely
continuous.

Finally, we show that the set of all solutions to equations
x = λAx is bounded for λ ∈ ð0, 1Þ.

Following the computation in the first step, we obtain

x tð Þj j ≤ ψ xk kð Þ pk kΩ1 + xk kΩ2, t ∈ a, b½ �, ð35Þ

which yields

1 −Ω2ð Þ xk k
ψ xk kð Þ pk kΩ1

≤ 1: ð36Þ

According to (H4), there existsM > 0 satisfying kxk ≠M.
Introduce a set

U = x ∈ C a, b½ �,ℝð Þ: xk k <Mf g, ð37Þ

and notice that A : �U ⟶C is continuous and completely
continuous. Then, the choice of U implies that there is
no x ∈ ∂U , such that x = λAx for some λ ∈ ð0, 1Þ. In con-
sequence, we deduce by the nonlinear alternative of the
Leray-Schauder type [25] that A has a fixed-point x ∈ �U ,
which corresponds to a solution of problem (1)–(2). This
completes the proof.

Example 11. Consider the three-point boundary value prob-
lem of the Langevin equation with the Hilfer fractional deriv-
ative of the form:

HD
4/7ð Þ, 1/3ð Þ HD

2/5ð Þ, 4/5ð Þ + 1
5

� �
x tð Þ = 1

80 4t + 1ð Þ x8 tð Þ
x6 tð Þ + 1 + 1

4

� �
, t ∈

1
4 ,

3
4

� 	
,

x
1
4

� �
= 0, x

3
4

� �
= 2
3 x

1
2

� �
:

8>>><
>>>:

ð38Þ

Here α1 = 4/7, α2 = 2/5, β1 = 1/3, β2 = 4/5, λ = 1/5, a = 1/4,
b = 3/4, η = 1/2, and θ = 2/3. Using the given values, we obtain
γ1 = 5/7, γ2 = 22/25, Λ ≈ 0:3752096355, Ω1 ≈ 2:316402992,
and Ω2 ≈ 0:8402809682. Next, the nonlinear function is
bounded as

f t, xð Þ = 1
80 4t + 1ð Þ x8

x6 + 1 + 1
4

� �
≤

1
80 4t + 1ð Þ x2 + 1

4

� �
≔ p tð Þψ xð Þ,

ð39Þ

which satisfies condition H4 with kpk = 1/20 and ψðMÞ =M2

+ ð1/4Þ. Furthermore, we find that M ∈ ð0:2147201605,
1:164306134Þ, satisfying H4 of Theorem 10. Therefore, by
applying Theorem 10, the boundary value problem (38) has at
least one solution on ½1/4, 3/4�.
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In the following result, we apply Banach’s fixed-point
theorem to prove the existence of a unique solution of the
problem at hand.

Theorem 12. Assume that

(H5) j f ðt, xÞ − f ðt, yÞj ≤ Ljx − yj, L > 0 for each t ∈ ½a, b�
and x, y ∈ℝ.

If the constants Ω1,Ω2 defined by (22) and (23), respec-
tively, are such that

LΩ1 +Ω2 < 1, ð40Þ

then problem (1)–(2) has a unique solution on ½a, b�.

Proof. Let us first show that A defined by (21) satisfies
ABr ⊂ Br , where Br = fx ∈C : kxk ≤ rg with r ≥ ðMΩ1/ð1
− LΩ1 −Ω2ÞÞ and supt∈½a,b�j f ðt, 0Þj =M<∞. For any x ∈
Br , we have

Axð Þ tð Þj j ≤ sup
t∈ a,b½ �

Iα1+α2 f t, x tð Þð Þj j + λj jIα2 x tð Þj j



+ t − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ θj jIα1+α2 f η, x ηð Þð Þj j + λj j θj jIα2 x ηð Þj j½

+ Iα1+α2 f b, x bð Þð Þj j + λj jIα2 x bð Þj j�
�
≤ L xk k +Mð Þ

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ +

b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

b − að Þα1+α2
Γ α1 + α2 + 1ð Þ

�(

+ θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ

	)
+ xk k λj j b − að Þα2

Γ α2 + 1ð Þ



+ b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ λj j b − að Þα2

Γ α2 + 1ð Þ + λj j θj j η − að Þα2
Γ α2 + 1ð Þ

� 	�
≤ Lr +Mð ÞΩ1 + rΩ2 < r,

ð41Þ

which implies that ABr ⊂ Br .
Next, we let x, y ∈C . Then for t ∈ ½a, b�, we have

Axð Þ tð Þ − Ayð Þ tð Þj j

≤
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

b − að Þα1+α2
Γ α1 + α2 + 1ð Þ

�(

+ θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ

	)
x − yk k

+ λj j b − að Þα2
Γ α2 + 1ð Þ +

b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ λj j b − að Þα2

Γ α2 + 1ð Þ
�(

+ λj j θj j η − að Þα2
Γ α2 + 1ð Þ

	)
x − yk k = LΩ1 +Ω2ð Þ x − yk k,

ð42Þ

which implies that kAx −Ayk ≤ ðLΩ1 +Ω2Þkx − yk. As L
Ω1 +Ω2 < 1, A is a contraction. Therefore, by Banach’s
fixed-point theorem, operator A has a fixed point which is
indeed a unique solution of problem (1)–(2). The proof is
finished.

Example 13. Consider the three-point boundary value prob-
lem of the Langevin equation with the Hilfer fractional deriv-
ative of the form:

HD
1/2ð Þ, 3/5ð Þ HD

3/4ð Þ, 2/5ð Þ + 2
17

� �
x tð Þ = 2e 1/2ð Þ−t

159 + 2t
x2 tð Þ + 2 x tð Þj j
1 + x tð Þj j

� �
+ 2
3 , t ∈

1
2 ,

5
2

� 	
,

x
1
2

� �
= 0, x

5
2

� �
= 5
8 x

3
2

� �
:

8>>><
>>>:

ð43Þ

Here, α1 = 1/2, α2 = 3/4, β1 = 3/5, β2 = 2/5, λ = 2/17, a =
1/2, b = 5/2, η = 3/2, θ = 5/8, and

f t, xð Þ = 2e 1/2ð Þ−t

159 + 2t
x2 + 2 xj j
1 + xj j

� �
+ 2
3 : ð44Þ

Using the given data, we obtain γ1 = 4/5, γ2 = 17/20, Λ
≈ 0:9439932223, Ω1 ≈ 6:724559445, Ω2 ≈ 0:7305167191,
and L = 1/40 as

f t, xð Þ − f t, yð Þj j ≤ 4e 1/2ð Þ−t

159 + 2t x − yj j ≤ 1
40 x − yj j: ð45Þ

Moreover, we have LΩ1 +Ω2 ≈ 0:8986307052 < 1. As all
the assumptions of Theorem 12 are satisfied, we therefore
deduce by its conclusion that problem (43) has a unique solu-
tion on ½1/2, 5/2�.

4. Existence Results for Multivalued Problems
(3) and (4)

Definition 14. A continuous function x is said to be a solution
of problem (3)–(4) if xðaÞ = 0, xðbÞ = θxðηÞ and there exists a
function v ∈ L1ð½a, b�,ℝÞ with v ∈ Fðt, xÞ, a.e., on ½a, b� such
that

x tð Þ = Iα1+α2v tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ − Iα1+α2v bð Þ½

+ λIα2x bð Þ�:
ð46Þ

For each y ∈ Cð½a, b�,ℝÞ, define the set of selections of F by

SF,x ≔ v ∈ L1 a, b½ �,ℝð Þ: v ∈ F t, x tð Þð Þ on a, b½ � �
: ð47Þ

Lemma 15 (see [27]). Let X be a separable Banach space.
Let F : ½a, b� ×ℝ⟶P cp,cðXÞ be an L1-multivalued map
and let Θ be a linear continuous mapping from L1ð½a, b�, XÞ
to Cð½a, b�, XÞ. Then the operator
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Θ ∘ SF : C a, b½ �, Xð Þ→P cp,c C a, b½ �, Xð Þð Þ,

 x↦ Θ ∘ SFð Þ xð Þ =Θ SF,xð Þ,

ð48Þ

is a closed graph operator in Cð½a, b�, XÞ × Cð½a, b�, XÞ.

Our first existence result, dealing with the convex valued F, is
based on the nonlinear alternative of the Leray-Schauder type
for (Kakutani) multivalued maps [25] with the assumption
that F is Carathéodory.

Theorem 16. Suppose that (H2), (H4), and the following con-
ditions hold:

(A1) F : ½a, b� ×ℝ⟶P cp,cðℝÞ is L1-Carathéodory,
where P cp,cðℝÞ = fY ∈P ðℝÞ: Y is compact and convexg
(A2) kFðt, xÞkP ≔ sup fjyj: y ∈ Fðt, xÞg ≤ pðtÞψðjxjÞ for
each ðt, xÞ ∈ ½a, b� ×ℝ, where ψ : ½0,∞Þ⟶ ð0,∞Þ is a
continuous nondecreasing function and p ∈ Cð½a, b�,ℝ+Þ

Then, there exists at least one solution for problem (3)–(4)
on ½a, b�.

Proof. Let us transform problem (3)–(4) into a fixed-point
problem by introducing an operator ℱ : Cð½a, b�,ℝÞ⟶P

ðCð½a, b�,ℝÞÞ as

ℱ xð Þ
= h ∈ C a, b½ �,ℝð Þ: h tð Þ = Iα1+α2v tð Þ − λIα2x tð Þff

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ − Iα1+α2v bð Þ½

+ λIα2x bð Þ�g,

ð49Þ

for t ∈ ½a, b� and v ∈ SF,x . Notice that the existence of a fixed
point of ℱ ensures the existence of a solution of problems
(1) and (2). This will be achieved by establishing that opera-
tor ℱ satisfies the hypothesis of the Leray-Schauder nonlin-
ear alternative for the Kakutani maps [25]. We do it in
several steps.

Step 1. Since SF,x is convex (F has convex values), therefore
ℱ ðxÞ is convex for each x ∈ Cð½a, b�,ℝÞ.

Step 2. ℱ maps bounded sets (balls) into bounded sets in C
ð½a, b�,ℝÞ.

Let Br = fx ∈ Cð½a, b�,ℝÞ: kxk ≤ rg be a bounded set in
Cð½a, b�,ℝÞ. Then, for each h ∈ℬðxÞ, x ∈ Br , there exists v
∈ SF,x such that

h tð Þ = Iα1+α2v tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ − Iα1+α2v bð Þ½

+ λIα2x bð Þ�:
ð50Þ

Then, for t ∈ ½a, b�, we have

h tð Þj j ≤ sup
t∈ a,b½ �

Iα1+α2 v tð Þj j + λj jIα2 x tð Þj j



+ t − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ θj jIα1+α2 v ηð Þj j + λj j θj jIα2 x ηð Þj j½

+ Iα1+α2 v bð Þj j + λj jIα2 x bð Þj j�
�
≤ pk kψ xk kð Þ

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ
�(

+ θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ

	)

+ xk k λj j b − að Þα2
Γ α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ λj j b − að Þα2
Γ α2 + 1ð Þ

�(

+ λj j θj j η − að Þα2
Γ α2 + 1ð Þ

	)
= pk kψ xk kð ÞΩ1 + xk kΩ2:

ð51Þ

Thus,

hk k ≤ pk kψ rð ÞΩ1 + rΩ2: ð52Þ

Step 3. ℱ maps bounded sets into equicontinuous sets of C
ð½a, b�,ℝÞ.

Let τ1, τ2 ∈ ½a, b� with τ1 < τ2 and x ∈ Br . Then, for each
h ∈ℬðxÞ, we obtain

h t2ð Þ − h t1ð Þj j ≤ 1
Γ α1 + α2ð Þ

�
ðτ1
a

τ2 − sð Þα1+α2−1 − τ1 − sð Þα1+α2−1� �
v sð Þds

����
+
ðt2
τ1

τ2 − sð Þα1+α2−1v sð Þdsj

+ 1
Γ α2ð Þ

ðτ1
a

τ2 − sð Þα2−1 − τ1 − sð Þα2−1� �����
� x sð Þds + 1

Γ α2ð Þ
ðτ2
τ1

τ2 − sð Þα2−1x sð Þdsj

+ τ2 − að Þγ1+α2−1 − τ1 − að Þγ1+α2−1
Γ γ + α2ð Þ λj j θj jIα2 x ηð Þj j½

+ λj jIα2 x bð Þj j� + τ2 − að Þγ1+α2−1 − τ1 − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

� θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ + b − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	

pk kψ rð Þ

≤
pk kψ rð Þ

Γ α1 + α2ð Þ 2 τ2 − τ1ð Þα1+α2 + τ2 − að Þα1+α2 − τ1 − að Þα1+α2�� ��� �
+ r
Γ α2ð Þ 2 τ2 − τ1ð Þα2 + τ2 − að Þα2 − τ1 − að Þα2j j½ �

+ τ2 − að Þγ1+α2−1 − τ1 − að Þγ1+α2−1
Γ γ + α2ð Þ λj j θj jIα2 x ηð Þj j½

+ λj jIα2 x bð Þj j�r + τ2 − að Þγ1+α2−1 − τ1 − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

� θj j η − að Þα1+α2
Γ α1 + α2 + 1ð Þ + b − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	
� pk kψ rð Þ⟶ 0 as τ2 − τ1 ⟶ 0 independently of x ∈ Br:

ð53Þ
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Therefore, ℱ : Cð½a, b�,ℝÞ⟶P ðCð½a, b�,ℝÞÞ is
completely continuous by the application of the Arzelá-
Ascoli theorem.

Next, we show that ℱ is upper semicontinuous by prov-
ing that it has a closed graph ([28], Proposition 1.2) as ℱ is
already shown to be completely continuous.

Step 4. ℱ has a closed graph.

Let xn ⟶ x∗, hn ∈ℱ ðxnÞ and hn ⟶ h∗. Then, we need
to show that h∗ ∈ℱ ðx∗Þ. Associated with hn ∈ℱ ðxnÞ, there
exists vn ∈ SF,xn such that for each t ∈ ½a, b�,

h tð Þ = Iα1+α2vn tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2vn ηð Þ − λθIα2x ηð Þ½

− Iα1+α2vn bð Þ + λIα2x bð Þ�:

ð54Þ

Thus, it suffices to show that there exists v∗ ∈ SF,x∗ , such
that for each t ∈ ½a, b�,

h∗ tð Þ = Iα1+α2v∗ tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v∗ ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v∗ bð Þ + λIα2x bð Þ�:

ð55Þ

Let us introduce the linear operator Θ : L1ð½a, b�,ℝÞ
⟶ Cð½a, b�,ℝÞ as by

v↦Θ vð Þ tð Þ = Iα1+α2v tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v bð Þ + λIα2x bð Þ�:
ð56Þ

Observe that khn − h∗k→ 0, as n→∞. So, by Lemma 15,
Θ ∘ SF is a closed graph operator. Furthermore, we have
hnðtÞ ∈ΘðSF,xnÞ. Since xn → x∗, we have

h∗ tð Þ = Iα1+α2v∗ tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v∗ ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v∗ bð Þ + λIα2x bð Þ�,

ð57Þ

for some v∗ ∈ SF,x∗ .

Step 5.We show that there exists an open set U ⊆ Cð½a, b�,ℝÞ
with x ∉ νℱ ðxÞ for any ν ∈ ð0, 1Þ and all x ∈ ∂U .

Let ν ∈ ð0, 1Þ and x ∈ νℱ ðxÞ. Then, there exists v ∈ L1ð½a,
b�,ℝÞ with v ∈ SF,x, such that for t ∈ ½a, b�, we have

x tð Þ = Iα1+α2v tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v bð Þ + λIα2x bð Þ�:

ð58Þ

As in the second step, it can be shown that

x tð Þj j ≤ pk kψ xk kð Þ

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ

(

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + θj j η − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	)

+ xk k λj j b − að Þα2
Γ α2 + 1ð Þ + b − að Þγ1+α2−1

Λj jΓ γ1 + α2ð Þ

(

� λj j b − að Þα2
Γ α2 + 1ð Þ + λj j θj j η − að Þα2

Γ α2 + 1ð Þ
� 	)

= pk kψ xk kð ÞΩ1 + xk kΩ2,

ð59Þ

which implies that

xk k ≤ pk kψ xk kð ÞΩ1 + xk kΩ2: ð60Þ

Consequently

1 −Ω2ð Þ xk k
pk kψ xk kð ÞΩ1

≤ 1: ð61Þ

By H4, we can find a number M with kxk ≠M. Define

U = x ∈ C a, b½ �,ℝð Þ: xk k <Mf g: ð62Þ

Notice that operator ℱ : �U ⟶P ðCð½a, b�,ℝÞÞ is com-
pact, upper semicontinuous, and convex valued. By the choice
of U , we cannot find x ∈ ∂U satisfying x ∈ νℱ ðxÞ for some ν
∈ ð0, 1Þ. Therefore, by the Leray-Schauder nonlinear alterna-
tive for the Kakutani maps [25], ℱ has a fixed point y ∈ �U
which is a solution of problem (3)–(4). This completes the
proof.

In our next result, we show the existence of solutions for
the nonconvex valued case of problem (3)–(4). For that, we
need the following assumptions.

(B1) F : ½a, b� ×ℝ⟶P cpðℝÞ is such that Fð⋅ ,xÞ: ½a, b�
⟶P cpðℝÞ is measurable for each x ∈ℝ, where P cp

ðℝÞ = fY ∈P ðℝÞ: Y is compactg
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(B2) HdðFðt, xÞ, Fðt, �xÞÞ ≤mðtÞjx − �xj for almost all t ∈
½a, b� and x, �x ∈ℝ with m ∈ Cð½a, b�,ℝ+Þ and dð0, Fðt,
0ÞÞ ≤mðtÞ for almost all t ∈ ½a, b�

Recall that Hd : P ðXÞ ×P ðXÞ→ℝ ∪ f∞g is defined by

Hd V ,Wð Þ =max sup
v∈V

d v,Wð Þ, sup
w∈W

d V ,wð Þ

 �

, ð63Þ

where dðV ,wÞ = inf v∈V dðv ;wÞ, dðv,W Þ = infw∈W dðv ;wÞ,
and ðX, dÞ is a metric space induced from the normed space
ðX ; k⋅kÞ.

We apply a fixed-point theorem for multivalued maps
due to Covitz and Nadler [29]: if N : X⟶P clðXÞ is a con-
traction, then FixN ≠∅, where P clðXÞ = fY ∈P ðXÞ: Y is
closedg.

Theorem 17. Suppose that conditions (B1) and (B2) hold
and that

δ≔ mk kΩ1 +Ω2 < 1: ð64Þ

Then, problem (3)–(4) has at least one solution on
½a, b�.

Proof. In view of (B1), the set SF,x is nonempty for each x ∈
Cð½a, b�,ℝÞ, and hence F has a measurable selection (see
Theorem III.6 in [30]). Now, we verify that operator ℱ
defined by (49) satisfies the hypothesis of Covitz and Nadler’s
fixed theorem [29]. In order to establish that ℱ ðxÞ ∈P cl
ðCð½a, b�,ℝÞÞ for each x ∈ Cð½a, b�,ℝÞ, let fungn≥0 ∈ℱ ðxÞ be
such that un ⟶ uðn⟶∞Þ in Cð½a, b�,ℝÞ. Then, u ∈ Cð½a,
b�,ℝÞ and there exists vn ∈ SF,xn such that, for each t ∈ ½a, b�

un tð Þ = Iα1+α2vn tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2vn ηð Þ − λθIα2x ηð Þ½

− Iα1+α2vn bð Þ + λIα2x bð Þ�:

ð65Þ

Since F is compact valued, we pass onto a subsequence (if
necessary) to obtain that vn converges to v in L1ð½a, b�,ℝÞ.
Therefore, v ∈ SF,x, and for each t ∈ ½a, b�, we have

un tð Þ⟶ u tð Þ = Iα1+α2v tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v bð Þ + λIα2x bð Þ�:
ð66Þ

which implies that u ∈ℱ ðxÞ.
Next, we show that we can find a δ < 1 (defined by (64))

satisfying

Hd ℱ xð Þ,ℱ �xð Þð Þ ≤ δ x − �xk k for each x, �x ∈ C2 a, b½ �,ℝð Þ:
ð67Þ

Let x, �x ∈ C2ð½a, b�,ℝÞ and h1 ∈ℱ ðxÞ. Then, there exists
v1ðtÞ ∈ Fðt, xðtÞÞ such that, for each t ∈ ½a, b�,

h1 tð Þ = Iα1+α2v1 tð Þ − λIα2x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v1 ηð Þ − λθIα2x ηð Þ½

− Iα1+α2v1 bð Þ + λIα2x bð Þ�:

ð68Þ

By assumption (B2), we have that HdðFðt, xÞ, Fðt, �xÞÞ ≤
mðtÞjxðtÞ − �xðtÞj. So we can find ϱ ∈ Fðt, �xðtÞÞ, such that

v1 tð Þ − ϱj j ≤m tð Þ x tð Þ − �x tð Þj j, t ∈ a, b½ �: ð69Þ

Define Y : ½a, b�⟶P ðℝÞ by

Y tð Þ = ϱ ∈ℝ : v1 tð Þ − ϱj j ≤m tð Þ x tð Þ − �x tð Þj jf g: ð70Þ

As the multivalued operatorYðtÞ ∩ Fðt, �xðtÞÞ is measur-
able (Proposition III.4 in [30]), we can find a function v2ðtÞ
which is a measurable selection for Y . So v2ðtÞ ∈ Fðt, �xðtÞÞ,
and for each t ∈ ½a, b�, we have jv1ðtÞ − v2ðtÞj ≤mðtÞjxðtÞ −
�xðtÞj.

For each t ∈ ½a, b�, let us define

h2 tð Þ = Iα1+α2v2 tð Þ − λIα2�x tð Þ

+ t − að Þγ1+α2−1
ΛΓ γ1 + α2ð Þ θIα1+α2v2 ηð Þ − λθIα2�x ηð Þ½

− Iα1+α2v2 bð Þ + λIα2�x bð Þ�:

ð71Þ

Thus,

h1 tð Þ − h2 tð Þj j = Iα1+α2 v1 tð Þ − v2 tð Þj jð Þ + λj jIα2 x tð Þ − �x tð Þj j

+ b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ θj jIα1+α2 v1 ηð Þ − v2 ηð Þj jð Þ½

+ λj j θj jIα2 x ηð Þ − �x ηð Þj j
+ Iα1+α2 v1 bð Þ − v2 bð Þj jð Þ
+ λj jIα2 x bð Þ − �x bð Þj j�

≤
b − að Þα1+α2

Γ α1 + α2 + 1ð Þ + b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ

(

� b − að Þα1+α2
Γ α1 + α2 + 1ð Þ + θj j η − að Þα1+α2

Γ α1 + α2 + 1ð Þ
� 	)

� mk k x − �xk k + λj j b − að Þα2
Γ α2 + 1ð Þ




+ b − að Þγ1+α2−1
Λj jΓ γ1 + α2ð Þ λj j b − að Þα2

Γ α2 + 1ð Þ
�

+ λj j θj j η − að Þα2
Γ α2 + 1ð Þ

	�
x − �xk k = mk kΩ1ð

+Ω2Þ x − �xk k:
ð72Þ
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Hence

h1 − h2k k ≤ mk kΩ1 +Ω2ð Þ x − �xk k: ð73Þ

By interchanging the roles of x and �x, one can obtain in a
similar manner that

Hd ℱ xð Þ,ℱ �xð Þð Þ ≤ mk kΩ1 +Ω2ð Þ x − �xk k, ð74Þ

This shows that ℱ is a contraction. So, by Covitz and
Nadler’s fixed-point theorem [29], operator ℱ has a fixed-
point x which corresponds to a solution of problem (3)–(4).
This completes the proof.

Example 18. Consider the three-point boundary value prob-
lem of the Langevin inclusion with the Hilfer fractional deriv-
ative of the form:

HD
3/7ð Þ, 2/3ð Þ HD

5/7ð Þ, 1/4ð Þ + 1
10

� �
x tð Þ ∈ F t, x tð Þð Þ, t ∈

3
5 ,

9
5

� 	
,

x
3
5

� �
= 0, x

9
5

� �
= 3
4 x

7
5

� �
:

8>>><
>>>:

ð75Þ

where

F t, xð Þ = 1 + sin xj j
15 + tð Þ2 , t + 1

41

� � 1 + 2 xj j
1 + xj j

� �" #
: ð76Þ

Here, α1 = 3/7, α2 = 5/7, β1 = 2/3, β2 = 1/4, λ = 1/10, a =
3/5, b = 9/5, η = 7/5, and θ = 3/4. We can find that γ1 = 17/
21, γ2 = 11/14, Λ ≈ 0:4879734002, Ω1 ≈ 5:461283890, and
Ω2 ≈ 0:6208844245. It is clear that F is measurable for all x
∈ℝ. Now, we see that

Hd F t, xð Þ, F t, yð Þð Þ ≤ t + 1
41

� �
x − yj j, x, y ∈ℝ, t ∈

3
5 ,

9
5

� 	
:

ð77Þ

By choosing mðtÞ = ðt + 1Þ/41, we have kmk = 14/205
and also we obtain dð0, Fðt, 0ÞÞ ≤mðtÞ, t ∈ ½3/5, 9/5�. Then
we find that

mk kΩ1 +Ω2 ≈ 0:9938501536 < 1: ð78Þ

Hence, by using Theorem 17, we get that the boundary
value problem (75) has at least one solution on ½3/5, 9/5�.
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