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Finding characterizations of trivial solitons is an important problem in geometry of Ricci solitons. In this paper, we find several
characterizations of a trivial Ricci soliton. First, on a complete shrinking Ricci soliton, we show that the scalar curvature
satisfying a certain inequality gives a characterization of a trivial Ricci soliton. Then, it is shown that the potential field having
geodesic flow and length of potential field satisfying certain inequality gives another characterization of a trivial Ricci soliton.
Finally, we show that the potential field of constant length satisfying an inequality gives a characterization of a trivial Ricci soliton.

1. Introduction

Recall that Ricci solitons, being self-similar solutions of the
Ricci flow (cf. [1]), are a topic of current interest. Moreover,
they are models for some singularities which make their
geometry very interesting. An n-dimensional Ricci soliton
ðM, g, u, λÞ is a Riemannian manifold ðM, gÞ on which there
is a smooth vector field u (called potential field) satisfying
(cf. [1]),

Ric + 1
2 £ug = λg, ð1Þ

where Ric is the Ricci tensor, £ug is the Lie derivative of
the metric g with respect to u, and λ is a constant. A Ricci
soliton ðM, g, u, λÞ is said to be expanding, stable, or
shrinking depending on λ < 0, λ = 0, or λ > 0, respectively.
If the potential field u = ∇f is a gradient of a smooth func-
tion f , then ðM, g,∇f , λÞ is called a gradient Ricci soliton,
and in this case, equation (1) takes the form

Ric +Hf = λg, ð2Þ

where Hf is the Hessian of the function f . Ricci solitons
are stable solutions of the Ricci flow (cf. [1]) and have
been used in settling Poincare conjecture, and since then,
the study of Ricci solitons has picked up immense impor-

tance. One of the important findings on Ricci solitons is
that if it is compact, the potential field u is a gradient of
a smooth function f , that is, a compact Ricci soliton is a
gradient Ricci soliton (cf. [1]). A Ricci soliton ðM, g, u, λÞ is
said to be trivial if £ug = 0, and in this case, the metric g
becomes an Einsteinmetric with λ becoming the Einstein con-
stant. Several authors have studied the geometry of Ricci soli-
tons (cf. [2–4]); in [5–7], Myers-type theorems have been
proved for Ricci soliton; similarly in [8], it has been observed
that a complete shrinking Ricci soliton ðM, g, u, λÞ has a finite
fundamental group. In [9, 10], Bishop-type volume compari-
son theorems have been proved for noncompact shrinking
Ricci solitons.

As Ricci solitons generalize Einstein metrics, a natural
open problem is the existence of triviality results (i.e., condi-
tions under which a Ricci soliton becomes an Einstein man-
ifold). Thus, an important question in the geometry of a Ricci
soliton ðM, g, u, λÞ is to find conditions under which it
becomes trivial. Recently in [11, 12], authors have found nec-
essary and sufficient conditions for a compact Ricci soliton to
be a trivial Ricci soliton. In this paper, we find necessary and
sufficient conditions for compact Ricci solitons as well as
noncompact Ricci solitons to be trivial. In our first result,
we show that the scalar curvature S of a compact Ricci soliton
ðM, g, u, λÞ satisfying a differential inequality involving the
first nonzero eigenvalue λ1 of the Laplace operator gives a
characterization of a trivial Ricci soliton (cf. Theorem 1).
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We also show that for a connected Ricci soliton ðM, g, u, λÞ
the flow of potential field u being geodesic flow with its
length kuk satisfying certain inequality gives a characteriza-
tion of a trivial Ricci soliton (cf. Theorem 2). Finally, it is
observed that potential field u being of constant length satis-
fying certain inequality on a connected Ricci soliton ðM, g,
u, λÞ also gives a characterization of a trivial Ricci soliton
(cf. Theorem 4).

2. Preliminaries

Let ðM, g, u, λÞ be an n-dimensional Ricci soliton and α be
smooth 1-form dual to the potential field u. We define a skew
symmetric tensor field ψ on the Ricci soliton ðM, g, u, λÞ by

1
2 dα X, Yð Þ = g ψX, Yð Þ, X, Y ∈X Mð Þ, ð3Þ

where XðMÞ is the Lie algebra of smooth vector fields on
M. We call this tensor field ψ the associated tensor field of
the Ricci soliton ðM, g, u, λÞ. The Ricci operator Q on the
Ricci soliton ðM, g, u, λÞ is a symmetric operator defined by
RicðX, YÞ = gðQX, YÞ, X, Y ∈XðMÞ. The gradient ∇S of the
scalar curvature S = TrQ satisfies

〠 ∇Qð Þ ei, eið Þ = 1
2∇S, ð4Þ

where fe1,⋯, eng is a local orthonormal frame and the
covariant derivative ð∇QÞðX, YÞ = ∇XQY −Qð∇XYÞ.

Using equations (1) and (3) and Koszul’s formula, the
covariant derivative of the potential field u is given by

∇Xu = λX −QX + ψX, X ∈X Mð Þ: ð5Þ

Now, using equation (5), we get the following expression
for Riemannian curvature tensor of the Ricci soliton ðM, g,
u, λÞ:

R X, Yð Þu = ∇Qð Þ Y , Xð Þ − ∇Qð Þ X, Yð Þ
+ ∇ψð Þ X, Yð Þ − ∇ψð Þ Y , Xð Þ: ð6Þ

As the operatorQ is symmetric and ψ is skew-symmetric,
using equations (4) and (6), we obtain

Ric Y , uð Þ = Y Sð Þ − 1
2Y Sð Þ − g Y ,〠 ∇ψð Þ ei, eið Þ

� �
, ð7Þ

which leads to

Q uð Þ = 1
2∇S−〠 ∇ψð Þ ei, eið Þ: ð8Þ

We denote by λ1 the first nonzero eigenvalue of the
Laplace operator Δ acting on smooth functions on compact
ðM, g, u, λÞ. If h : M⟶ R is a smooth function satisfying

ð
M
h = 0, ð9Þ

then by minimum principle, we have

ð
M

∇hk k2 ≥ λ1

ð
M
h2: ð10Þ

3. A Characterization of Compact Trivial
Ricci Solitons

Now, we prove the first result of this paper.

Theorem 1. An n-dimensional complete shrinking Ricci soli-
ton ðM, g, u, λÞ with Ricci curvature bounded below by a con-
stant c > 0 and first nonzero eigenvalue λ1 of the Laplacian
operator is trivial if and only if the scalar curvature S satisfies
the inequality

ΔSð Þ2 ≤ 2nλ λ1 − λð Þ
n − 1ð Þ S − nλð Þ2: ð11Þ

Proof. Suppose ðM, g, u, λÞ is a complete shrinking Ricci sol-
iton with Ricci curvature satisfying Ric ≥ c > 0 and the scalar
curvature S satisfies the inequality

ΔSð Þ2 ≤ 2nλ λ1 − λð Þ
n − 1ð Þ S − nλð Þ2: ð12Þ

Note that the assumption on the Ricci curvature in view
of Myers’ theorem implies that M is compact. Thus, ðM, g,
u, λÞ is a compact Ricci soliton, and therefore, it is a gradient
Ricci soliton (cf. [1]). Consequently, u is a closed vector field,
that is, ψ = 0. Equation (8) takes the form

Q uð Þ = 1
2∇S, ð13Þ

which gives

Ric u,∇Sð Þ = 1
2 ∇Sk k2: ð14Þ

Moreover equation (5) becomes

∇Xu = λX −QX, ð15Þ

which we use to compute the divergence of Qu and obtain

div Qu = λS − Qk k2 + 1
2 u Sð Þ: ð16Þ

Now, using equation (13) in the above equation leads to

div Qu = λS − Qk k2 + Ric u, uð Þ, ð17Þ

which on integrating gives

ð
M

Qk k2 − S2

n

� �
+ S2

n
− λS − Ric u, uð Þ

� �
= 0: ð18Þ
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Using equation (15), we have div u = nλ − S, which gives

ð
M
nλ =

ð
M
S, ð19Þ

and consequently, we conclude

ð
M

S − nλð Þ2 =
ð
M

S2 − nλS
� 	

: ð20Þ

Thus, equation (18) takes the form

ð
M

Qk k2 − S2

n

� �
+ 1
n

S − nλð Þ2 − Ric u, uð Þ
� �

= 0: ð21Þ

Now, equations (13) and (16) imply

ΔS = 2 div Qu = 2 λS − Qk k2 + 1
2 u Sð Þ


 �
, ð22Þ

which together with div Su = uðSÞ + Sðnλ − SÞ gives

ΔS − div Su = 2λS − 2 Qk k2 − S nλ − Sð Þ: ð23Þ

Integrating the above equation, we conclude

ð
M

2 Qk k2 − 2λS + S nλ − Sð Þ� 
= 0, ð24Þ

that is,

ð
M

2 Qk k2 − S2

n

� �
+ 2 S

2

n
− S2 + n − 2ð ÞλS

� �
= 0, ð25Þ

which gives

ð
M

2 Qk k2 − S2

n

� �
−

n − 2
n

� �
S2 − nλS
� 	� �

= 0: ð26Þ

Now, using equation (20) in the above equation yields

ð
M

Qk k2 − S2

n

� �
= n − 2

2n

� �ð
M

S − nλð Þ2: ð27Þ

Thus, equations (21) and (27) imply

ð
M
Ric u, uð Þ = 1

2

ð
M

S − nλð Þ2: ð28Þ

Also, we have Bochner’s formula

ð
M

Ric ∇S,∇Sð Þ + ASk k2 − ΔSð Þ2� 
= 0, ð29Þ

where ASðXÞ = ∇X∇S is the Hessian operator of the scalar
curvature S. Note that equation (19) implies

Ð
MðS − nλÞ = 0,

which in view of equation (10) gives

ð
M

∇Sk k2 ≥ λ1

ð
M

S − nλð Þ2: ð30Þ

Now, we use equation (14) to compute

Ric ∇S − 2λu,∇S − 2λuð Þ = Ric ∇S,∇Sð Þ − 2λ ∇Sk k2
+ 4λ2Ric u, uð Þ:

ð31Þ

Integrating the above equation and using equations (28)
and (29), we get

ð
M
Ric ∇S − 2λu,∇S − 2λuð Þ =

ð
M

�
ΔSð Þ2 − ASk k2 − 2λ ∇Sk k2

+ 4λ2Ric u, uð Þ,
ð32Þ

which on using λ > 0 (for a shrinking Ricci soliton) and the
inequality (30) gives

ð
M
Ric ∇S − 2λu,∇S − 2λuð Þ

≤
ð
M

�
− ASk k2 − 1

n
ΔSð Þ2

� �
+ n − 1

n

� �
ΔSð Þ2

− 2λλ1 S − nλð Þ2 + 2λ2 S − nλð Þ2
�

ð33Þ

or

ð
M
Ric ∇S − 2λu,∇S − 2λuð Þ

≤
ð
M

�
− ASk k2 − 1

n
ΔSð Þ2

� �

+ n − 1
n

� �
ΔSð Þ2 − 2λ λ1 − λð Þ S − nλð Þ2

�
:

ð34Þ

Thus,

ð
M
Ric ∇S − 2λu,∇S − 2λuð Þ

≤
ð
M

�
− ASk k2 − 1

n
ΔSð Þ2

� �

+ n − 1
n

� �
ΔSð Þ2 − 2λn

n − 1ð Þ λ1 − λð Þ S − nλð Þ2

 ��

:

ð35Þ

Since the Ricci curvature satisfies Ric ≥ c for a constant
c > 0, the above inequality takes the form
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c
ð
M

∇S − 2λuk k2 ≤
ð
M

�
− ASk k2 − 1

n
ΔSð Þ2

� �
+ n − 1

n

� �

� ΔSð Þ2 − 2λn
n − 1ð Þ λ1 − λð Þ S − nλð Þ2


 ��
:

ð36Þ

Using the Schwarz inequality kASk2 ≥ ð1/nÞðΔSÞ2, and
the inequality (12) in the above inequality, we conclude

∇S = 2λu,

ASk k2 = 1
n

ΔSð Þ2:
ð37Þ

Also, the equality in the Schwarz inequality holds if and
only if AS = ðΔS/nÞI. Moreover, the equation ∇S = 2λu in
view of equation (15) implies

AS Xð Þ = 2λ λX −QXð Þ,
ΔS = 2λ nλ − Sð Þ:

ð38Þ

Consequently, using AS = ðΔS/nÞI, we get

2λ λX −QXð Þ = 2λ nλ − Sð Þ
n

X, ð39Þ

that is, QðXÞ = ðS/nÞX. Now, using QðXÞ = ðS/nÞX with
equation (13) and first equation in equation (37), we get
S = nλ, that is, Q = λI. Hence, Ric = λg and the Ricci soliton
ðM, g, u, λÞ is trivial.

Conversely, if ðM, g, u, λÞ is a trivial soliton, then Ric =
λg, λ > 0 gives S = nλ which implies ΔS = 0, and conse-
quently, the equality (12) holds.

It is well known that the odd-dimensional unit sphere
S2n+1with induced metric g as a hypersurface of the Euclid-
ean space ðCn+1, h,iÞ admits a unit Killing vector field u,
and consequently, we have the trivial Ricci soliton ðS2n+1, g,
u, λÞ, λ = 2n, satisfying the hypothesis of Theorem 1.

4. Characterizations of Connected Trivial
Ricci Solitons

In this section, we consider a connected Ricci soliton ðM,
g, u, λÞ and find necessary and sufficient conditions under
which it is a trivial Ricci soliton. Recall that the local flow
fϕtg of a smooth vector field u on a Riemannian manifold
ðM, gÞ is said to be geodesic flow if the orbits of fϕtg are
geodesics on ðM, gÞ. Geodesic flows have been used in study-
ing geometry of foliations on a Riemannian manifold (cf.
[7, 13]). Note that a flow consisting of isometries is a geode-
sic flow and the converse is not true. For example, consider
the 3-dimensional unit sphere S3 which has a Sasakian struc-
ture ðϕ, u, α, gÞ (cf. [14]). Then for a positive function f on
S3, deform the metric g by

�g = f g + 1 − fð Þα ⊗ α: ð40Þ

Then, u is still a unit vector field on the Riemannian
manifold ðS3, �gÞ. However, u is no more a Killing vector field
on ðS3, �gÞ but instead ðψ, u, α, �gÞ is a trans-Sasakian structure
[15], and the flow of u on the Riemannian manifold ðS3:�gÞ is a
geodesic flow.

In the next result, we use this notion of geodesic flow for
the potential field u of the Ricci soliton ðM, g, u, λÞ to char-
acterize trivial Ricci solitons.

Theorem 2. Let ðM, g, u, λÞ be an n-dimensional connected
shrinking Ricci soliton with the local flow of potential field u
be the geodesic flow. Then, ðM, g, u, λÞ is trivial Ricci soliton
if and only if the scalar curvature S is a constant along the
integral curves of u and the associated tensor ψ satisfies the
inequality

ψk k2 ≤ λ uk k2: ð41Þ

Proof. Suppose ðM, g, u, λÞ is connected with local flow of u a
geodesic flow and the scalar curvature S is a constant along
the integral curves of u and the associated tensor ψ satisfies

ψk k2 ≤ λ uk k2: ð42Þ

As the local flow of u is a geodesic flow, equation (5) gives

Qu = λu + ψu: ð43Þ

As the scalar curvature S is a constant along the integral
curves of u, using equations (4) and (8), we conclude

g u,〠 ∇Qð Þ ei, eið Þ
� �

= 0, ð44Þ

Ric u, uð Þ = −g u,〠 ∇ψð Þ ei, eið Þ
� �

: ð45Þ

Now, using equations (5) and (44), we find the diver-
gence of the vector field Qu. After some straight forward
computations, we get

div Qu = λS − Qk k2: ð46Þ

Similarly, using equations (5) and (45), we get

div ψu = − ψk k2 + Ric u, uð Þ: ð47Þ

Equation (43) gives Ricðu, uÞ = λkuk2, which on insert-
ing in the above equation yields

div ψu = − ψk k2 + λ uk k2: ð48Þ

Note that equation (5) gives div u = ðnλ − SÞ. Conse-
quently, on taking divergence in equation (43) and using
equations (46) and (48), we conclude

λS − Qk k2 = nλ2 − λS − ψk k2 + λ uk k2, ð49Þ
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which gives

Qk k2 − 1
n
S2

� �
+ 1
n

S − nλð Þ2 + λ uk k2 − ψk k2� 	
= 0: ð50Þ

Using the Schwarz inequality kQk2 ≥ ð1/nÞS2 and
inequality (42), in the above equation, we conclude

Qk k2 = 1
n
S2,

S = nλ,
ψk k2 = λ uk k2:

ð51Þ

Since the equality in the Schwarz inequality holds if and
only if Q = ðS/nÞI, we get Ric = λg, that is, ðM, g, u, λÞ is
trivial.

Conversely, if ðM, g, u, λÞ is a trivial Ricci soliton with
local flow of u a geodesic flow, then it follows that S is a con-
stant and equation (5) takes the form

∇Xu = ψX andψu = 0: ð52Þ

Then finding the divergence of ψu using above equation,
gives the equality

ψk k2 = λ uk k2: ð53Þ

Remark 3.

(1) It is clear that an odd-dimensional unit sphere
ðS2n+1, g, u, λÞ is a trivial Ricci soliton, where λ = 2n,
the potential field u = −JN , J being the complex
structure on Cn+1 and N is the unit normal to the
hypersurface S2n+1. The associated tensor ψ is given
by ψX = ðJXÞT , the tangential component of JX. It
follows that kψk2 = 2n = λkuk2 holds. Naturally, u
being the Killing vector field, its flow consists of
isometries of S2n+1, and therefore, it is a geodesic flow.

(2) Next, we give an example of a nontrivial Ricci soliton
with the flow of potential field u not a geodesic field.
Consider the open subset

M = x ∈ Rn : xk k >
ffiffiffi
2

pn o
, n > 3, ð54Þ

of the Euclidean space ðRn, gÞ, where g is the Euclid-
ean metric. Consider the vector field u ∈XðMÞ
defined by

u =Ψ − x2
∂
∂x1

+ x1
∂
∂x2

, ð55Þ

where

Ψ = x1
∂
∂x1

+⋯+xn ∂
∂xn

ð56Þ

is the position vector field and x1,⋯, xn are the
Euclidean coordinates on M. It follows that

£ug = 2g: ð57Þ

Hence, we have

Ric + 1
2 £ug = g, ð58Þ

that is, ðM, g, u, λÞ, λ = 1 is a nontrivial Ricci soliton with
associated tensor field ψ, given by

ψX = −X x2
� 	 ∂

∂x1
+ X x1

� 	 ∂
∂x2

: ð59Þ

The flow fφtg of u is given by

φt x1,⋯, xn
� 	

= et
�
x1 cos t + x2 sin t, x2 cos t

− x1 sin t, x3,⋯, xn
	
,

ð60Þ

which is not a geodesic flow. Moreover, we have kψk2 = 2 and
kuk2 = kΨk2 + ðx1Þ2 + ðx2Þ2, that is, kψk2 < λkuk2 holds.

Next, we consider Ricci solitons ðM, g, u, λÞ, with poten-
tial field u of constant length. Note that if M is compact and
kuk is a constant, then ðM, g, u, λÞ is trivial, the argument
goes as follows: in this case, u = ∇h for a smooth function h,
and as M is compact, there is point p ∈M (the critical point
of h), where up = 0. As kuk = c, a constant, that will give u =
0, that is, ðM, g, u, λÞ is trivial.

We get the following characterization of noncompact
trivial Ricci solitons with potential field u having constant
length.

Theorem 4. Let ðM, g, u, λÞ be an n-dimensional connected
noncompact Ricci soliton with a constant length of potential
field. Then, ðM, g, u, λÞ is trivial if and only if the associated
tensor ψ satisfies the inequality

ψk k2 ≥ λ uk k2: ð61Þ

Proof. Suppose ðM, g, u, λÞ is an n-dimensional Ricci soliton
with kuk a constant and

ψk k2 ≥ λ uk k2: ð62Þ

As kuk2 is a constant, using equation (5), we conclude

ψu = λu −Qu: ð63Þ

Now, div u = nλ − S and using equations (5) and (8), we
get

div Qu = λS − Qk k2 + 1
2 u Sð Þ,

div ψu = − ψk k2 + Ric u, uð Þ − 1
2 u Sð Þ:

ð64Þ
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Taking divergence in equation (63), and using the above
equations, we conclude

− ψk k2 + Ric u, uð Þ = nλ2 − 2λS + Qk k2: ð65Þ

Also, the inner product with u in equation (63) gives
Ricðu, uÞ = λkuk2, and consequently, the above equation
becomes

Qk k2 − 1
n
S2

� �
+ 1
n

S − nλð Þ2 + ψk k2 − λ uk k2� 	
= 0: ð66Þ

Using the Schwarz inequality and the inequality (62), in
the above equation, we conclude that

Qk k2 = 1
n
S2,

S = nλ,
ψk k2 = λ uk k2,

ð67Þ

which, as in the proof of Theorem 2, implies that ðM, g, u, λÞ
is trivial.

Converse follows on the similar lines as in Theorem 2.

We construct an example of a nontrivial Ricci soliton
with a nonconstant length of potential. Let M be the unit
open ball

M = x ∈ Cn : xk k < 1f g ð68Þ

in the Euclidean space ðCn, J , gÞ, where J is the complex
structure and g is the Euclidean metric. Consider the smooth
vector field u ∈XðMÞ defined by

u =Ψ + JΨ, ð69Þ

where

Ψ = x1
∂
∂x1

+⋯+x2n ∂
∂x2n

ð70Þ

is the position vector field. Then, it follows that

£ug = 2g, ð71Þ

that is,

Ric + 1
2 £ug = g: ð72Þ

Hence, ðM, g, u, λÞ is a nontrivial Ricci soliton with λ = 1
and associated tensor ψ = J . We get kψk2 = 2n and kuk2 = 2
kΨk2 < 2, that is, λkuk2 < kψk2.
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