
Research Article
The Rational Spectral Method Combined with the Laplace
Transform for Solving the Robin Time-Fractional Equation

Lufeng Yang 1,2

1School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
2School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China

Correspondence should be addressed to Lufeng Yang; ylf-sd@163.com

Received 22 September 2019; Accepted 25 November 2019; Published 9 January 2020

Academic Editor: Maria L. Gandarias

Copyright © 2020 Lufeng Yang. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the rational spectral method combined with the Laplace transform is proposed for solving Robin time-fractional
partial differential equations. First, a time-fractional partial differential equation is transformed into an ordinary differential
equation with frequency domain components by the Laplace transform. Then, the spatial derivatives are discretized by the
rational spectral method, the linear equation with the parameter s is solved, and the approximation Uðx, sÞ is obtained. The
approximate solution at any given time, which is the numerical inverse Laplace transform, is obtained by the modified Talbot
algorithm. Numerical experiments are carried out to demonstrate the high accuracy and efficiency of our method.

1. Introduction

Because the fractional-order calculus operator has nonlocal-
ity, it is suitable for describing the material involving memory
and heredity in real life, and many practical problems can be
described by fractional-order differential equations [1, 2].
Several studies have been conducted on the construction of
approximate solutions for various fractional partial differen-
tial equations. Developing analytical and numerical methods
for solving fractional PDEs is a very important task [3]. To
solve such problems, we need to introduce special functions
to express the exact solutions of fractional differential equa-
tions, which can be very difficult. Therefore, attempts have
been made to propose numerical methods that approximate
the solutions of such equations [4–9].

The purpose of this article is to investigate a rational
spectral method combined with the Laplace transform, to
find approximate solutions for certain classes of Robin
time-fractional PDEs with parameters that have derivatives
in the sense of Caputo fractional derivatives as follows:

C
0D

α
t u = p xð Þ ∂

2u
∂x2

+ q xð Þ ∂u
∂x

+ f x, tð Þ, 0 < x < L, 0 < t ≤ T ,

ð1Þ

subject to the following initial and Robin boundary
conditions:

u x, 0ð Þ = ϕ xð Þ,
u 0, tð Þ + a∂xu 0, tð Þ = v1 tð Þ, u L, tð Þ + b∂xu L, tð Þ = v2 tð Þ,

(
ð2Þ

where 0 < α ≤ 1, a, b ∈ R − f0g, and f , p, q are continuous
real-valued functions. This method results in an accurate
solution that is continuous in the temporal domain and is
computationally efficient. The use of the Laplace transform
circumvents the need for time marching in the temporal
domain, which is computationally expensive.

The rest of this article is organized as follows: In Section
2, we introduce some necessary notation and preliminary
lemmas. In Section 3, we describe the method of implement-
ing the proposed method. Numerical results are discussed in
Section 4, and some conclusions are drawn in Section 5.

2. Preliminaries

In this section, we provide some definitions and basic prop-
erties of fractional calculus [10] and the Laplace Transform
that are required for the subsequent development.
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2.1. Review of Fractional Calculus

Definition 1. The Riemann-Liouville derivative of fractional
order α of a function f ðtÞ is defined as follows:

R
0D

α
t f tð Þ = 1

Γ n − αð Þ
dn

dtn

ðt
0

f τð Þ
t − τð Þα−n+1 dτ, ð3Þ

where n − 1 < α ≤ n.

Definition 2. The Caputo derivative of fractional order α is
defined as follows:

C
0D

α
t f tð Þ = 1

Γ n − αð Þ
ðt
0

f nð Þ τð Þ
t − τα−n+1ð Þ dτ, ð4Þ

where n − 1 < α ≤ n.

For these two derivatives, we have the following properties:

Lemma 3. If f ðtÞ ∈ Cn½0,∞Þ and n − 1 < α ≤ n, then

C
0 D

α
t f tð Þ= R

0D
α
t f tð Þ − 〠

n−1

k=0

tk

k!
f kð Þ 0ð Þ: ð5Þ

Clearly, from Lemma 3, it follows that if f ð0Þ = 0, the
Riemann-Liouville and Caputo fractional derivatives are
equivalent for 0 < α < 1.

Like integer-order differentiation, the Caputo fractional
differential has the property of linearity as follows:

C
0D

α
t k1 ⋅ f1 tð Þ + k2 ⋅ f2 tð Þð Þ = k1 ⋅

C
0D

α
t f1 tð Þ + k2 ⋅

C
0D

α
t f2 tð Þ,

ð6Þ

where k1, k2 are constants.

2.2. Laplace Transform

Definition 4. Suppose that f ðtÞ is a real- or complex-valued
function of the variable t > 0 and s is a real or complex
parameter. We define the Laplace transform of f as follows:

F sð Þ = L f tð Þ½ � =
ð∞
0
e−st f tð Þdt: ð7Þ

For the fractional derivative, the Laplace transform has the
following properties:

Lemma 5. If uðtÞ ∈ Cn½0,∞Þ and n − 1 < α ≤ n, then the
Laplace transform of the Caputo derivative is given by the
following:

L C
0 D

α
t u tð Þ� �

= sαU sð Þ − 〠
m−1

k=0
sα−k−1u kð Þ 0ð Þ, ð8Þ

where UðsÞ = L½uðtÞ�.

Lemma 6. [11] If uðtÞ ∈ Cn½0,∞Þ and n − 1 < α ≤ n, then the
Laplace transform of the Riemann-Liouville derivative given
by the following:

L R
0D

α
t u tð Þ� �

= sαU sð Þ − 〠
m−1

k=0
sk R

0D
α−k−1
t u tð Þ

h i
, ð9Þ

where UðsÞ = L½uðtÞ�.

3. The Coupling Scheme

Applying of the Laplace transform to models (1) and (2), we
can obtain the following:

sαU x, sð Þ − ϕ xð Þ = p xð ÞUxx x, sð Þ + q xð ÞUx x, sð Þ + F x, sð Þ,
U 0, sð Þ + aUx 0, sð Þ = V1 sð Þ,
U L, sð Þ + bUx L, sð Þ =V2 sð Þ,

8>><>>:
ð10Þ

where Fðx, sÞ = L½ f ðx, tÞ�, V1ðsÞ = L½v1ðtÞ�, V2ðsÞ = L½v2ðtÞ�.
3.1. Rational Spectral Method. To solve Robin boundary
value problems of ordinary differential equation (10), the
rational spectral method is chosen to obtain a highly accurate
numerical solution in the transformed domain.

The rational function pNðxÞ in a barycentric form which
interpolates the function uðxÞ atN + 1 distinct points fxkgNk=0
can be expressed as follows [12]:

u xð Þ ≈ pN xð Þ = ∑N
k=0 ωk/ x − xkð Þð Þu xkð Þ
∑N

k=0ωk/ x − xkð Þ
, ð11Þ

where fωkgNk=0 are nonzero numbers called barycentric
weights. In particular, for Chebyshev-Gauss-Lobatto points
xk = −cos ðkπ/NÞ, the barycentric weights are chosen as
follows [13]:

ω0 =
1
2 ,

ωk = −1ð Þk, k = 1, 2,⋯,N − 1,

ωN = −1ð ÞN
2 :

ð12Þ

The derivatives of pN can serve to determine the nth order

differentiation matrix fDðnÞ
jk gN

j,k=0 associated with pN repre-

sented by (10) at the point xj:

p nð Þ
N xj
� �

= 〠
N

k=0

dn

dxn
ωk/ x − xkð Þð Þu xkð Þ
∑N

l=0ωl/ x − xlð Þ

 !
x=xj

= 〠
N

k=0
D nð Þ

jk u xkð Þ, j = 0, 1,⋯,N:

ð13Þ
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The advantage of the barycentric representation is the
simplicity of the formula for the entries of first- and
second-order differentiation matrices [14]

D 1ð Þ
jk =

ωk

ωj xj − xk
� � , j ≠ k,

−〠
i≠k

D 1ð Þ
ji , j = k,

8>>><>>>:

D 2ð Þ
jk =

2D 1ð Þ
jk D 1ð Þ

jj −
1

xj − xk

 !
, j ≠ k,

−〠
i≠k

D 2ð Þ
ji , j = k:

8>>>><>>>>:

ð14Þ

By introducing the transform x = ðL/2Þðy + 1Þ, x ∈ ½0, L�,
and y ∈ ½−1, 1� and defining ÛðyÞ =UðxÞ =UððL/2Þðy + 1ÞÞ,
then U ′ðxÞ = ð2/LÞU∧′ðyÞ and U″ðxÞ = ð4/L2ÞU∧″ðyÞ, and
we can rewrite (10) as follows:

sαÛi sð Þ − bϕ i = p̂i
4
L2

〠
N

j=0
D 2ð Þ

ij Û j sð Þ + q̂i
2
L
〠
N

j=0
D 1ð Þ
i j Û j sð Þ + F̂i sð Þ,

Û −1ð Þ + 2a
L
〠
N

j=0
D 1ð Þ
0j Û j sð Þ = V1 sð Þ,

Û 1ð Þ + 2b
L
〠
N

j=0
D 1ð Þ
N j Û j sð Þ = V2 sð Þ:

8>>>>>>>>>>><>>>>>>>>>>>:
ð15Þ

Equation (15) is a linear system of equations depen-
dent on the transformed parameter s. When the parameter
s is defined as the contour of integration, the numerical
inversion of the Laplace transform can be used to solve
system (15) to obtain the approximate solution of each
point on the contour of integration in the complex
domain.

3.2. Numerical Inversion of the Laplace Transform

Definition 7. The inversion of the Laplace transform of FðsÞ is
defined as follows:

f tð Þ = L−1 F sð Þ½ � = 1
2πi

ð
Γ

est F sð Þds: ð16Þ

The numerical inversion of the Laplace transform is
performed by approximating the Bromwich integral. Using
a conformal mapping, the contour of integration may be
deformed to obtain an integral that may be approximated
by standard quadrature techniques.

Here, we consider the modified Talbot contour in the
form [15]

Γ : s θð Þ = σ + λθ cot αθð Þ + γiθ,−π ≤ θ ≤ π, ð17Þ

where σ, λ, γ, and α are constants to be specified by the user.
Under these conformal maps, the Bromwich integral
becomes as follows:

u x, tð Þ = 1
2πi

ð
Γ

estU x, sð Þds = 1
2πi

ðπ
−π
es θð ÞtU x, s θð Þð Þs′ θð Þdθ,

ð18Þ

where s′ðθÞ = λðcot ðαθÞ − αθ csc2ðαθÞÞ + γi, which can be
approximated by the 2M-panel midpoint rule as follows:

u tð Þ ≈ uM x, tð Þ = 1
2Mi

〠
M−1

n=−M
es θnð Þts′ θnð ÞU x, s θnð Þð Þ, ð19Þ

where θn = ð2n + 1Þπ/2M.
If contour (18) is symmetric with respect to the real

axis, then half of the transform evaluations can be saved.
That is, one needs to consider only quadrature nodes in
the upper (or lower) half-plane. We can obtain the
following:

uM x, tð Þ = Im 1
M

〠
M−1

n=0
esntsn′U x, snð Þ

 !
: ð20Þ

The following modified Talbot contour [16]

Γ : s θð Þ = M
t

−0:2407 + 0:2378θ cot 0:7409θð Þ + 0:1349iθð Þ
ð21Þ

is used in this paper; it has a convergence rate of Oðe−2:716MÞ.

4. Numerical Experiments

To demonstrate the accuracy and efficiency of the rational
spectral method combined with the Laplace transform, we
use this novel method to solve certain classes of Robin
time-fractional PDEs with respect to the Caputo fractional
derivative in this section.

In our computations, all experiments are performed
using MATLAB (version R2014a) on a personal computer
with a 2.5Hz central processing unit (Intel Core i5-2450M),
4.00GB of memory, and Windows 7 operating system.

Table 1: Maximum pointwise errors for the new method and the
RKA [17].

x t
α = 0:25 α = 0:5

This paper RKA This paper RKA

0.5
0.5 1.0456e-07 1.8464e-05 1.7119e-07 9.2059e-06

1.0 3.9790e-06 8.5399e-06 7.7470e-06 1.7199e-05

1.0
0.5 1.7239e-07 1.9596e-05 2.8224e-07 4.1319e-05

1.0 6.5603e-06 2.1198e-05 1.2773e-06 9.6374e-06

3Advances in Mathematical Physics



Table 2: Numerical and exact solutions of Equation (22) and absolute errors when M = 12 and N = 16.

x t
α = 0:25 α = 0:5

Numerical Exact Error Numerical Exact Error

0.5

0.2 3.5282e-04 3.5282e-04 8.52e-10 2.3594e-04 2.3595e-04 1.11e-09

0.4 1.3426e-02 1.3426e-02 3.24e-08 1.0678e-02 1.0678e-02 5.02e-08

0.6 1.1283e-01 1.1283e-01 2.72e-07 9.9306e-02 9.9307e-02 4.67e-07

0.8 5.1094e-01 5.1094e-01 1.23e-06 4.8321e-01 4.8322e-01 2.27e-06
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Figure 1: Log-linear plots of the maximum absolute error against M with different N .
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Figure 2: The maximum absolute error with different M and N = 16.
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Example 1. Consider the following linear fractional
advection-diffusion PDE on a finite domain Ω = ½0, 1� ⊗ ½0,
1�, where α ∈ ð0, 1�:

C
0D

α
t u =

∂2u
∂x2

−
∂u
∂x

+ Γ α + 6ð Þ
120 ext5, ð22Þ

subject to the following initial and Robin boundary
conditions:

u x, 0ð Þ = 0,
u 0, tð Þ − ∂xu 0, tð Þ = 0,
u 1, tð Þ − ∂xu 1, tð Þ = 0:

8>><>>: ð23Þ

Here, the exact solution of this problem is uðx, tÞ = extα+5.
The rational spectral method combined with the Laplace
transform and the RKA (reproducing kernel algorithm) in
[17] is used to solve this problem for various values of ðx, tÞ
∈Ω when α ∈ f0:25, 0:5g. The errors between the numerical
solutions and the exact solutions are listed in Table 1. And a
comparison of the obtained exact and numerical solutions by
the rational spectral method combined with the Laplace
transform is tabulated in Table 2.

Compared with the existing RKA with p = q = 25 as a
two-dimensional partition of the domain Ω, the accuracy of
the new method with M = 12 and N = 16 has been signifi-
cantly improved for the case with different α. Figure 1 shows
the variation in the maximum absolute error between the
numerical solutions and the exact solution against M for

Table 3: Maximum pointwise errors for the new method and for the box-type difference scheme [18].

α = 0:2 α = 0:5 α = 0:8
This paper Box-type This paper Box-type This paper Box-type

1.8238e-08 1.3948e-04 4.3960e-08 7.2848e-04 1.0382e-07 1.2356e-03

Table 4: Numerical and exact solutions of Equation (24) and absolute errors when M = 12 and N = 16.

t x
α = 0:2 α = 0:8

Numerical Exact Error Numerical Exact Error

0.5

x3 1.1009 1.1009 6.7798e-10 1.0641 1.0641 2.8309e-09

x6 0.8494 0.8494 5.2259e-10 0.8211 0.8211 2.1837e-09

x9 0.0000 0.0000 1.5615e-13 0.0000 0.0000 3.7472e-13

x12 -0.8494 -0.8494 5.2280e-10 -0.8211 -0.8211 2.1833e-09

x15 -1.1009 -1.1009 6.7764e-10 -1.0641 -1.0641 2.8297e-09

4 6 8 10 12 14 16 18 20 22 24
M

N = 8
N = 12
N = 16

10−12

10−10

10−8

10−6

10−4

10−2

100

102
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u N
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|| ∞

)

Figure 3: Log-linear plots of the maximum absolute error against M with different N .
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various values of N = 8, 12, and 16 and α = 0:5. It can be seen
that the maximum error decays exponentially with the
increase in M and remains stable when M reaches approxi-
mately 15. The maximum absolute errors for a fixed value
of N = 16 and α = 0:5 and for various values of M = 8, 12,
and 16 are shown in Figure 2.

Example 2. Consider the following linear fractional Navier-
Stokes equation on a finite domain Ω = ½0, 1� ⊗ ½0, 1�, when
α ∈ ð0, 1�:

C
0D

α
t u = x2 + 1

� � ∂2u
∂x2

+ 2x ∂u
∂x

+ g x, tð Þ, ð24Þ

subject to the following initial and Robin boundary
conditions:

u x, 0ð Þ = cos πxð Þ,
u 0, tð Þ + ∂xu 0, tð Þ = tα+3 + 1

� �
,

u 1, tð Þ − ∂xu 1, tð Þ = − tα+3 + 1
� �

,

8>><>>: ð25Þ

where

g x, tð Þ = cos πxð ÞΓ 4 + αð Þ
6 t3 + π tα+3 + 1

� �
2x sin πxð Þð

+ π cos πxð Þ x2 + 1
� �Þ:

ð26Þ

Here, the exact solution of this problem is uðx, tÞ =
cos ðπxÞðtα+3 + 1Þ.

We compare the performance of the new method against
that of the box-type difference scheme in [18] to compute the

linear fractional Navier-Stokes equation. Table 3 lists the
results of the rational spectral method combined with the
Laplace transform using N = 16 and M = 12 and of the box-
type difference scheme with τ = 1/32 and h = 1/3000 for the
cases with α ∈ f0:2, 0:5, 0:8g. A comparison of the obtained
exact and numerical solutions by the rational spectral
method combined with the Laplace transform is tabulated
in Table 4 for the cases with α ∈ f0:2, 0:8g, where xj stand
for the jth ChebyshevGauss-Lobatto point in [0,1].

Figures 3 and 4 show the variation of the maximum abso-
lute error between the numerical solutions and the exact
solution against M for various values of N = 8, 12, and 16
and α = 0:2. From the above calculation results, we can reach
a conclusion similar to that of Example 1.

5. Conclusion

In this paper, the rational spectral method combined with
the Laplace transform has been proposed to solve various
certain classes of Robin time-fractional PDEs with parame-
ters that have derivatives in the sense of Caputo fractional
derivatives. Numerical experiments show that our method
is very accurate and reliable in time-fractional problems;
moreover, the solution is valid at any point in time on
the prescribed temporal domain. Compared with a tradi-
tional time stepping method (FDM), the new method
avoids the restrictions of the time step by the Courant
condition. It is particularly suitable for the numerical simu-
lation of long-time evolution problems.

Here, we restricted our approach to solve one-
dimensional time-fractional problems. Actually, the theoret-
ical and numerical frameworks presented in this paper are
essential for extension to more complicated problems. In

0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

t

Lo
g 

(||
u N

−u
|| ∞

)

M = 8
M = 12
M = 16

Figure 4: The maximum absolute error with different M and N = 16.
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the future work, we expect to expand our method to solve
multidimensional problems and nonlinear problems.
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