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Under investigation is the discrete modified Korteweg-de Vries (mKdV) equation, which is an integrable discretization of the
continuous mKdV equation that can describe some physical phenomena such as dynamics of anharmonic lattices, solitary
waves in dusty plasmas, and fluctuations in nonlinear optics. Through constructing the discrete generalized ðm,N −mÞ-fold
Darboux transformation for this discrete system, the various discrete soliton solutions such as the usual soliton, rational
soliton, and their mixed soliton solutions are derived. The elastic interaction phenomena and physical characteristics are
discussed and illustrated graphically. The limit states of diverse soliton solutions are analyzed via the asymptotic analysis
technique. Numerical simulations are used to display the dynamical behaviors of some soliton solutions. The results given in
this paper might be helpful for better understanding the physical phenomena in plasma and nonlinear optics.

1. Introduction

Nonlinear partial differential equations (NPDEs) such as
Burgers equation, KdV equation, mKdV equation, and non-
linear Schrödinger (NLS) equation can describe many
important physical phenomena in nonlinear optics, acoustic
in the nonharmonized lattice, deep water waves, plasma
environments, and so on (see [1–5] and the references
therein). The explicit exact solutions, especially soliton solu-
tions, of the NPDEs play a vital role in many practical appli-
cations [6]. The soliton structures are formed when an exact
balance between nonlinearity and dispersion effects in
NPDEs takes place, and the KdV-type equation can usually
describe the evolution of the unmodulated soliton in the
small amplitude [6]. Another type of envelope soliton (dark
or bright soliton and rogue wave) is formed when wave
group dispersion is in complete balance with the nonlinear-
ity of the medium, and this type of envelope soliton is a
localized modulated wave packet whose dynamics are gov-
erned by the family of the NLS equation [6]. The Gardner
equation is also called combined KdV-mKdV equation
which is widely applied in various branches of physics [7].
As is well known, the KdV equation possesses bright soliton

structures; while the mKdV equation can admit bright soli-
tons and shock wave solution, compared with the KdV and
mKdV equations, the Gardner equation admits solitons of
the hyperbolic functions and kink solutions [7]. The soliton
collision is an interesting and important nonlinear phenom-
enon in the nonlinear medium, nonlinear dynamics of soli-
ton collisions, and soliton phase shifts in the KdV, and
mKdV equations are taken for discussion [6, 8, 9]. However,
to the authors’ knowledge, for the continuous KdV-type
equation, this soliton collision phenomenon and phase shift
analysis have been discussed more, but for the discrete KdV-
type equation, the relevant research for soliton collision and
phase shift is poor, so it is a meaningful research topic to
extend this collision phenomenon to discrete nonlinear
lattice equations.

Recently, discrete integrable nonlinear lattice equations,
as spatially discrete analogues of NPDEs, have drawn wide-
spread attention due to their appearance in a variety of fields
such as the propagation of optical pulses in nonlinear optics,
Langmuir wave in plasma physics, nonlinear lattice dynam-
ics, population dynamics, anharmonic lattice dynamics,
Bose-Einstein condensates, and propagation of electrical
signals in circuits [10–14]. Searching for explicit exact
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solutions, especially soliton solutions, is used for depicting
and explaining such nonlinear phenomena described by
the discrete nonlinear lattice models. Methods of construct-
ing the soliton solutions of the discrete integrable models
have been proposed and developed such as the discrete
inverse scattering method [13], the discrete Hirota bilinear
formalism method [14, 15], and the discrete Darboux trans-
formation (DT) method [16–25]. Among them, the discrete
DT based on corresponding Lax representation is a useful
technique to solve the discrete nonlinear models and its
main idea is to keep the corresponding Lax pair of these dis-
crete equations unchanged. Recently, a discrete generalized
ðm,N −mÞ-fold DT method has been proposed by one of
the present authors of this paper [24, 25]. Compared with
the common discrete DT which can only give the usual sol-
iton (US) solutions, the discrete generalized ðm,N −mÞ-fold
DT [24, 25] is a generalization of the common discrete DT
and the main advantage of this method is that it can give
not only the US solution but also the rational solutions
(e.g., rouge wave solutions and rational soliton (RS) solu-
tions) and mixed interaction solutions of US and rational
solution [24, 25]. For the US solutions of discrete nonlinear
models, there have been a lot of literature studies [16–23]
but the study of rational solutions and mixed interaction
solutions of US and rational solutions is still not sufficient
and systematic. As far as we know, the asymptotic behav-
iors of RS solutions and mixed interaction soliton solutions
of US and RS by using asymptotic analysis have not been
studied yet.

Therefore, in this paper, via the discrete generalized ðm,
N −mÞ-fold DT and asymptotic analysis techniques, we are
going to focus on the following discrete mKdV equation [26]:

qn,t = 1 + q2n
� �

qn+2 − 2qn+1 + 2qn−1 − qn−2½
+ q2n+1 qn+2 + qnð Þ − q2n−1 qn + qn−2ð Þ�, ð1Þ

where qn = qðn, tÞ stand for the real function of the discrete
variable n and time variable t, and qn,t = dqn/dt. Equation
(1), which possesses more nonlinear terms, is different from
the discrete mKdV equation in [13, 23, 27–30]. Moreover in
[26], Suris has given an Ablowitz-Ladik hierarchy including
equation (1), whose Lax pair admits

Eφn = Lnφn, Ln =
λ qn

−qn
1
λ

0
@

1
A,

φn,t =Mnφn,Mn =
M11 M12

M21 M22

 !
,

ð2Þ

with

M11 = λ4 + qnqn−1 − 2ð Þλ2 + q2n + qn−2qn
� �

q2n−1

+ q2nqn+1 − 2qn + qn+1
� �

qn−1 + qn−2qn −
qn−1qn
λ2

,

M12 = qnλ
3 + qn+1 + q2nqn−1 + q2nqn+1 − 2qn
� �

λ

+ qn−2 + qnq
2
n−1 + qn−2q

2
n−1 − 2qn−1

λ
+ qn−1

λ3
,

M21 = −qn−1λ
3 + −qn−2 − qnq

2
n−1 − qn−2q

2
n−1 + 2qn−1

� �
λ

+ −qn+1 − q2nqn−1 − q2nqn+1 + 2qn
λ

−
qn
λ3

,

M22 = −qnqn−1λ
2 + q2n + qnqn−2
� �

q2n−1 + q2nqn+1 − 2qn + qn+1
� �

qn−1

+ qnqn−2 +
qn−1qn − 2

λ2
+ 1
λ4

,

ð3Þ

where φn = ðϕn, ψnÞT is a basic solution of equation (2) (the
superscript T means the vector transpose), λ is the spectral
parameter, and the shift symbol E is defined by Ef n = f n+1. It
is easy to find that the zero curvature equation

Ln,t = EMnð ÞLn − LnMn ð4Þ

can be calculated by compatible condition φn,t = φt,n, which is
subject to equation (1). If we assume that qn = εqðnεÞ in equa-
tion (1) and to rescale time t↦ t/2ε2, then, to send ε⟶ 0,
thus, equation (1) can be reduced to the following continuous
mKdV equation [26, 31, 32]:

qt = qxxx ∓ 6qxq2: ð5Þ

The above process is called the continuous limit from
equation (5) to equation (1). The mKdV equation (5) is a
model to describe acoustic in the nonharmonized lattice and
also can be used to study solitary waves in dusty plasmas
and fluctuations in nonlinear optics etc. [3–5, 33–39], so it is
important to study equation (5) in the physical background
and practical significance. In [13, 40, 41], the authors point
out that the discrete models can preserve some properties of
its corresponding continuous equations, so equation (1), taken
as the corresponding discrete equation of equation (5), may
also have potential applications in describing some physical
phenomena such as dust solitary waves in dust plasma and
fluctuations in nonlinear optics, which suggests that the study
of equation (1) also might have important theoretical signifi-
cance and practical application value. Based on what we know,
the US solutions, RS solutions, their mixed interaction soliton
solutions via the discrete generalized ðm,N −mÞ-fold DT, and
associated soliton limit states via the asymptotic analysis tech-
nique for equation (1) have not been investigated before.

Therefore, in this paper, we will further investigate equa-
tion (1) via the discrete generalized ðm,N −mÞ-fold DT and
we will study the asymptotic behaviors at infinity of diverse
soliton solutions via the asymptotic analysis technique, via
the discrete generalized ðm,N −mÞ-fold DT. The rest of this
paper is organized as follows. In Section 2, based on the
known Lax representation (2), the discrete generalized ðm,
N −mÞ-fold DT of equation (1) will be constructed and
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formulated. In Section 3, the different special cases of the
discrete generalized ðm,N −mÞ-fold DT method are used
to derive various soliton solutions such as US solutions, RS
solutions, and their mixed interaction soliton solutions and
we will analyze the limit states of such obtained soliton solu-
tions via asymptotic analysis. Meanwhile, we also will use
numerical simulations to watch the solutions’ dynamical
behaviors so that we can comprehend or even predict the
physical properties of solutions more clearly. Some conclu-
sions are given in the final section.

2. Discrete Generalized ðm,N −mÞ-Fold DT

In this section, we will build up the discrete generalized ðm
,N −mÞ-fold DT of equation (1). With Lax pair (2), we con-
sider a gauge transformation in the following form:

~φn = Tn λð Þφn, ð6Þ

which requires that ~φn = ðeϕn, ~ψnÞ
T
must be subject to ~φn =

~Ln~φn, ~φn,t = ~Mn~φn according to the knowledge of DT, where
~Ln, ~Mn have the same forms as Ln,Mn except by replacing its
qn with ~qn. Moreover, ~Ln, ~Mn and Ln,Mn also admit the fol-
lowing identities:

~Ln = Tn+1LnT
−1
n , ~Mn = Tn,t + TnMnð ÞT−1

n : ð7Þ

To this aim, we construct a special N-order Darboux
matrix Tn defined by

Tn λð Þ =
λ2N + 〠

N−1

j=0
a 2jð Þ
n λ2j 〠

N−1

j=0
b 2j+1ð Þ
n λ2j+1

− 〠
N−1

j=0
b 2j+1ð Þ
n λ2N−2j−1 1 + 〠

N−1

j=0
a 2jð Þ
n λ2N−2 j

0
BBBBB@

1
CCCCCA,

ð8Þ

in which N is a positive integer and að2jÞn and bð2j+1Þn are some
unknown functions of n, t and can be determined by

T 0ð Þ
n λið Þφ 0ð Þ

n λið Þ = 0,

T 0ð Þ
n λið Þφ 1ð Þ

n λið Þ + T 1ð Þ
n λið Þφ 0ð Þ

n λið Þ = 0,
⋯⋯,

〠
mi

j=0
T jð Þ
n λið Þφ mi−jð Þ

n λið Þ = 0,

ð9Þ

where N = n +∑n
j=0mi ði = 1, 2,⋯, nÞ and TðjÞ

n is given by

Tnðλi + εÞ =∑N
k=0T

ðkÞ
n ðλiÞεk, while φðjÞ

n is derived by φnðλi +
εÞ = φð0Þ

n ðλiÞ + φð1Þ
n ðλiÞε + φð2Þ

n ðλiÞε2+,⋯ , in which φðkÞ
n ðλiÞ

= ð1/k!Þð∂k/∂λkÞφnðλÞjλ=λi = ðð1/k!Þð∂k/∂λkÞϕnðλÞjλ=λi , ð1/
k!Þð∂k/∂λkÞψnðλÞjλ=λiÞ

T . By explaining the above research
processes and conditions, we conclude the following gener-
alized ðm,N −mÞ-fold DT theorem of equation (1):

Theorem 1. Let φnðλiÞ = ðϕnðλiÞ, ψnðλiÞÞT be m column vec-
tor solutions of Lax pair (2) with the special parameter λi
ði = 1, 2,⋯,mÞ and the initial seed solution q0 of equation
(1), and then, the generalized ðm,N −mÞ-fold DT from the
old solution qn to the new one ~qn is given by

~qn = qna
0ð Þ
n+1 + b 1ð Þ

n+1, ð10Þ

with

a 0ð Þ
n+1 =

Δa 0ð Þ
n+1

Δn
, b 1ð Þ

n = Δb 1ð Þ
n+1

Δn
, ΔN = det Δ

1ð Þ
m1+1, Δ

2ð Þ
m2+1,⋯, Δ mð Þ

mn+1

h iT� �
,

ð11Þ

where ΔðiÞ
mi+1 = ðΔðiÞ

j,s Þ2ðmi+1Þ×2N
, in which ΔðiÞ

j,s ð1 ≤ j ≤ 2mi + 2,
1 ≤ s ≤ 2NÞ be given by following formulae:

Δ
ið Þ
j,s =

〠
j−1

k=0
Ck
2N−2sλ

2N−2s−k
i ϕ

j−1−kð Þ
i , for 1 ≤ j ≤mi + 1, 1 ≤ s ≤N ,

〠
j−1

k=0
Ck
4N−2s+1λ

4N−2s−k+1
i ψ

j−1−kð Þ,
i for 1 ≤ j ≤mi + 1,N + 1 ≤ s ≤ 2N ,

〠
j− N+1ð Þ

k=0
Ck
2sλ

2s−kð Þ
i ψ

j−1−N−kð Þ,
i formi + 2 ≤ j ≤ 2 mi + 1ð Þ, 1 ≤ s ≤N ,

− 〠
j− N+1ð Þ

k=0
Ck
2s−2N−1λ

2s−2N−k−1ð Þ
i ϕ

j−N−1−kð Þ
i , formi + 2 ≤ j ≤ 2 mi + 1ð Þ,N + 1 ≤ s ≤ 2N ,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð12Þ
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and ΔBðN−1Þ are given by the determinant Δε
N replacing its ðN

+ 1Þth columns by the column vector ðgð1Þ,⋯,gðnÞÞT with gðiÞ

= ðgijÞ2ðmi+1Þ×1
in which

gi
j =

−〠
j−1

k=0
Ck
2Nλ

2N−k
i ϕ

j−1−kð Þ
i , for 1 ≤ j ≤mi + 1,

− 〠
j−N−1

k=0
Ck
2Nλ

2N−kð Þ
i ψ

j−N−1−kð Þ
i , for mi + 2 ≤ j ≤ 2 mi + 1ð Þ:

8>>>>><
>>>>>:

ð13Þ

Remark 2. It is worth pointing out that m in the notation
“ðm,N −mÞ-fold”means that the number of the distinct spec-
tral parameters and N −mmeans the sum of the orders of the
Taylor series of the vector eigenfunction φn. If n =N and mi

= 0 ð1 ≤ i ≤NÞ, the generalized ðm,N −mÞ-fold DT is con-
verted to the ðN , 0Þ-fold DT which includes the usual N-fold
DT, from which we can develop the usual N-soliton solutions
starting from zero seed or nonzero constant seed solution of
equation (1). If m = 1, the above generalized ðm,N −mÞ-fold
DT reduces to the generalized ð1,N − 1Þ-fold one, from which
we can derive higher-order RS solutions of equation (1). If m
= 2, the above generalized ðm,N −mÞ-fold DT reduces to
the generalized ð2,N − 2Þ-fold one, from which we can derive
mixed soliton solutions of the US and RS to equation (1). It is
not hard to find that the N-fold DT, generalized ð1,N − 1Þ
-fold DT, and generalized ð2,N − 2Þ-fold DT are three special
cases of the generalized ðm,N −mÞ-fold DT. Besides, if 2 <
m <N, one can use the generalized ðm,N −mÞ-fold DT to
give complex mixed interaction soliton solutions. For more
details of Theorem 1, the reader can refer to [23–25] and the
references therein, so we omit the detailed proof here.
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Figure 1: One-soliton solution ~qn in (15) or (17). (a1) Bell-shaped one-soliton solution with the parameter λ1 = 1/2. (b1) Anti-bell-shaped
one-soliton solution with the parameter λ1 = 2. (a2, b2) The propagation processes for ~qn at t = −3 (dash-dot line), t = 0 (long dashed line),
and t = 3 (solid line).
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3. Applications of the Generalized ðm,N −mÞ-
Fold DT

In the previous section, we have constructed the discrete
generalized ðm,N −mÞ-fold DT of equation (1). So, in this
section, we will use the generalized ðm,N −mÞ-fold DT to
get various soliton solutions, like US solutions, RS solutions,
and their mixed soliton solutions and then analyze the elas-
tic interaction and limit state of such solitons by using
asymptotic analysis.

3.1. Usual N-Soliton Solutions and Their Asymptotic
Analysis.We can get usual soliton solutions from the vanish-
ing background by using N-fold DT, namely, in the condi-
tion of m =N in discrete generalized ðm,N −mÞ-fold DT.
Substituting the initial solutions qn = 0 into Lax pair (2)
can give its basic solution:

φn =
ϕn

ψn

 !
= λne λ4−2λ2ð Þt

λ−ne
1
λ4
− 2
λ2ð Þt

 !
: ð14Þ

From equation (10), we can derive the exact soliton solu-
tions of equation (1). In order to comprehend them more
intuitively, the evolution structures of soliton solutions are
shown in Figures 1–4 when N=1,2,3.

(I) when N=1, let λ = λ1; based on the N-fold DT, we
can get the onefold exact solution as

~qn = b 1ð Þ
n+1, ð15Þ

where bð1Þn = Δbð1Þn /Δn, in which

Δn =
ϕn λ1ð Þ λ1ψn λ1ð Þ

λ21ψn λ1ð Þ −λ1ϕn λ1ð Þ

�����
�����,

Δb 1ð Þ
n =

ϕn λ1ð Þ −λ21ϕn λ1ð Þ
λ21ψn λ1ð Þ −ψn λ1ð Þ

�����
�����,

ð16Þ
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Figure 2: One-soliton solution (17) with the same parameter as in Figure 1. (a) Exact solution. (b) Time evolution without a small noise. (c)
Time evolution with a 2% noise. (d) Time evolution with a 5% noise.
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while bð1Þn+1 is obtained from bð1Þn by replacing n with n + 1.
After bringing (14) into equation (15), we will get the

usual one-soliton solution. In order to explore its physical
characteristics, this solution can be rewritten as

~qn =
1 − λ41
2λ21

sech ξ1 + ln λ1ð Þ, ð17Þ

where ξ1 = ð2 ln λ1Þn + ðλ41 − ð1/λ41Þ + ð2/λ21Þ − 2λ21Þt and λ1
> 0 is a spectrum parameter. In this special one-solution
form, we can easily explore its important physical quantities
such as amplitude, width, velocity, wave number, primary
phase, and energy, which are listed in Table 1. Here, the
energy of qn is defined by Eqn

=
Ð∞
−∞q2ndn.

From the above analysis, we can find that qn is the bell-
shaped bright one-soliton when 0 < λ1 < 1 and anti-bell-
shaped one-soliton when λ1 > 1. When λ1 = 1/2 and λ1 = 2,

Figure 1 presents the evolution structures of bell-shaped
one-soliton and anti-bell-shaped one-soliton, respectively.

Next, adopting the finite difference method [42], we can
simulate the soliton solutions numerically, which can show
the dynamical behaviors and propagation stability of one-
soliton solutions more clearly. Figure 2 shows the exact
one-soliton solution (17) of equation (1), time evolutions
using exact one-soliton solution (17), and the results of add-
ing 2% and 5% perturbations to the exact one-soliton solu-
tion. As can be seen, Figures 2(a) and 2(b) show that the
representation of time evolutions for solution (17) without
noise almost keeps in line with the exact solution (17) in
time t ∈ ð−0:5,0:5Þ, which shows the accuracy of our numer-
ical simulation. Compared with the unperturbed solution,
Figures 2(c) and 2(d) exhibit that if we add 2% and 5% per-
turbations to the initial exact solution, the wave propagation
performs a relatively small oscillation in time t ∈ ð−0:5,0:5Þ,
that is to say that the numerical results in Figure 2 show that
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Figure 3: Two-soliton solution ~qn in (18) or (20). (a1) Two anti-bell-shaped solitons with parameters λ1 = 2, λ2 = 1/3. (b1) Two bell-shaped
solitons with parameters λ1 = 5/2, λ2 = 1/2. (c1) Bell-shaped soliton and anti-bell-shaped soliton with parameters λ1 = 2 and λ2 = 3. (a2–c2)
The propagation processes for ~qn at different time corresponding to (a1–c1), respectively.
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Figure 4: Three-soliton solution ~qn in (23). (a1) Bell-shaped three solitons with parameters λ1 = 5/2, λ2 = 1/2, λ2 = 1/3. (b1) Anti-bell-
shaped three solitons with parameters λ1 = 2, λ2 = 2/5, λ2 = 3. (c1) Two bell-shaped solitons and one anti-bell-shaped soliton with
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Table 1: Physical characteristics of the one-soliton solution.

Soliton Amplitude Width Velocity Wave number Primary phase Energy

qn 1 − λ41
� �

/2λ21 1/2 ln λ1ð Þ λ81 − 2λ61 + 2λ21 − 1
� �

/2λ41 ln λ1 2 ln λ1 ln λ1 λ41 − 1
� �2/4λ41 ∣ ln λ1 ∣

Table 2: Physical characteristics of the two-soliton solution.

Solitons Amplitudes Widths Velocities Wave number Primary phases Energies

q−1 λ41 − 1
� �

/2λ21 1/2 ln λ1 λ81 − 2λ61 + 2λ21 − 1
� �

/2λ41 ln λ1 2 ln λ1 ln λ1 λ21 − λ22
� �� �

/ λ21λ
2
2 − 1

� ��� �� λ41 − 1
� �2/4λ41 ln λ1j j

q−2 1 − λ42
� �

/2λ22 1/2 ln λ2 λ82 − 2λ62 + 2λ22 − 1
� �

/2λ42 ln λ2 2 ln λ2 ln λ2 λ21λ
2
2 − 1

� �� �
/ λ21 − λ22
� ��� �� λ42 − 1

� �2/4λ42 ln λ2j j
q+1 λ41 − 1

� �
/2λ21 1/2 ln λ1 λ81 − 2λ61 + 2λ21 − 1

� �
/2λ41 ln λ1 2 ln λ1 ln λ2 λ21λ

2
2 − 1

� �� �
/ λ21 − λ22
� ��� �� λ41 − 1

� �2/4λ41 ln λ1j j
q+2 1 − λ42

� �
/2λ22 1/2 ln λ2 λ82 − 2λ62 + 2λ22 − 1

� �
/2λ42 ln λ2 2 ln λ2 ln λ1 λ21 − λ22

� �� �
/ λ21λ

2
2 − 1

� ��� �� λ42 − 1
� �2/4λ42 ln λ2j j

9Advances in Mathematical Physics



the evolution of the exact one-soliton solution is robust
against a small noise.

(II) when N=2, let λ = λi ði = 1, 2Þ; we can get the two-
fold exact solution from the transformation (10) as

~qn = b 1ð Þ
n+1, ð18Þ

where bð1Þn = Δbð1Þn /Δn, in which

Δn =

λ21ϕn λ1ð Þ ϕn λ1ð Þ λ31ψn λ1ð Þ λ1ψn λ1ð Þ
λ22ϕn λ2ð Þ ϕn λ2ð Þ λ32ψn λ2ð Þ λ2ψn λ2ð Þ
λ21ψn λ1ð Þ λ41ψn λ1ð Þ −λ1ϕn λ1ð Þ −λ31ϕn λ1ð Þ
λ22ψn λ2ð Þ λ42ψn λ2ð Þ −λ2ϕn λ2ð Þ −λ32ϕn λ2ð Þ

�����������

�����������
,

Δb 1ð Þ
n =

λ21ϕn λ1ð Þ ϕn λ1ð Þ λ31ψn λ1ð Þ −λ41ϕn λ1ð Þ
λ22ϕn λ2ð Þ ϕn λ2ð Þ λ32ψn λ2ð Þ −λ42ϕn λ2ð Þ
λ21ψn λ1ð Þ λ41ψn λ1ð Þ −λ1ϕn λ1ð Þ −ψn λ1ð Þ
λ22ψn λ2ð Þ λ42ψn λ2ð Þ −λ2ϕn λ2ð Þ −ψn λ2ð Þ

�����������

�����������
,

ð19Þ

while bð1Þn+1 is obtained from bð1Þn by replacing n with n + 1.
For the sake of analysis, solution (18) can be rewritten as

where ηi = ð2 ln λiÞn + ðλ4i − ð1/λ4i Þ + ð2/λ2i Þ − 2λ2i Þt, ði = 1,
2Þ, in which λi > 0 is a spectrum parameter.

According to the ideas of [18, 43–45], we perform
asymptotic analysis of solution (20), from which we can eas-
ily work out the limit state expressions of solution ~qn before
and after the interaction. And the detailed physical quanti-
ties are listed in Table 2.

Before the interactions ðt⟶ −∞Þ,

~qn ⟶ q−1 =
λ41 − 1
2λ21

sech η1 + ln λ1 + ln λ21 − λ22
λ21λ

2
2 − 1

�����
�����

 !
,  η1 ~ 0, η2⟶+∞ð Þ,

~qn ⟶ q−2 = −
λ42 − 1
2λ22

sech η2 + ln λ2 − ln λ21 − λ22
λ21λ

2
2 − 1

�����
�����

 !
,  η2 ~ 0, η1⟶+∞ð Þ,

ð21Þ

where q−1 , q
−
2 are the asymptotic state expressions of ~qn

before the interaction.
After the interactions ðt⟶ +∞Þ,

~qn ⟶ q+1 =
λ41 − 1
2λ21

sech η1 + ln λ1 − ln λ21 − λ22
λ21λ

2
2 − 1

�����
�����

 !
,  η1 ~ 0, η2⟶+∞ð Þ,

~qn ⟶ q+2 = −
λ42 − 1
2λ22

sech η2 + ln λ2 + ln λ21 − λ22
λ21λ

2
2 − 1

�����
�����

 !
,  η2 ~ 0, η1⟶+∞ð Þ,

ð22Þ

where q+1 , q
+
2 are the asymptotic state expressions of ~qn after

the interaction.
From the above analysis, we can see that the characteris-

tics and embodiment of the two-soliton solution in the phys-
ical field can be summarized as follows: (i) the amplitude,
velocities, and energy of qn remain unchanged before and
after the interactions; (ii) after the soliton interactions, the
phase shifts of two solitons are −2 ln jðλ21 − λ22Þ/ðλ21λ22 − 1Þj
and 2 ln jðλ21 − λ22Þ/ðλ21λ22 − 1Þj; and (iii) the soliton width,
wave number, and wave shapes are related to two spectrum
parameters λiði = 1, 2Þ, and the relationship between shapes
and parameters are shown in Table 3.

The corresponding evolution plots of solution (18) or
(20) can be also elaborated clearly. When the parameters
λ1 = 2 and λ2 = 1/3, we can see that the overtaking elastic
interactions between two unidirectional anti-bell-shaped
solitons on the vanishing background in Figures 3(a1) and
3(a2); when we choose the parameters λ1 = 5/2 and λ2 = 1/
2, the overtaking elastic interactions between two unidirec-
tional bell-shaped solitons on the vanishing background
are shown in Figures 3(b1) and 3(b2); in Figures 3(c1) and
3(c2), we can also see the overtaking elastic interactions
between unidirectional bell-shaped soliton and anti-bell-
shaped soliton on the vanishing background when λ1 = 2
and λ2 = 3.

Comparing Figures 3(c1) and 3(c2) with Figures 3(a1)–
3(b2), we find that the soliton amplitude in Figures 3(c1)

Table 3: The relationship between parameters and shapes of two
solitons.

Soliton Parameters Shapes

qn

λ1 > 1, 0 < λ2 < 1 and λ1 > 1/λ2 BS-BS

0 < λ1 < 1, λ2 > 1 and λ2 > 1/λ1 BS-BS

λ1, λ2 > 1 or 0 < λ1, λ2 < 1 BS-ABS

0 < λ1 < 1, λ2 > 1 and λ2 < 1/λ1 ABS-ABS

λ1 > 1, 0 < λ2 < 1 and λ1 < 1/λ2 ABS-ABS

BS stands for bell-shaped soliton, while ABS stands for anti-bell-shaped
soliton.

~qn =
λ21λ

2
2 − 1

� �
λ21 − λ22
� �

λ21 1 − λ42
� �

cos h η1 + ln λ1ð Þ − λ22 1 − λ41
� �

cos h η2 + ln λ2ð Þ� �
λ21λ

2
2 λ21 − λ22
� �2 cos h η1 + ln λ1 + η2 + ln λ2ð Þ + λ21λ

2
2 − 1

� �2 cos h η1 + ln λ1 − η2 − ln λ2ð Þ − 1 − λ41
� �

1 − λ42
� �h i , ð20Þ
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and 3(c2) is obviously higher than that in Figures 3(a1)–
3(b2). In Figures 3(c1) and 3(c2), we can clearly see that
the soliton interaction occurs at t = 0 and the high ampli-
tude occurs near the origin; if we choose n = t = 0, then,
from solution (20), we have ~qn = ð1 − ð1/λ1λ2ÞÞðλ1 + λ2Þ.
As λ1λ2 approaches 1, the value of ~qn is small. However,
when both λ1 and λ2 are greater than 1, the value of ~qn is
larger. Therefore, we can infer that the choice of parameters
λ1 and λ2 determines the amplitude, shape, and energy of
the soliton.

(III) when N=3, let λ = λi ði = 1, 2, 3Þ; we can get the
threefold exact solution from the transformation
(10):

~qn = b 1ð Þ
n+1, ð23Þ

where bð1Þn = Δbð1Þn /Δn, in which

while bð1Þn+1 is obtained from bð1Þn by replacing n with n + 1.
Because of the complexity of the results, we do not

discuss the asymptotic analysis of three solitons anymore.
But we will explore the shapes of three-soliton solutions
in different parameters. When the parameters λ1 = 5/2,
λ2 = 1/2, and λ3 = 1/2, we can see the overtaking elastic
interactions among unidirectional bell-shaped three soli-
tons on the vanishing background in Figures 4(a1) and
4(a2); when we choose the parameters λ1 = 2, λ2 = 2/5,
and λ3 = 3, the overtaking elastic interactions among uni-
directional anti-bell-shaped three solitons on the vanishing
background d are shown in Figures 4(b1) and 4(b2); when
we choose the parameters λ1 = 5/2, λ2 = 2, and λ3 = 1/3,
the overtaking elastic interactions among unidirectional
two bell-shaped solitons and one anti-bell-shaped soliton
on the vanishing background are shown in Figures 4(c1)
and 4(c2); when we choose the parameters λ1 = 2, λ2 = 2/
5, and λ3 = 1/3, the overtaking elastic interactions among
two unidirectional anti-bell-shaped solitons and one bell-
shaped soliton on the vanishing background are shown
in Figures 4(d1) and 4(d2). Using the same analysis
method as the high amplitude of the two-soliton solution,
we can also analyze the reason for the high amplitude of

the soliton in Figures 4(d1) and 4(d2) by choosing three
spectral parameters λ1, λ2, and λ3, so we will not do a
detailed analysis here.

3.2. Discrete RS Solutions and Their Asymptotic Analysis. In
this section, we will use the discrete generalized ð1,N − 1Þ
-fold DT to construct RS solutions with the initial nonzero
constant seed solution qn = c. Because of the change of the
initial background, we must rewrite solution (14) as

φn =
ϕn

ψn

 !
=

C1τ
n
+e

ρ+t + C2τ
n
−e

ρ−t

C1
τ+ − λ

a
τ+e

ρ1t + C2
τ− − λ

a
τ−e

ρ−t

0
B@

1
CA,

ð25Þ

where

τ± =
1
2λ λ2 + 1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4 − 4c2 + 2ð Þλ2 + 1

q� �
,

Δn =

λ41ϕn λ1ð Þ λ21ϕn λ1ð Þ ϕn λ1ð Þ λ51ψn λ1ð Þ λ31ψn λ1ð Þ λ1ψn λ1ð Þ
λ42ϕn λ2ð Þ λ22ϕn λ2ð Þ ϕn λ2ð Þ λ52ψn λ2ð Þ λ32ψn λ2ð Þ λ2ψn λ2ð Þ
λ43ϕn λ3ð Þ λ23ϕn λ3ð Þ ϕn λ3ð Þ λ53ψn λ3ð Þ λ33ψn λ3ð Þ λ3ψn λ3ð Þ
λ21ψn λ1ð Þ λ41ψn λ1ð Þ λ61ψn λ1ð Þ −λ1ϕn λ1ð Þ −λ31ϕn λ1ð Þ −λ51ϕn λ1ð Þ
λ22ψn λ2ð Þ λ42ψn λ2ð Þ λ62ψn λ2ð Þ −λ2ϕn λ2ð Þ −λ32ϕn λ2ð Þ −λ52ϕn λ2ð Þ
λ23ψn λ3ð Þ λ43ψn λ3ð Þ λ63ψn λ3ð Þ −λ3ϕn λ3ð Þ −λ33ϕn λ3ð Þ −λ53ϕn λ3ð Þ

�����������������

�����������������

,

Δb 1ð Þ
n =

λ41ϕn λ1ð Þ λ21ϕn λ1ð Þ ϕn λ1ð Þ λ51ψn λ1ð Þ λ31ψn λ1ð Þ −λ61ϕn λ1ð Þ
λ42ϕn λ2ð Þ λ22ϕn λ2ð Þ ϕn λ2ð Þ λ52ψn λ2ð Þ λ32ψn λ2ð Þ −λ62ϕn λ2ð Þ
λ43ϕn λ3ð Þ λ23ϕn λ3ð Þ ϕn λ3ð Þ λ53ψn λ3ð Þ λ33ψn λ3ð Þ −λ63ϕn λ3ð Þ
λ21ψn λ1ð Þ λ41ψn λ1ð Þ λ61ψn λ1ð Þ −λ1ϕn λ1ð Þ −λ31ϕn λ1ð Þ −ψn λ1ð Þ
λ22ψn λ2ð Þ λ42ψn λ2ð Þ λ62ψn λ2ð Þ −λ2ϕn λ2ð Þ −λ32ϕn λ2ð Þ −ψn λ2ð Þ
λ23ψn λ3ð Þ λ43ψn λ3ð Þ λ63ψn λ3ð Þ −λ3ϕn λ3ð Þ −λ33ϕn λ3ð Þ −ψn λ3ð Þ

�����������������

�����������������

,

ð24Þ
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ρ± =
1
2λ4

λ8 − 2λ6 + 6c4λ4 − 2λ2 + 1

 �h

± λ6 + 2c2 − 1
� �

λ4 + 2c2 − 1
� �

λ2 + 1

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ4 − 4c2 + 2ð Þλ2 + 1
q �

,

ð26Þ

and C1, C2 are arbitrary constants. Next, we fix the spectral
parameter λ = λ1 + ε2 with λ1 = c +

ffiffiffiffiffiffiffiffiffiffiffi
c2 + 1

p
. In particular, if

we take C1 = −C2 = 1/ε, c = 3/4 and expand the vector func-
tion φ in equation (25) as two Taylor series at ε = 0, let ξ =
64n + 675t, and then, we can obtain

φn ε2
� �

= 〠
∞

k=0
φ kð Þ
n ε2k = φ 0ð Þ

n + φ 1ð Þ
n ε2 + φ 2ð Þ

n ε4 + φ 3ð Þ
n ε6+,⋯ ,

ð27Þ

with

φ 0ð Þ
n =

ϕ 0ð Þ
n

ψ 0ð Þ
n

 !
= 5

4

� �n ffiffiffiffiffi
15

p

160 e 1211/256ð Þt ξ

320 − 3ξ

 !
,

φ 1ð Þ
n =

ϕ 1ð Þ
n

ψ 1ð Þ
n

0
@

1
A = 5

4

� �n ffiffiffiffiffi
15

p

19660800 e
1211/256ð Þt

�
3ξ3 + 1497600tξ + 7168ξ + 125337600t

3ξ3 − 960ξ2 + 1497600tξ + 109568ξ − 34406400t − 6225920
3

0
B@

1
CA,

φ 2ð Þ
n =

ϕ 2ð Þ
n

ψ 2ð Þ
n

0
@

1
A, ð28Þ

in which

ϕ 2ð Þ
n = 5

4

� �n 3
ffiffiffiffiffi
15

p
e 1211/256ð Þt

72477573120000 27ξ5 + 44928000t + 645120ð Þξ3
h

+ 11280384000ξ2t + 11214028800000t2 + 1751777280000t
�

− 7504658432Þξ + 1877055897600000t2 + 99792558489600t
i
,

ψ 2ð Þ
n = 5

4

� �n 3
ffiffiffiffiffi
15

p
e 1211/256ð Þt

72477573120000 81ξ5 − 43200ξ4 + 134784000tð
h

+ 11151360Þξ3 − 9289728000t + 973209600ð Þξ2
+ 20426784768600000t2 + 33642086400000t2

�
+ 2636513280000t − 38242615296Þξ + 64958024908800t

+ 1410963865600
i
,

ð29Þ

and the rest φðjÞ
n ðj ≥ 3Þ are omitted here.

(I) when N=1, we can give the first-order RS solution of
equation (1) by using the discrete generalized ð1, 0Þ
-fold DT as

~qn = ca 0ð Þ
n+1 + b 1ð Þ

n+1, ð30Þ

where að0Þn = Δað0Þn /Δn and bð1Þn = Δbð1Þn /Δn, in which

Δn =
ϕ 0ð Þ
n λ1ð Þ λ1ψ

0ð Þ
n λ1ð Þ

λ21ψ
0ð Þ
n λ1ð Þ −λ1ϕ

0ð Þ
n λ1ð Þ

�����
�����,

Δb 1ð Þ
n =

ϕ 0ð Þ
n λ1ð Þ −λ21ϕ

0ð Þ
n λ1ð Þ

λ21ψn λ1ð Þ −ψ 0ð Þ
n λ1ð Þ

�����
�����,

Δa 0ð Þ
n =

−λ21ϕ
0ð Þ
n λ1ð Þ λ1ψ

0ð Þ
n λ1ð Þ

−ψ 0ð Þ
n λ1ð Þ −λ1ϕ

0ð Þ
n λ1ð Þ

�����
�����,

ð31Þ

while að0Þn+1, b
ð1Þ
n+1 are obtained from að0Þn , bð1Þn by replacing n

with n + 1. So just for analysis purposes, let’s rewrite this
solution as

~qn =
3
4 −

4:6875
3/2ð Þ n + 675/64ð Þtð Þ − 1/2ð Þ½ �2 + 1

, ð32Þ

from which we can conclude or infer the following physical
characteristics of RS solution (32):

(i) ~qn ⟶ 3/4 as n⟶ ±∞ or t⟶ ±∞, which clearly
shows that the RS solution turned out to be what it
was at the beginning of initial background 3/4. It is
also worth to notice that ~qn reaches the minimum of
−63/16 when the RS solution along the line 3ξ −
64 = 0, namely, the amplitude of this solution is 63
/16

(ii) The widths, velocities, wave number, and primary
phases of this solution are 2/3, 675/64, 3/2 and −1/
2, respectively

(iii) After removing the background 3/4 of solution (32),
similar to the analysis of one-soliton solution (17),
we can also calculate the energy 1875/256π of solu-
tion (32)

What is more, we plot its structure figures as shown in
Figures 5(a1) and 5(a2).

(II) when N=2, we can give the second-order RS solu-
tion of equation (1) via the generalized ð1, 1Þ-fold
DT as

~qn = ca 0ð Þ
n+1 + b 1ð Þ

n+1, ð33Þ
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Figure 5: RS solution ~qn with the parameter λ1 = 2. (a1, a2) First-order RS; (b1, b2) second-order RS; (c1, c2) third-order RS. (a2–c2) The
propagation processes for ~qn at different time corresponding to (a1–c1), respectively.
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where að0Þn = Δað0Þn /Δn and bð1Þn = Δbð1Þn /Δn, in which

For the sake of discussion, the simplification form of
solution (33) is listed as follows:

~qn =
3
4 + F

G
, ð35Þ

where

F = −34789235097600n4 + −1467670855680000t − 185542587187200ð Þn3
+ −23219011584000000t2 − 5870683422720000t − 429067232870400
� �

n2

+ −163258675200000000t3 − 61917364224000000t2
�

− 14595171287040000t − 432932703436800Þn − 430467210000000000t4

− 217678233600000000t3 − 106205478912000000t2

− 11958799564800000t − 77309411328000,

G = 5566277615616n6 + 352241005363200t + 44530220924928ð Þn5
+ 9287604633600000t2 + 2348273369088000t
�

+ 144723218006016Þn4 + 130606940160000000t3
�

+ 49533891379200000t2 + 5218385264640000t + 252337918574592
�
n3

+ 1033121304000000000t4 + 522427760640000000t3
�

+ 68521883074560000t2 + 4435627474944000t + 307382219440128
�
n2

+ 4358480501250000000t5 + 2754990144000000000t4
�

+ 383113691136000000t3 + 9356401704960000t2

+ 3822467206348800t + 263882790666240Þn + 7661391506103515625t6

+ 5811307335000000000t5 + 749969539200000000t4

− 98680799232000000t3 + 41469345792000000t2

+ 2783138807808000t + 109951162777600:

ð36Þ

In order to understand the physical properties of the
second-order RS solution of equation (1) better, we can still
perform the asymptotic analysis. For convenience, let ζ =
64n + 675t − 64ð1275/16Þ1/3t1/3; we can calculate the limits
of ~qn in (35), which only gives the following one limiting
state when t⟶ ±∞:

~qn ⟶ q± = 3
4 −

76800
3ζ − 64ð Þ2 + 16384

, t⟶±∞ð Þ: ð37Þ

From the above calculation, we can see that q±n is the
result of ~qn when t approaches infinity and it is worth notic-
ing that the result of positive infinity is the same as that of
negative infinity. Meanwhile, the asymptotic expression
(37) clearly shows that the dark RS solution q±n reaches the
minimum of −63/16 along the curve 3ζ − 64 = 0. The struc-
tures of second-order RS solution are shown in Figures 5(b1)
and 5(b2), from which we can see that they are consistent
with the above analysis results.

(III) when N=3, we can give the discrete third-order RS
solution of equation (1) via the generalized ð1, 2Þ
-fold DT as

~qn = ca 0ð Þ
n+1 + b 1ð Þ

n+1, ð38Þ

Δn =

λ21ϕ
0ð Þ
n ϕ 0ð Þ

n λ31ψ
0ð Þ
n λ1ψ

0ð Þ
n

λ21ψ
0ð Þ
n λ41ψ

0ð Þ
n −λ1ϕ

0ð Þ
n −λ31ϕ

0ð Þ
n

λ21ϕ
1ð Þ
n + 2λ1ϕ 0ð Þ

n ϕ 1ð Þ
n λ31ψ

1ð Þ
n + 3λ21ψ 0ð Þ

n λ1ψ
1ð Þ
n + ψ 0ð Þ

n

λ21ψ
1ð Þ
n + 2λ1ψ 0ð Þ

n λ41ψ
1ð Þ
n + 4λ31ψ 0ð Þ

n −λ1ϕ
1ð Þ
n − ϕ

0ð Þ
1 −λ31ϕ

1ð Þ
n − 3λ21ϕ 0ð Þ

n

������������

������������
,

Δa 0ð Þ
n =

λ21ϕ
0ð Þ
n ϕ 0ð Þ

n −λ41ϕ
0ð Þ
n λ1ψ

0ð Þ
n

λ21ψ
0ð Þ
n −ψ 0ð Þ

n −λ1ϕ
0ð Þ
n −λ31ϕ

0ð Þ
n

λ21ϕ
1ð Þ
n + 2λ1ϕ 0ð Þ

n −λ4ϕ 1ð Þ
n − 4λ3ϕ 0ð Þ

n λ31ψ
1ð Þ
n + 3λ21ψ 0ð Þ

n λ1ψ
1ð Þ
n + ψ 0ð Þ

n

λ21ψ
1ð Þ
n + 2λ1ψ 0ð Þ

n −ψ 1ð Þ
n −λ1ϕ

1ð Þ
n − ϕ

0ð Þ
1 −λ31ϕ

1ð Þ
n − 3λ21ϕ 0ð Þ

n

������������

������������
,

Δb 1ð Þ
n =

λ21ϕ
0ð Þ
n ϕ 0ð Þ

n λ31ψ
0ð Þ
n −λ41ϕ

0ð Þ
n

λ21ψ
0ð Þ
n λ41ψ

0ð Þ
n −λ1ϕ

0ð Þ
n −ψ 0ð Þ

n

λ21ϕ
1ð Þ
n + 2λ1ϕ 0ð Þ

n ϕ 1ð Þ
n λ31ψ

1ð Þ
n + 3λ21ψ 0ð Þ

n −λ4ϕ 1ð Þ
n − 4λ3ϕ 0ð Þ

n

λ21ψ
1ð Þ
n + 2λ1ψ 0ð Þ

n λ41ψ
1ð Þ
n + 4λ31ψ 0ð Þ

n −λ1ϕ
1ð Þ
n − ϕ

0ð Þ
1 −ψ 1ð Þ

n

������������

������������
:

ð34Þ
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where að0Þn = Δað0Þn /Δn and bð1Þn = Δbð1Þn /Δn, in which

Δn =

λ41ϕ
0ð Þ
n λ21ϕ

0ð Þ
n ϕ 0ð Þ

n λ51ψ
0ð Þ
n λ31ψ

0ð Þ
n λ1ψ

0ð Þ
n

λ21ψ
0ð Þ
n λ41ψ

0ð Þ
n λ61ψ

0ð Þ
n −λ1ϕ

0ð Þ
n −λ31ϕ

0ð Þ
n −λ51ϕ

0ð Þ
n

Δ 3,1ð Þ Δ 3,2ð Þ ϕ 1ð Þ
n Δ 3,4ð Þ Δ 3,5ð Þ Δ 3,6ð Þ

Δ 4,1ð Þ Δ 4,2ð Þ Δ 4,3ð Þ Δ 4,4ð Þ Δ 4,5ð Þ Δ 4,6ð Þ

Δ 5,1ð Þ Δ 5,2ð Þ ϕ 2ð Þ
n Δ 5,4ð Þ Δ 5,5ð Þ Δ 5,6ð Þ

Δ 6,1ð Þ Δ 6,2ð Þ Δ 6,3ð Þ Δ 6,4ð Þ Δ 6,5ð Þ Δ 6,6ð Þ

�����������������

�����������������

,

Δa 0ð Þ
n =

λ41ϕ
0ð Þ
n λ21ϕ

0ð Þ
n −λ61ϕ

0ð Þ
n λ51ψ

0ð Þ
n λ31ψ

0ð Þ
n λ1ψ

0ð Þ
n

λ21ψ
0ð Þ
n λ41ψ

0ð Þ
n −ψ 0ð Þ

n −λ1ϕ
0ð Þ
n −λ31ϕ

0ð Þ
n −λ51ϕ

0ð Þ
n

Δ 3,1ð Þ Δ 3,2ð Þ −λ61ϕ
1ð Þ
n − 6λ51ϕ 0ð Þ

n Δ 3,4ð Þ Δ 3,5ð Þ Δ 3,6ð Þ

Δ 4,1ð Þ Δ 4,2ð Þ −ψ 1ð Þ
n Δ 4,4ð Þ Δ 4,5ð Þ Δ 4,6ð Þ

Δ 5,1ð Þ Δ 5,2ð Þ −λ61ϕ
2ð Þ
n − 6λ51ϕ 1ð Þ

n − 15λ 4ð Þ
1 ϕ 0ð Þ

n Δ 5,4ð Þ Δ 5,5ð Þ Δ 5,6ð Þ

Δ 6,1ð Þ Δ 6,2ð Þ −ψ 2ð Þ
n Δ 6,4ð Þ Δ 6,5ð Þ Δ 6,6ð Þ

������������������

������������������

,

Δb 1ð Þ
n =

λ41ϕ
0ð Þ
n λ21ϕ

0ð Þ
n ϕ 0ð Þ

n λ51ψ
0ð Þ
n λ31ψ

0ð Þ
n −λ61ϕ

0ð Þ
n

λ21ψ
0ð Þ
n λ41ψ

0ð Þ
n λ61ψ

0ð Þ
n −λ1ϕ

0ð Þ
n −λ31ϕ

0ð Þ
n −ψ 0ð Þ

n

Δ 3,1ð Þ Δ 3,2ð Þ ϕ 1ð Þ
n Δ 3,4ð Þ Δ 3,5ð Þ −λ61ϕ

1ð Þ
n − 6λ51ϕ 0ð Þ

n

Δ 4,1ð Þ Δ 4,2ð Þ Δ 4,3ð Þ Δ 4,4ð Þ Δ 4,5ð Þ −ψ 1ð Þ
n

Δ 5,1ð Þ Δ 5,2ð Þ ϕ 2ð Þ
n Δ 5,4ð Þ Δ 5,5ð Þ −λ61ϕ

2ð Þ
n − 6λ51ϕ 1ð Þ

n − 15λ 4ð Þ
1 ϕ 0ð Þ

n

Δ 6,1ð Þ Δ 6,2ð Þ Δ 6,3ð Þ Δ 6,4ð Þ Δ 6,5ð Þ −ψ 2ð Þ
n

������������������

������������������

,

ð39Þ

with

Δ 3,1ð Þ = λ41ϕ
1ð Þ
n + 4λ31ϕ 0ð Þ

n ,

Δ 3,2ð Þ = λ21ϕ
1ð Þ
n + 2λ1ϕ 0ð Þ

n ,

Δ 3,4ð Þ = λ51ψ
1ð Þ
n + 5λ41ψ 0ð Þ

n ,

Δ 3,5ð Þ = λ31ψ
1ð Þ
n + 3λ21ψ 0ð Þ

n ,

Δ 3,6ð Þ = λ1ψ
1ð Þ
n + ψ 0ð Þ

n ,

Δ 4,1ð Þ = λ21ψ
1ð Þ
n + 2λ1ψ 0ð Þ

n ,

Δ 4,2ð Þ = λ41ψ
1ð Þ
n + 4λ31ψ 0ð Þ

n ,

Δ 4,3ð Þ = λ61ψ
1ð Þ
n + 6λ51ψ 0ð Þ

n ,

Δ 4,4ð Þ = −λ1ϕ
1ð Þ
n − ϕ

0ð Þ
1 ,

Δ 4,5ð Þ = −λ31ϕ
1ð Þ
n − 3λ21ϕ 0ð Þ

n ,

Δ 4,6ð Þ = −λ51ϕ
1ð Þ
n − 5λ41ϕ 0ð Þ

n ,

Δ 5,1ð Þ = λ41ϕ
2ð Þ
n + 4λ31ϕ 1ð Þ

n + 6λ21ϕ 0ð Þ
n ,

Δ 5,2ð Þ = λ21ϕ
2ð Þ
n + 2λ1ϕ 1ð Þ

n + ϕ 0ð Þ
n ,

Δ 5,4ð Þ = λ51ψ
2ð Þ
n + 5λ41ψ 1ð Þ

n + 10λ31ψ 0ð Þ
n ,

Δ 5,5ð Þ = λ31ψ
2ð Þ
n + 3λ21ψ 1ð Þ

n + 3λ1ψ 0ð Þ
n ,

Δ 5,6ð Þ = λ1ψ
2ð Þ
n + ψ 1ð Þ

n ,

Δ 6,1ð Þ = λ21ψ
2ð Þ
n + 2λ1ψ 1ð Þ

n + ψ 0ð Þ
n ,

Δ 6,2ð Þ = λ41ψ
2ð Þ
n + 4λ31ψ 1ð Þ

n + 6λ21ψ 0ð Þ
n ,

Δ 6,3ð Þ = λ61ψ
2ð Þ
n + 6λ51ψ 1ð Þ

n + 15λ41ψ 0ð Þ
n ,

Δ 6,4ð Þ = −λ1ϕ
2ð Þ
n − ϕ 1ð Þ

n ,

Δ 6,5ð Þ = −λ31ϕ
2ð Þ
n − 3λ21ϕ 1ð Þ

n − 3λ1ϕ 0ð Þ
n ,

Δ 6,6ð Þ = −λ51ϕ
2ð Þ
n − 5λ41ϕ 1ð Þ

n − 10λ31ϕ 0ð Þ
n : ð40Þ

The simplification form of solution (38) can be also cal-
culated by using symbolic computation. But it is so compli-
cated that therefore, we omit it here. Besides, the asymptotic
analysis can be still performed. Similar to the above analysis

process of second-order RS, let ζ1 = 64n + 675t − 64
ðð6375/32Þ + ðð3825 ffiffiffi

5
p Þ/32ÞÞ1/3t1/3, ζ2 = 64n + 675t − 64

ðð6375/32Þ + ðð3825 ffiffiffi
5

p Þ/32ÞÞ1/3t1/3, and b = ðð6375/32Þ +
ðð3825 ffiffiffi

5
p Þ/32ÞÞ1/3 − ðð6375/32Þ + ðð3825 ffiffiffi

5
p Þ/32ÞÞ1/3; then,

it turns out that solutions ~qn have two different asymptotic
states when ∣t ∣⟶∞:

(i) If ζ1 = 64n + 675t − 64
ðð6375/32Þ + ðð3825 ffiffiffi

5
p Þ/32ÞÞ1/3 t1/3 =Oð1Þ, from ζ2

= ζ1 − bt1/3, we can get ζ2 ⟶ ±∞ as t⟶ ∓∞;
then, calculating the limit of solution ~qn in (38) gives
the following asymptotic state expression in the form

~qn ⟶ q±1 =
3
4 −

76800
3ζ1 − 64ð Þ2 + 16384

,  bt
1
3⟶±∞


 �
:

ð41Þ

(ii) If ζ2 = 64n + 675t − 64ðð6375/32Þ + ðð3825 ffiffiffi
5

p Þ/32Þ
Þ1/3t1/3 =Oð1Þ, from ζ1 = ζ2 + bt1/3, we can get ζ1
⟶ ±∞ as t⟶ ±∞; then, calculating the limit of
solution ~qn in (38) gives the following asymptotic
state expression as

~qn ⟶ q±2 =
3
4 −

76800
3ζ2 − 64ð Þ2 + 16384

,  bt
1
3⟶±∞


 �
:

ð42Þ

From the above calculation, we can see that q±1 and q±2
are the two results of ~qn when t approaches infinity and 3
ζ1 − 64 = 0 and 3ζ2 − 64 = 0 are also the two center trajecto-
ries of solution ~qn. Meanwhile, the form of the third-order
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RS solution at infinity clearly shows that q±1 and q±2 reach the
minimum along curves 3ζ1 − 64 = 0 and 3ζ2 − 64 = 0, respec-
tively. The structure of the third-order RS solution is shown
in Figures 5(c1) and 5(c2), which is consistent with the result
of above analysis.

Remark 3. The point here is that when we perform asymp-
totic analysis to the usual two-soliton and three-soliton solu-
tions, the final two and three solitons keep their shape before
and after the collisions, and for asymptotic analysis to
second-order and third-order RS solutions, we find that
there is one first-order RS left at infinity for second-order
RS solutions and the other first-order RS disappears at infin-
ity, while there are two first-order RSs left at infinity for
third-order RS solutions and the third RS disappears. For
higher-order RS solutions, there is always a RS solution that
disappears at infinity, which is a little like rogue wave solu-
tions that are asymptotic to the background wave at infinity,
and we find that these new phenomena about RS are inter-

esting and quite different from those of the USs, which is
worthy of further investigation.

Similar to numerical simulation of the usual one-soliton
solution in the previous subsection, we can also add the per-
turbations to RS solutions in order to show its dynamical
behavior and propagation stability. Figure 6 shows first-
order RS solution (32) of equation (1), time evolutions of
using first-order RS solution (32), and time evolutions of
adding 0.01% and 0.05% perturbations to first-order RS
solution (32). As can be seen, Figures 6(a) and 6(b) show
that the representation of time evolutions for solution (32)
without noise is nearly close to first-order RS solution (32)
in time t ∈ ð−0:5,0:5Þ, which shows the accuracy of our
numerical scheme. However, as time goes on, even without
noise, there is a large fluctuation. Different from the usual
one-soliton solution, Figures 6(c) and 6(d) exhibit that the
evolutions of wave propagation perform the relatively large
oscillations with the increase of time t if we add 0.01% and
0.05% perturbations to the initial solutions. We find that
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Figure 6: One-order RS (32) with the same parameters as in Figure 5 (a) RS solutions; (b) time evolutions without small noise; (c) time
evolutions with 0.01% noise; (d) time evolutions with 0.05% noise.
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the first-order RS is more sensitive to a very small noise than
the usual one-soliton solution. So, we can conclude that the
evolution behavior of the first-order RS solution is unstable
even at a very small noise, that is to say that the RS solution
is weaker than the US against small noise. This phenomenon
also exists for higher-order RS solutions, which will not be
discussed here.

Finally, when N ≥ 4, we also discuss higher-order RS
solutions, which are very complicated, and we will not dis-
cuss them here. Some mathematical features of rational solu-
tion ~qn for equation (1) are summarized in Table 4. It is
worth noting that the first column in Table 4 means the
order number of RS solutions and the second column repre-
sents the background levels of RS solutions, while the third
and fourth columns exhibit the highest powers in the
numerator and denominator of the polynomials involved
in each RS solution, respectively.

3.3. Discrete Mixed Soliton Solutions and Their Asymptotic
Analysis. In the previous contents, we have used the discrete
N-fold DT with N spectral parameters to explore the US
solutions and then used discrete generalized ð1,N − 1Þ-fold
DT with only one spectral parameter to explore RS solu-
tions. In this section, we will use the discrete generalized ð2
,N − 2Þ-fold DT to construct mixed soliton solutions of
equation (1) with its initial nonzero solution qn = a. In the
following, we only discuss the case N = 2. Besides, we also
will use symbolic computation and asymptotic analysis to
discuss the interaction phenomena of US and RS. When N
=2, we fix the spectral parameters in equation (25) as λ1 =
λ1 + ε2 and λ2 = 3 with λ1 = c +

ffiffiffiffiffiffiffiffiffiffiffi
c2 + 1

p
. In particular, we

will get the same form of Taylor series (27) if we take c = 3
/4 and expand the vector function φn in equation (25).
Besides, when we choose C1 = C2 = 1 in equation (25), the
mixed interaction solution of the usual one-soliton and
first-order RS of equation (1) can be given as

~qn = ca 0ð Þ
n+1 + b 1ð Þ

n+1, ð43Þ

where að0Þn and bð1Þn can be determined by the following
system:

T 0ð Þ
n λ1ð Þφ 0ð Þ

n λ1ð Þ = 0,
Tn λ2ð Þφn λ2ð Þ = 0,

ð44Þ

with að0Þn = Δað0Þn /Δn and bð1Þn = Δbð1Þn /Δn, in which

Δn =

λ21ϕ
0ð Þ
n λ1ð Þ ϕ 0ð Þ

n λ1ð Þ λ31ψ
0ð Þ
n λ1ð Þ λ1ψ

0ð Þ
n λ1ð Þ

λ22ϕn λ2ð Þ ψn λ2ð Þ λ32ψn λ2ð Þ λ2ψn λ2ð Þ
λ21ψ

0ð Þ
n λ1ð Þ λ41ψ

0ð Þ
n λ1ð Þ −λ1ϕ

0ð Þ
n λ1ð Þ −λ31ϕ

0ð Þ
n λ1ð Þ

λ22ψn λ2ð Þ λ42ψn λ2ð Þ −λ2ϕn λ2ð Þ −λ32ϕn λ2ð Þ

�����������

�����������
,

Δa 0ð Þ
n =

λ21ϕ
0ð Þ
n λ1ð Þ −λ41ϕ

0ð Þ
n λ1ð Þ λ31ψ

0ð Þ
n λ1ð Þ λ1ψ

0ð Þ
n λ1ð Þ

λ22ϕn λ2ð Þ −λ42ϕn λ2ð Þ λ32ψn λ2ð Þ λ2ψn λ2ð Þ
λ21ψ

0ð Þ
n λ1ð Þ −ψ 0ð Þ

n λ1ð Þ −λ1ϕ
0ð Þ
n λ1ð Þ −λ31ϕ

0ð Þ
n λ1ð Þ

λ22ψn λ2ð Þ −ψn λ2ð Þ −λ2ϕn λ2ð Þ −λ32ϕn λ2ð Þ

�����������

�����������
,

Δb 1ð Þ
n =

λ21ϕ
0ð Þ
n λ1ð Þ ϕ 0ð Þ

n λ1ð Þ λ31ψ
0ð Þ
n λ1ð Þ −λ41ϕ

0ð Þ
n λ1ð Þ

λ22ϕn λ2ð Þ ψn λ2ð Þ λ32ψn λ2ð Þ −λ42ϕn λ2ð Þ
λ21ψ

0ð Þ
n λ1ð Þ λ41ψ

0ð Þ
n λ1ð Þ −λ1ϕ

0ð Þ
n λ1ð Þ −ψ 0ð Þ

n λ1ð Þ
λ22ψn λ2ð Þ λ42ψn λ2ð Þ −λ2ϕn λ2ð Þ −ψn λ2ð Þ

�����������

�����������
:

ð45Þ

With the aid of symbolic computation, solution (43) of
equation (1) can be exactly expressed as

~qn =
3
4 + F

G
, ð46Þ

where

F = −8601600 575
9 −

200
ffiffiffi
7

p

9

 !n ffiffiffi
7

p
+ 29

4

� �
e− 14825t ffiffi7pð Þ/648ð Þ

+ 8601600
ffiffiffi
7

p
−
29
4

� � 575
9 + 200

ffiffiffi
7

p

9

 !n

e 14825t ffiffi7pð Þ/648ð Þ

+ 135475200 · 25n n2 + 675
32 nt + 8

3 n +
455625
4096 t2 + 225

8 t + 361
126

� �
,

G = 4128768 575
9 −

200
ffiffiffi
7

p

9

 !n ffiffiffi
7

p
n2 + 675

ffiffiffi
7

p
nt

32 + 230
ffiffiffi
7

p
n

21

 

+ 455625
ffiffiffi
7

p
t2

4096 + 25875
ffiffiffi
7

p
t

224 + 140
ffiffiffi
7

p

9 + 29n2
4 + 19575nt

128

+ 82n
3 + 13213125t2

16384 + 9225t
32 + 2731

63

�
e− 14825t ffiffi7pð Þ/648ð Þ

− 4128768 575
9 + 200

ffiffiffi
7

p

9

 !n ffiffiffi
7

p
n2 + 675

ffiffiffi
7

p
nt

32 + 230
ffiffiffi
7

p
n

21

 

+ 455625
ffiffiffi
7

p
t2

4096 + 25875
ffiffiffi
7

p
t

224 + 140
ffiffiffi
7

p

9 −
29n2
4 −

19575nt
128

−
82n
3 −

13213125t2
16384 −

9225t
32 −

2731
63

�
e 14825t ffiffi7pð Þ/648ð Þ

+ 41803776 · 25n n2 + 675
32 nt + 8

3 n +
455625t2
4096 + 225t

8 −
116
63

� �
:

ð47Þ

Before that, we have analyzed the physical shapes and
properties of US and RS solutions by using asymptotic anal-
ysis. Next, we will also discuss the mixed soliton solution

Table 4: Main mathematical features of rational solutions ~qn of
order N .

N Background
Highest powers in the

numerator
Highest powers in the

denominator

1 3/4 2 2

2 3/4 6 6

3 3/4 12 12

… … … …

N 3/4 N N + 1ð Þ N N + 1ð Þ
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Table 5: Physical characteristics of mixed solution.

Solitons Amplitudes Widths Velocities Wave number Primary phases Energies

q±1 77/36 225/ 575 + 20
ffiffiffi
7

p
 �
74125

ffiffiffi
7

p
 �
/ 8280 + 288

ffiffiffi
7

p
 �
575 + 20

ffiffiffi
7

p
 �
/225 ln 29 − 4

ffiffiffi
7

p
 �
/27


 �
E2/E1

q−2 63/16 1/ 192
ffiffiffi
7

p
 �
675/64 192

ffiffiffi
7

p
768 + 256

ffiffiffi
7

p
1875π/256

q+2 63/16 1/ 192
ffiffiffi
7

p
 �
675/64 192

ffiffiffi
7

p
768 − 256

ffiffiffi
7

p
1875π/256

E2 = ð1786875 ffiffiffi
7

p
− 3045000Þ arctan 3

ffiffiffi
7

p
+ 2030000

ffiffiffi
7

p
− 8338750 and E1 = 324ð4 ffiffiffi

7
p

− 29Þ2 ln ð575 − 20
ffiffiffi
7

p Þ/1457.

25
20
15
10
5
0

0

–4

1.5

DRS

ADS

t

n

q
n

1 0.5 0 –0.5 –1 –1.5

(a)

–40

t = –1
t = 1
t = 1

–30 –20 –10 0

10

20

30

n

q
n

10 20 30 40

(b)

t

n

q
n

1.5
0.5

–0.5

DS

DRS

–8
–6

–4
–2
0

2
4

–8
–4
0

–1.5

(c)

n

q
n

–40 –30 –20 –10 0 10 20 30 40

–8

–7

–6

–5

–4

–3

–2

–1

t = –1
t = 1
t = 1

(d)

Figure 7: Mixed interaction between usual one-soliton and first-order RS of solution ~qn in (43) or (46). (a) Mixed interaction solution of one
ADS and first-order DRS with parameters λ1 = 2, λ2 = 3, C1 = −C2 = 1. (c) Mixed interaction solution of one DS and first-order DRS with
parameters λ1 = 2, λ2 = 3, C1 = C2 = 1. (b, d) The propagation processes for ~qn at t = −1 (solid line), t = 0 (longdash line), and t = 1
(dashdot line) corresponding to (a) and (c). The phrase DS stands for the usual dark soliton; the phrase ADS stands for the usual
antidark soliton; the phrase DRS stands for dark one-order RS.
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before and after the interaction via asymptotic analysis. Dif-
ferent from the previous discussion, we make appropriate
variable substitution and deformation for the mixed solution
in solution (43) or (46). For convenience, let ς1 = ln ðð575
+ 20

ffiffiffi
7

p Þ/225Þn + ðð14825t ffiffiffi
7

p Þ/648Þt and ς2 = 64n + 675t;
then, it turns out that solution ~qn has the following different
asymptotic state expression when ∣t ∣⟶∞:

(i) If ς1 =Oð1Þ, we can get ς2 ⟶ ±∞ as t⟶ ±∞;
then, calculating the limit of solution ~qn in (43) or
(46) gives the following asymptotic expressions in
the form:

(i) Before and after interactions ðt⟶ ±∞Þ

~qn ⟶ q±1 =
3
4 + 175

72 cos h ς1 + ln 29 − 4
ffiffiffi
7

p
 �
/27


 �h i
+ 54

,  ς1 ⟶ 0, ς2⟶±∞ð Þ:

ð48Þ

From which, we can see that the asymptotic expression
q±1 displays the US structure which reaches the maximum
77/36 along the line ς1 + ln ðð29 − 4

ffiffiffi
7

p Þ/27Þ = 0. More phys-
ical characteristics of the US structure are listed in Table 5.

(ii) If ς2 =Oð1Þ, we can get ς1 ⟶ ±∞ as t⟶ ±∞;
then, calculating the limit of solution ~qn in (43) or
(46) gives the following asymptotic expressions in
the form

(iii) Before the interaction ðt⟶ −∞Þ,

~qn ⟶ q−2 =
3
4 −

537600

63 ς2 + 4608
ffiffiffi
7

p
+ 10752


 �
/126


 �
 �2
+ 114688

ð49Þ

(iv) After the interaction ðt⟶ +∞Þ,

~qn ⟶ q+2 =
3
4 −

537600

63 ς2 − 4608
ffiffiffi
7

p
+ 10752


 �
/126


 �
 �2
+ 114688

:

ð50Þ

According to the above analysis, we find that mixed sol-
iton solution (46) possesses the following propagation char-
acteristics and interaction properties: (i) the amplitudes,
velocities, and energies of the mixed US-RS solution remain
unchanged before and after the interactions; (ii) after the
interactions of US and RS, the phase shift of US is zero,
whereas the phase shift of RS is −512

ffiffiffi
7

p
, that is to say that,

in the mixed soliton interaction, only RS has a phase shift
but US has no phase shift; (iii) the asymptotic expression
q±2 displays that the RS structure reaches the minimum 63/
16 along the two lines ς2 ∓ ðð4608 ffiffiffi

7
p

+ 10752Þ/126Þ = 0;

and (iv) the relevant physical quantities of mixed soliton
solution are listed in Table 5.

For solution (43) or (46), we can see that mixed soliton
solution ~qn has three center trajectories and US is along
one trajectory ς1 + ln ð27/ð29 + 4

ffiffiffi
7

p ÞÞ = 0, whereas RS is
along two trajectories ς2 ∓ ð4608 ffiffiffi

7
p

∓ 10752Þ/126 = 0. The
structures of mixed soliton solutions are shown in
Figure 7, which is consistent with our analysis above.

4. Conclusions

In this paper, we have researched the discrete mKdV equa-
tion (1), which may be used for understanding some physi-
cal phenomena such as dynamics of anharmonic lattices,
solitary waves in dusty plasmas, and fluctuations in nonlin-
ear optics. Various kinds of soliton solutions, like US, RS,
and their mixed interaction soliton solutions, have been ana-
lytically investigated and discussed, which might help to
understand the abovementioned physics phenomena. We
sum up the main achievement of this paper as follows:
firstly, we have established the generalized ðm,N −mÞ-fold
DT of equation (1) for the first time. Meanwhile, various
kinds of soliton solutions such as US, RS, and their mixed
interaction soliton solutions have been obtained via the gen-
eralized ðm,N −mÞ-fold DT by choosing different values of
the number m of spectral parameter λ. More importantly,
asymptotic analysis has been used to analyze the limit state
expressions of US, RS, and their mixed soliton solutions
for equation (1). And the propagation and interaction struc-
tures between/among different types of soliton solutions
have been discussed graphically. Besides, numerical simula-
tions have been used to explore the dynamical behaviors of
the US and RS solutions. Finally, some important physical
quantities of US solutions, mathematical features of RS solu-
tions, and physical quantities of mixed solutions to equation
(1) have been summarized in Tables 1–5.

We hope that these results given in this paper will be
helpful for understanding such physical phenomena in non-
linear optics, anharmonic lattice dynamics, and plasma
environments.
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