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In this research article, we determine some vertex degree-based topological indices or descriptors of two families of graphs, i.e.,
G = C4ðKnÞ and G = C4ðKnÞ + v1v3, where C4ðKnÞ is a graph obtained by identifying one of the vertices of Kn with one vertex
of C4. Similarly, a graph formed by joining one of the vertices of Kn with one vertex of C4 + v1v3 is known as the C4ðKnÞ + v1
v3 graph.

1. Introduction

Around the center of a century ago, theoretical experts
found some interesting relationships between different
properties of organic substances and those of molecular
structure by analyzing a few invariants of the underlying
molecular graph. These graph invariants are useful for
molecular objects and are named as topological indices or
topological descriptors. These are numerical parameters of
graphs which can be used to describe the physiochemical
properties like boiling point, molecular weight, density and
refractive index of a molecule [1, 2]. The three main catego-
ries of topological indices are distance-based topological
indices, degree-based indices and spectrum-based topologi-
cal indices. Among these, degree-based topological indices

are of great significance [1, 3, 4]. Some vertex degree-
based topological indices are Randic or connectivity index,
first and second Zagreb indices, Narumi Katayama and
multiplicative Zagreb indices, atom bond connectivity
index, augmented Zagreb index, geometric arithmetic index,
harmonic index, and sum connectivity index [5]. The topo-
logical descriptors are beneficial tools to chemists that are
provided by graph theory. The use of these theoretical
invariants in QSPR/QSPR modeling has been a popular
work in the past years [4, 6].

The first most widely used topological index in chemis-
try is the Wiener index. Initially, it was presented by the
American Chemist Harold Wiener in 1947 and is denoted
by WðGÞ. After its success, many other topological indices
have been introduced that are based on Wiener’s work [3, 7].
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Milan Randic introduced the Randic index in 1975. It
was the most popular index among all topological indices
[2, 8]. The mathematical form of this descriptor is

R Gð Þ = 〠
μ~ν

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dμ Gð Þdν Gð Þ

q , ð1Þ

with a summation going with overall pairs of adjacent verti-
ces of the graph G.

Later, mathematicians did not pay any attention to this
index for almost two decades. However, Erdos together with
Bollobas worked on this index and discovered the mathe-
matical hidden in it. In 1998, they published their first paper
on this index. When the mathematical community began to
understand the importance of this descriptor, they started to
do researches on it. There have been hundreds of articles
and several books dedicated to this structural descriptor
[9]. The chemists [1] found out some expressions during
the study of molecular structure dependency of total pi-
electron energy which includes the terms of the form

M1 Gð Þ =〠
μ

dμ Gð Þ2,

M2 Gð Þ = 〠
μ~ν

dμ Gð Þdν Gð Þ:
ð2Þ

Immediately, it was identified that these two terms provide
quantitative measures of the branching of the molecular car-
bon atom skeleton. In chemical theory,M1 and M2 are called
first and second Zegreb indices. These two indices have been
introduced by Gutman and Trinajestic in 1972. Initially, the
first Zagreb index was also known as the Gutman index. But,
Balaban et al. did not want to introduce these indices by the
names of the discovers. After 1982, Balaban et al. included
these two terms in the topological indices and named them
as Zagreb indices. In 2012, multiplicative versions of multipli-
cative Zagreb indices have been proposed by Todeshine et al.
and are known as Narum Katayama indices. They were the
first topological index defined by the product of some graph
theoretical quantities. In 1984, Narumi and Katayama deter-
mined the term

Q
μdμðGÞ2 and named it as the first multipli-

cative Zagreb index. It is denoted by
Q

1ðGÞ. The second
multiplicative Zagreb index and modified first multiplicative
Zagreb index are defined, respectively, byY

2
Gð Þ =

Y
μ~ν

dμ Gð Þdν Gð Þ,

Y∗
1

Gð Þ =
Y
μ~ν

dμ Gð Þ + dν Gð Þ� �
,

ð3Þ

with a product going with overall adjacent vertices of a graph
G [10, 11]. The first, second, and modified multiplicative
Zagreb indices are known as Narumi Katayama multiplicative
Zagreb indices. The geometric arithmetic index is themodified
form of the Randic index. This topological descriptor was

introduced by Vukicevic and Furtula in 2009. The mathemat-
ical form [12] of this index is

GA Gð Þ = 〠
μ~ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dμ Gð Þdν Gð Þ

q
dμ Gð Þ + dν Gð Þ� �

/2 : ð4Þ

Another vertex degree-based topological index that keeps
the spirit of Randic index is the atom bond connectivity index.
This topological descriptor was introduced by Estrada et al. in
1998. This index has turned out to be an important index for
the stability of Alkanes. The mathematical form [8, 13] of this
index is

ABC Gð Þ = 〠
μ~ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dμ Gð Þ + dν Gð Þ − 2

dμ Gð Þdν Gð Þ

s
: ð5Þ

Furtula et al. introduced the modified form of atom bond
connectivity index in 2009 and named it as the augmented
Zagreb index. Themathematical form [8, 14] of this descriptor
is

AZI Gð Þ = 〠
μ~ν

dμ Gð Þdν Gð Þ
dμ Gð Þ + dν Gð Þ − 2

" #3
: ð6Þ

In the investigation of heat creation in heptanes and
octanes, the prediction capability of the augmented Zagreb
index outperforms that of the atom bond connectivity index.
Ali et al. investigated the correlation abilities of 20 vertex
degree-based topological descriptors for the case of normal
heats of formation and ordinary boiling factor of octane iso-
mers, finding that the AZI produces the best results [15].

In 1980, Fajtlowiez introduced another topological
index. In 2012, Zhang worked on this index and named it
as the harmonic index. This index is defined as

H Gð Þ = 〠
μ~ν

2
dμ Gð Þ + dν Gð Þ : ð7Þ

No chemical applications of this index have been found
so far, but in the last few years, this index has attracted the
great attention of theoreticians [16, 17]. Another vertex
degree-based topological index was proposed by Zhou and
Trinajstic and was named as the sum connectivity index.
They observed in the definition of Randic index that the
term dμ × dν can be replaced by dμ + dν which is defined
by ([2, 18, 19]).

SCI Gð Þ = 〠
μ~ν

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dμ Gð Þ + dν Gð Þ

q : ð8Þ

Many topological indices are bond-additive, i.e., they can
be presented as a sum of edge contributions and have the
following form:
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〠
μν∈E Gð Þ

f g μð Þ, g νð Þð Þ, ð9Þ

where gðμÞ are usually degrees or the sum of distances from
μ to all other vertices of G. Inspired by the most successful
indices of this type, such as the Randic index, the second
Zagreb index and others, a whole family of Adriatic indices
[20] was defined. A particularly intriguing subclass of these
descriptors is made up of 148 discrete Adriatic indices. They
were examined on the testing sets provided by the Interna-
tional Academy of Mathematical Chemistry, and it had been
shown that they have good predictive properties in many
cases and it was found that they have good predictive prop-
erties in many cases. One of these useful discrete Adriatic
indices is the symmetric division deg (SDD) index, which
is defined as

SDD Gð Þ = 〠
μν∈E Gð Þ

dμ
dν

+ dν
dμ

 !
, ð10Þ

where EðGÞ is the edge set of a molecular graph G (a graph
in which vertices correspond to atoms of a (hydrogen-sup-
pressed) molecule and edges correspond to bonds between
the atoms) and dμ and dν denote the degrees of the vertices
μν ∈ VðGÞ, respectively [21].

In this paper, we compute the degree-based topological
indices, namely, Randic or connectivity index, Zagreb indi-
ces, Narumi-Katayama and multiplicative Zagreb indices,
atom bond connectivity index, augmented Zagreb index,
geometric arithmetic index, harmonic index, and sum con-
nectivity index for two special families of graphs of diame-
ter three. These graphs are undirected having no loops and
multiple edges. In Section 2, the topological indices of fam-
ilies of graphs C4ðKnÞ are determined, while in Section 3,
the topological indices of families of graphs C4ðKnÞ + v1v3
are computed.

2. Topological Indices of Families of
Graphs C4ðKnÞ

In this section, we have determined and computed the closed
formulas of degree-based topological indices for families of
graphs C4ðKnÞ. The results are analyzed, and the general
formulas are derived for these families of graphs.

Theorem 1. The Randic and sum connectivity indices of
families of graphs C4ðKnÞ are

R Gð Þ = n − 1ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p + 1
n − 1

n2 − 3n + 2
2

� �
+ 2ffiffiffiffiffiffiffiffiffiffiffiffi

2n + 2
p + 1,

SCI Gð Þ = n − 1ffiffiffiffiffi
2n

p + 2ffiffiffiffiffiffiffiffiffiffi
n + 3

p + 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 2

p n2 − 3n + 2
2

� �
+ 1:

ð11Þ

Proof. To find the Randic or connectivity index of C4ðKnÞ as
shown in Figure 1, we first select a vertex u1 on C4ðKnÞ of

degree n + 1. There are ðn − 1Þ vertices u2, u3,⋯, un of
degree n − 1, which are adjacent to u1. For the vertices u1
and ui, where i = 2, 3, 4,⋯, n, the sum is obtained as

〠
u1~ui

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdui Gð Þ

q = n − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1ð Þ n − 1ð Þp i = 2, 3; ;⋯, n = n − 1ffiffiffiffiffiffiffiffiffiffiffiffi

n2 − 1
p :

ð12Þ

Since the degree of u1 is n + 1, the other two vertices
which are adjacent to u1, are v1 and v3 of degree two. For
the vertices u1 and v1, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdv1 Gð Þ

q = 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 2

p : ð13Þ

Similarly, for the vertices u1 are v3, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdv3 Gð Þ

q = 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 2

p : ð14Þ

Now, we select a vertex u2 in C4ðKnÞ. Since the degree of
u2 is n − 1, the other ðn − 2Þ vertices which are adjacent to u2
, are u3, u4,⋯, un. For the vertices u2 and uj where j = 3, 4,
5,⋯, n, the sum is obtained as

〠
u2~uj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Gð Þduj

Gð Þ
q = n − 2

n − 1 : ð15Þ

Since Kn is symmetric, the same result is obtained for the
remaining ðn − 2Þ vertices u3, u4,⋯, un. So combining the
result for all ðn − 1Þ vertices u2, u3,⋯, un, we have

= n − 2
n − 1 + n − 3

n − 1 + n − 4
n − 1 +⋯+ n − n − 1ð Þ

n − 1 = 1
n − 1

n2 − 3n + 2
2

� �
:

ð16Þ

Now, we select v1 on C4ðKnÞ. The degree of v1 is two, the
other vertex which is adjacent to v1 is v2 of degree two. For
the vertices v1 and v2, we have

u4

u1

u2

u3

u5

v1

v2

v3

Figure 1: G = C4ðK5Þ (graph obtained by identifying one of the
vertices of K5 with one vertex of C4).
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv1 Gð Þdv2 Gð Þ

q = 1
2 : ð17Þ

Similarly, we select v2 on C4ðKnÞ. The degree of v2 is
two, the other vertex which is adjacent to v2 is v3 of degree
two. For vertices v2 and v3, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv2 Gð Þdv3 Gð Þ

q = 1
2 : ð18Þ

Adding equations (12) to (18), we have RðGÞ = Randic or
connectivity index of C4ðKnÞ is

R Gð Þ = n − 1ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p + 1
n − 1

n2 − 3n + 2
2

� �
+ 2ffiffiffiffiffiffiffiffiffiffiffiffi

2n + 2
p + 1:

ð19Þ

Similarly, SCIðGÞ = sum connectivity index of C4ðKnÞ is

SCI Gð Þ = n − 1ffiffiffiffiffi
2n

p + 2ffiffiffiffiffiffiffiffiffiffi
n + 3

p + 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 2

p n2 − 3n + 2
2

� �
+ 1:

ð20Þ

Theorem 2. The atom bond connectivity index and aug-
mented Zagreb index of families of graphs C4ðKnÞ are
defined, respectively, by

ABC Gð Þ = n − 1ð Þ
ffiffiffiffiffiffiffiffiffiffi
2

n + 1

r
+

ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 4

p

n − 1
n2 − 3n + 2

2

� �
+ 2

ffiffiffi
2

p
,

AZI Gð Þ = n − 1ð Þ n + 1
2

� �3

+ n − 1ð Þ6
2n − 4ð Þ3

n2 − 3n + 2
2

� �
+ 32:

ð21Þ

The proof is the same as that of Theorem 1.

Theorem 3. The geometric arithmetic index and harmonic
index of families of graphs C4ðKnÞ are defined, respectively,
by

GA Gð Þ = n − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p

n
+ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
2n + 2

p

n + 3
+ n2 − 3n + 2

2
+ 2,

H Gð Þ = n − 1
n

+ 4
n + 3

+ 1
n − 1

n2 − 3n + 2
2

� �
+ 1:

ð22Þ

The proof is similar to the proof of Theorem 1.

Theorem 4. The Zagreb indices of families of graphs C4ðKnÞ
are

M1 Gð Þ = n3 − 2n2 + 5n + 12,

M2 Gð Þ = n3 − n2 + 3n + 13 + n2 − 3n + 2
� �

n − 1ð Þ2
2

" #
:

ð23Þ

Proof. For the family of graphs C4ðKnÞ, there are ðn − 1Þ ver-
tices u2, u3,⋯, un of degree n − 1, one vertex u1 of degree
n + 1, and three vertices v1, v2, and v3 of degree two, respec-
tively. For the vertex u1, we have

deg u1ð Þ2 = n + 1ð Þ2: ð24Þ

For the vertices v1, v2 and v3, we have

deg v1ð Þ2 + deg v2ð Þ2 + deg v3ð Þ2 = 12: ð25Þ

For vertices u2, u3,⋯, un, we have

deg u2ð Þ2 + deg u3ð Þ2+⋯+ deg unð Þ2 = n − 1ð Þ3: ð26Þ

Adding equations (24) to (26), we have M1ðGÞ = first
Zagreb index of C4ðKnÞ is

M1 Gð Þ = n3 − 2n2 + 5n + 12: ð27Þ

Similarly, M2ðGÞ = second Zagreb index of C4ðKnÞ is

M2 Gð Þ = n3 − n2 + 3n + 13 + n2 − 3n + 2
� �

n − 1ð Þ2
2

" #
: ð28Þ

Theorem 5. The Katayma and multiplicative Zagreb indices
of families of graphs C4ðKnÞ areY

1

Gð Þ = 64 n + 1ð Þ2 n2 − 2n + 1
� �n−1,

Y
2

Gð Þ = 16 n2 − 1
� � n−1ð Þ 2n + 2ð Þ2 n − 1ð Þ n2−3n+2ð Þ,

Y∗
1

Gð Þ = 16 2nð Þ n−1ð Þ 3 + nð Þ2 2n − 2ð Þ n2−3n+2ð Þ/2ð Þ:

ð29Þ

Proof. Since there are ðn − 1Þ vertices u2, u3,⋯, un of degree
n − 1, we have one vertex of degree n + 1 and three vertices
of degree two in C4ðKnÞ graph. Thus, we have

deg u2ð Þ2 deg u3ð Þ2,⋯, deg unð Þ2
= n − 1ð Þ2 n − 1ð Þ2,⋯, n − 1ð Þ2 n − 1ð Þ:times

= n2 − 2n + 1
� � n−1ð Þ

:

ð30Þ
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For the vertex u1, we have

deg u1ð Þ2 = n + 1ð Þ2: ð31Þ

Similarly, for the vertices v1, v2, and v3, we have

deg v1ð Þ2 deg v2ð Þ2 deg v3ð Þ2 = 2ð Þ2: 2ð Þ2: 2ð Þ2 = 64: ð32Þ

Multiplying equations (30) to (32),
Q

1ðGÞ =first multi-
plicative Zagreb index of C4ðKnÞ isY

1
Gð Þ = 64 n + 1ð Þ2 n2 − 2n + 1

� �n−1
: ð33Þ

Similarly, second multiplicative and modified first multi-
plicative Zagreb indices of C4ðKnÞ are defined, respectively, byY

2
Gð Þ = 16 n2 − 1

� � n−1ð Þ 2n + 2ð Þ2 n − 1ð Þ n2−3n+2ð Þ,

Y∗
1

Gð Þ = 16 2nð Þ n−1ð Þ 3 + nð Þ2 2n − 2ð Þ n2−3n+2ð Þ/2ð Þ:
ð34Þ

Example 6. Topological indices of graph C4ðK6Þ are shown
in Table 1.

3. Topological Indices of Families of
Graphs C4ðKnÞ + v1v3

By looking at the earlier results for computing the topologi-
cal indices for different families of graphs, here, we introduce
new degree-based topological indices to compute their
values for families of graphs C4ðKnÞ + v1v3.

Theorem 7. The Randic and sum connectivity indices of fam-
ilies of graphs C4ðKnÞ + v1v3 are defined, respectively, by

R Gð Þ = n − 1ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p + 1
n − 1

n2 − 3n + 2
2

� �
+ 2ffiffiffiffiffiffiffiffiffiffiffiffi

3n + 3
p + 2ffiffiffi

6
p + 1

3
,

SCI Gð Þ = n − 1ffiffiffiffiffi
2n

p + 2ffiffiffiffiffiffiffiffiffiffi
n + 4

p + 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 2

p n2 − 3n + 2
2

� �
+ 2ffiffiffi

5
p + 1ffiffiffi

6
p :

ð35Þ

Proof. To find the Randic or connectivity index of C4ðKnÞ
+ v1v3 as presented in Figure 2, we first select a vertex u1
on C4ðKnÞ + v1v3 of degree n + 1. There are ðn − 1Þ vertices
u2, u3,⋯, un of degree n − 1, which are adjacent to u1. For
the vertices u1 and ui where i = 2, 3, 4,⋯, n, the sum

〠
u1~ui

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdui Gð Þ

q , i = 2, 3, 4,⋯, n, ð36Þ

is obtained as

= n − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1ð Þ n − 1ð Þp = n − 1ffiffiffiffiffiffiffiffiffiffiffiffi

n2 − 1
p : ð37Þ

Since the degree of u1 is n + 1, the other two vertices
which are adjacent to u1, are v1 and v3 of degree 3. For the
vertices u1 and v1, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdv1 Gð Þ

q = 1ffiffiffiffiffiffiffiffiffiffiffiffi
3n + 3

p : ð38Þ

Similarly, for the vertices u1 are v3, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du1 Gð Þdv3 Gð Þ

q = 1ffiffiffiffiffiffiffiffiffiffiffiffi
3n + 3

p : ð39Þ

Now, we select a vertex u2 on C4ðKnÞ. Since the degree of
u2 is n − 1, the other ðn − 2Þ vertices which are adjacent to u2,
are u3, u4, cdots, un. For the vertices u2 and uj where j = 3, 4,
5,⋯, n, the sum is obtained as

〠
u2~uj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 Gð Þduj

Gð Þ
q = n − 2

n − 1 : ð40Þ

Since Kn is symmetric, the same result is obtained for the
remaining n − 2 vertices u3, u4,⋯, un. By using equation (16),
the above equation can be written as

= 1
n − 1

n2 − 3n + 2
2

� �
: ð41Þ

Table 1: Topological indices of G = C4ðK6Þ:Y
1
Gð Þ 3:0625 × 1010

H Gð Þ 4:278
R Gð Þ 4:380
SCI Gð Þ 6:272
ABC Gð Þ 11:158
GA Gð Þ 18:593
M1 Gð Þ 186

u4

u1

u2

u3

u5

v1

v2

v3

Figure 2: G = C4ðK5Þ + v1v3 (graph obtained by identifying one of
the vertices of K5 with one vertex of C4 + v1v3).
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Now, we select v1 on C4ðKnÞ. Since the degree of v1 is
three, the other two vertices which are adjacent to v1, are v2
and v3. For vertices v1 and v2, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv1 Gð Þdv2 Gð Þ

q = 1ffiffiffi
6

p : ð42Þ

Similarly, for the vertices v1 and v3, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv1 Gð Þdv3 Gð Þ

q = 1
3 : ð43Þ

Now, we select v2 on C4ðKnÞ. The degree of v2 is two, the
other vertex which is adjacent to v2, is v3 of degree three. For
vertices v2 and v3, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv2 Gð Þdv3 Gð Þ

q = 1ffiffiffi
6

p : ð44Þ

Adding equations (37) to (44) RðGÞ = Randic or connec-
tivity index of C4ðKnÞ + v1v3 is RðGÞ = ðn − 1Þ/ ffiffiffiffiffiffiffiffiffiffiffiffi

n2 − 1
p

+ ð1/
ðn − 1ÞÞððn2 − 3n + 2Þ/2Þ + ð2/ ffiffiffiffiffiffiffiffiffiffiffiffi

2n + 2
p Þ + 1.

Similarly, SCIðGÞ = sum connectivity index of C4ðKnÞ
+ v1v3 is

SCI Gð Þ = n − 1ffiffiffiffiffi
2n

p + 2ffiffiffiffiffiffiffiffiffiffi
n + 4

p + 1ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 2

p n2 − 3n + 2
2

� �
+ 2ffiffiffi

5
p + 1ffiffiffi

6
p :

ð45Þ

Using the same arguments as in Theorem 6, we deter-
mine some other topological indices of C4ðKnÞ + v1v3.

Theorem 8. The atom bond connectivity index and aug-
mented Zagreb index of families of graphs C4ðKnÞ + v1v3
are defined, respectively, by

ABC Gð Þ = n − 1ð Þ
ffiffiffiffiffiffiffiffiffiffi
2

n + 1

r
+

ffiffiffiffiffiffiffiffiffiffiffiffi
2n − 4

p

n − 1
n2 − 3n + 2

2

	 


+ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
n + 2
3n + 3

r
+

ffiffiffi
2

p
+ 2
3
,

AZI Gð Þ = n − 1ð Þ n + 1
2

� �3

+ n − 1ð Þ6
2n − 4ð Þ3

n2 − 3n + 2
2

� �

+ 2
3n + 3
n + 2

� �3

+ 1753
64

:

ð46Þ

Theorem 9. The geometric arithmetic index and harmonic
index of families of graphs C4ðKnÞ + v1v3 are defined, respec-
tively, by

GA Gð Þ = n − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p

n
+ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
3n + 3

p

n + 4
+ n2 − 3n + 2

2
+ 4

ffiffiffi
6

p

5
+ 1

H Gð Þ = n − 1
n

+ 4
n + 4

+ 1
n − 1

n2 − 3n + 2
2

� �
+ 17
15

:

ð47Þ

Theorem 10. The Zagreb indices of the families of graphs
C4ðKnÞ + v1v3 are

M1 Gð Þ = n3 − 2n2 + 5n + 22,

M2 Gð Þ = n3 − n2 + 5n + 28 + n2 − 3n + 2
� �

n − 1ð Þ2
2

" #
:

ð48Þ

Proof. For the families of graphs C4ðKnÞ + v1v3 there are n
− 1 vertices u2, u3::⋯un of degree n − 1, one vertex u1 of
degree n + 1 and two vertices v1 and v3 of degree three and
one vertex v2 of degree two, respectively.

deg u1ð Þ2 = n + 1ð Þ2: ð49Þ

For vertices v1 and v3, the first Zagreb index is

deg v1ð Þ2 + deg v3ð Þ2 = 3ð Þ2 + 3ð Þ2 = 18: ð50Þ

For vertices u2, u3::⋯un, we have

deg u2ð Þ2 + deg u3ð Þ2+⋯⋯⋯ + deg unð Þ2
= n − 1ð Þ2 + n − 1ð Þ2+:⋯⋯ n − 1ð Þ2 n − 1ð Þtimes
= n − 1ð Þ n − 1ð Þ2 = n − 1ð Þ3:

ð51Þ

Similarly, for vertex v2 we have

deg v2ð Þ2 = 22 = 4: ð52Þ

Adding equations (49) to (52), we have M1ðGÞ = first
Zagreb index of C4ðKnÞ + v1v3

M1 Gð Þ = n + 1ð Þ2 + n − 1ð Þ3 + 22 = n3 − 2n2 + 5n + 22:
ð53Þ

Similarly,M2ðGÞ = second Zagreb index of C4ðKnÞ + v1v3

M2 Gð Þ = n3 − n2 + 5n + 28 + n2 − 3n + 2
� �

n − 1ð Þ2
2

" #
: ð54Þ
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Theorem 11. The Katayma and multiplicative Zagreb indices
of families of graphs C4ðKnÞ + v1v3 are

Y
1

Gð Þ = 324 n + 1ð Þ2 n2 − 2n + 1
� �n−1,

Y
2

Gð Þ = 324 n2 − 1
� � n−1ð Þ 3n + 3ð Þ2 n − 1ð Þ n2−3n+2ð Þ,

Y∗
1

Gð Þ = 150 2nð Þ n−1ð Þ n + 4ð Þ2 2n − 2ð Þ n2−3n+2ð Þ/2ð Þ:

ð55Þ

Proof. Since there are n − 1 vertices u2, u3::⋯un of degree
n − 1, one vertex of degree n + 1 and three vertices of degree
two in C4ðKnÞ + v1v3 graph. Thus, we have

deg u2ð Þ2 deg u3ð Þ2::⋯⋯ deg unð Þ2
= n − 1ð Þ2 n − 1ð Þ2:⋯⋯ n − 1ð Þ2 n − 1ð Þtimes
= n2 − 2n + 1
� � n−1ð Þ

:

ð56Þ

For vertex u1, we have

deg u1ð Þ2 = n + 1ð Þ2: ð57Þ

Similarly, for vertices v1 and v3, we have

deg v1ð Þ2 deg v3ð Þ2 = 3ð Þ2: 3ð Þ2 = 81: ð58Þ

Also, for vertex v2, we have

deg v2ð Þ2 = 2ð Þ2 = 4: ð59Þ

Multiplying equations (56) to (59), we have
Q

1ðGÞ =
first multiplicative Zagreb index of C4ðKnÞ + v1v3

Y
1

Gð Þ = 324 n + 1ð Þ2 n2 − 2n + 1
� �n−1

: ð60Þ

Similarly, second multiplicative Zagreb index and modi-
fied first multiplicative Zagreb index of C4ðKnÞ + v1v3 are

Y
2

Gð Þ = 324 n2 − 1
� � n−1ð Þ 3n + 3ð Þ2 n − 1ð Þ n2−3n+2ð Þ

Y∗
1

Gð Þ = 150 2nð Þ n−1ð Þ n + 4ð Þ2 2n − 2ð Þ n2−3n+2ð Þ/2ð Þ:
ð61Þ

Example 12. Topological indices of graph C4ðK6Þ + v1v3 are
shown in Table 2.

4. Concluding Remarks

This research work was done to understand the relationship
between various concepts about topological indices and
graphs. In this article, we have studied certain vertex
degree-based topological indices and derived the closed for-
mulas of these indices for two special families of graphs, i.e.,
C4ðKnÞ and C4ðKnÞ + v1v3. It was easily checked that all ver-
tex degree-based topological indices of families of these two
graphs remain the same for all values of n and the topology
of a graph is completely changed if we add an additional
edge in it. In the future, we are interested in investigating
and calculating some other topological indices of two more
special families of graphs.
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