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Using the bifurcation method of dynamical systems, we investigate the nonlinear waves and their limit properties for the
generalized KdV-mKdV-like equation. We obtain the following results: (i) three types of new explicit expressions of
nonlinear waves are obtained. (ii) Under different parameter conditions, we point out these expressions represent different
waves, such as the solitary waves, the 1-blow-up waves, and the 2-blow-up waves. (iii) We revealed a kind of new
interesting bifurcation phenomenon. The phenomenon is that the 1-blow-up waves can be bifurcated from 2-blow-up
waves. Also, we gain other interesting bifurcation phenomena. We also show that our expressions include existing results.

1. Introduction

Most relationships in nature and human society are intrinsi-
cally nonlinear rather than linear in nature, so many phe-
nomena in nature and human society can be described by
nonlinear equations, such as automatic control, meteorol-
ogy, engineering calculation, engineering budget, economy,
and finance [1, 2]. Nowadays, many scientists are very inter-
ested in nonlinear equations and their solutions and have
done a lot of related work [3–5].

In the paper, we consider the generalized KdV-mKdV-
like equation [6, 7].

ut + α + β up + γ u2p
� �

ux + uxxx = 0, ð1Þ

where p > 0, α, β, γ ≠ 0 are real constants. By using appropri-
ate parameters, the generalized KdV-mKdV-like equation
becomes the classical KdV equation [8–11], the mKdV equa-
tion [12–16], the KdV-like equation [17–20], and the gener-
alized mKdV equation [21].

Up to now, many authors have been interested in the
study of the many forms of KdV-like equations [22–25],
and there are several explicit solutions results of the general-

ized KdV-mKdV-like equation based on the significant
physical background. For example, Li and Wang [6] gave
the following traveling wave solution:

uw ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

" #1/p
, ð2Þ

where β < 0, γ > 0, ξ = x − α t.
In recent years, the bifurcation method of dynamical sys-

tems has been widely used in investigating the nonlinear
partial differential equations, for instance [26–29].

In this paper, we study the nonlinear wave solutions and
the bifurcation phenomena for Eq. (1). First, we obtain three
types of explicit waves which represent the solitary waves,
the 1-blow-up waves, and the 2-blow-up waves. Second, we
reveal the new bifurcation phenomena which are introduced
in the abstract above. Furthermore, we obtain other interest-
ing bifurcation phenomena. The first phenomenon is that
the 1-blow-up waves can be bifurcated from the solitary
waves. The second phenomenon is that the trivial waves
can be bifurcated from the solitary waves.

This paper is organized as follows. In Section 2, we give
some notations and state our main results. Our main

Hindawi
Advances in Mathematical Physics
Volume 2021, Article ID 4213939, 6 pages
https://doi.org/10.1155/2021/4213939

https://orcid.org/0000-0001-8377-069X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4213939


derivations are listed in Section 3. A brief conclusion is given
in Section 4.

2. Our Main Results

In this paper, p is odd and the situation of even is similar to
study. In this section, we state our main results. In order to
state these results conveniently, we give some notations
which will be used in the latter statement and the
derivations.

The zones Aj (j = 1, 2, 3, 4) are given in Figure 1, and κ is
an arbitrary real constant. In this article, we only consider
the case α − c = 0. For other cases, due to the complexity,
we will investigate them in our future works.

Proposition 1. If α − c = 0, then, the explicit solutions are

u1 ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξ + κð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð3Þ

and

u2 ξð Þ = 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ/ p + 1ð Þ p + 2ð Þp

ξ + κ

 !1/p

, ð4Þ

(a) A1 : β < 0, γ > 0 (b) β = 0, γ > 0

(c) A2 : β > 0, γ > 0 (d) β < 0, γ = 0

(e) β > 0, γ = 0 (f) A3 : β < 0, γ < 0

(g) β = 0, γ < 0 (h) A4 : β > 0, γ < 0

Figure 1: The phase portraits of the system (12).
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when κ = 0, u1 becomes

u01 ξð Þ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þ β p ξð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð5Þ

After selecting the appropriate parameters, u01 is equiva-
lent to uw.

when γ = 0, u1 becomes

u11 ξð Þ = −2 p + 1ð Þ p + 2ð Þ
β p ξ + κð Þ2

�
0
@

1
A

1/p

, ð6Þ

(i) If ðβ, γÞ ∈ A1 or A2, then, u1 is symmetric solitary
wave (the example is given in Figure 2(a) or
Figure 3(a)). Specially, when γ⟶ 0 + 0, then, the
symmetric solitary wave u1 becomes single-side 1-
blow-up wave u11 (the example is given in
Figure 2(c)), and for the varying process of the exam-
ple, see Figure 2. When β⟶ 0 ± 0, then, the sym-
metric solitary wave u1 becomes the trivial wave
(the example is given in Figure 3(c)), and for the
varying process of the example, see Figure 3

(ii) If ðβ, γÞ ∈ A3 or A4, then, u1 is 2-blow-up solitary
wave (the example is given in Figure 4(a)). Specially,
when γ⟶ 0 − 0, then, the 2-blow-up wave u1
becomes the single-side 1-blow-up wave u11 (the
example is given in Figure 4(c)), and for the varying
process of the example, see Figure 4

(iii) If β = 0, γ < 0, then, u2 is 1-blow-up solitary wave

3. The Derivation of Main Results

To derive our results, we give some preliminaries in this sec-
tion. For simplicity of the derived expression, we use the fol-
lowing notation

A = γ

2 p + 1ð Þ 2p + 1ð Þ , ð7Þ

B = β

p + 1ð Þ p + 2ð Þ , ð8Þ

C = α − c
2 : ð9Þ

then we derive our main results.

3.1. The Derivations to Proposition 1. For given constant c
and c − α = 0, substituting u = φðξÞ with ξ = x − ct into
Eq.(1), it follows that

βφpφ′ + γ φ2pφ′ + φ′′′ = 0: ð10Þ

Integrating (10) once and letting the integral constant be
zero, we get

β

p + 1 φp+1 + γ

2p + 1 φ2p+1 + φ′′ = 0: ð11Þ

Letting ψ = φ′, we obtain a planar system

dφ
dξ = ψ,

dψ
dξ = −

γ

2p + 1 φ2p+1 −
β

p + 1φ
p+1,

8>>><
>>>:

ð12Þ

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 2: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 5, α − c = 0, β = −3, and γ⟶ 0 + 0.
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with the first integral

H φ, ψð Þ = 1
2ψ

2 + γ

2 p + 1ð Þ 2p + 1ð Þφ
2p+2 + β

p + 1ð Þ p + 2ð Þφ
p+2 = h,

ð13Þ

where h is the integral constant. According to the qualitative
theory, we obtain the bifurcation phase portraits of system
(12) as Figure 1. By means of the bifurcation phase portraits,
we can derive Proposition 1.

In the first integral (13), letting h =Hð0, 0Þ, we obtain

ψ2 = −2φ2 Aφ2p + Bφp� �
, ð14Þ

Substituting (14) into the first equation of (12) and inte-

grating it, we get

ðφ
l

ds

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As2p + Bsp

p = ξj j, ð15Þ

where l is an arbitrary constant or ±∞.
When β ≠ 0 and completing the integral above and solv-

ing the equation for φ, it will follow that

φ = −2 p + 1ð Þ p + 2ð Þ 2p + 1ð Þβ
2p + 1ð Þβ2 p ξ + κð Þ2 + p + 1ð Þ p + 2ð Þ2 γ

 !1/p

, ð16Þ

and letting κ = 0, we can obtain (5) from (3). Similarly, when
β = 0 and completing the integral above and solving the
equation for φ, we gain (4). Therefore, we have completed
the derivations for Proposition 1.

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 4: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 9, α − c = 0, γ = 1, and β⟶ 0 − 0.

(a) γ = 10−1 (b) γ = 10−2

(c) γ = 10−4

Figure 3: The varying figures of the example of u = u1ðξÞ when κ = 0, p = 9, α − c = 0, γ = 1, and β⟶ 0 − 0.
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4. Conclusion

In this paper, we have investigated the explicit expressions of
the nonlinear waves and their bifurcations in Eq. (1).

First, we obtained three types of new expressions. And
they represent different waves, such as the solitary waves,
the 1-blow-up waves, and the 2-blow-up waves.

Second, we revealed three kinds of bifurcation phenom-
ena which include a new bifurcation phenomena. The first
phenomenon which is new bifurcation phenomenon is that
1-blow-up waves can be bifurcated from 2-blow-up waves.
The second phenomenon is that the trivial waves can be
bifurcated from the solitary waves. The third phenomenon
is that the 1-blow-up waves can be bifurcated from the soli-
tary waves.

Third, we showed that a previous result is our special
case, that is, uw is included in u01.

Furthermore, the bifurcation method of dynamical sys-
tems can be used to find the new traveling solutions and
bifurcations of many nonlinear equations such as the
extended quantum Zakharov-Kuznetsov equation [37], the
Fujimoto-Watanabe equation [38], and b-family-like equa-
tion [39]. We will continue to use the bifurcation method
of dynamical systems to study other important nonlinear
equations.
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