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In this paper, we consider the following indirect signal generation and singular sensitivity
nt = Δn + χ∇ ⋅ ðn/φðcÞ∇cÞ, x ∈Ω, t > 0,
ct = Δc − c +w, x ∈Ω, t > 0,
wt = Δw −w + n, x ∈Ω, t > 0,

8>><
>>:

in a bounded domain Ω ⊂ RNðN = 2, 3Þ with smooth boundary ∂Ω. Under the

nonflux boundary conditions for n, c, and w, we first eliminate the singularity of φðcÞ by using the Neumann heat semigroup
and then establish the global boundedness and rates of convergence for solution.

1. Introduction

One of the first mathematical models of chemotaxis was
introduced by Keller and Segel [1] to describe the aggregation
of certain types of bacteria. In mathematics, it is described as
a fully parabolic system

nt = Δn−∇ ⋅ nχ n, cð Þ∇cð Þ, x ∈Ω, t > 0,
ct = Δc − c + n, x ∈Ω, t > 0:

(
ð1Þ

Here, the unknowns n = nðt, xÞ and cðt, xÞ denote the cell
density and chemical concentration, respectively. The given
function χðn, cÞ is the chemotactic sensitivity. The physical
domainΩ ⊂ℝNðN = 2, 3Þ is a bounded domain with smooth
boundary. This model describes a biological process in which
cells move towards their preferred environment and a signal
being produced by the cells themselves. When the diffusion

of chemical signals is much faster than that of cells, the sys-
tem can be simplified as

nt = Δn−∇ ⋅ nχ n, cð Þ∇cð Þ, x ∈Ω, t > 0,
0 = Δc − c + n, x ∈Ω, t > 0:

(
ð2Þ

Another important chemotaxis model is formed with sin-
gular sensitivity function, such as χðn, cÞ = χ/c. This model is
proposed by the Weber-Fechner law of stimulus perception
[2] and supported by experimental [3] and theoretical evi-
dence [4]. The articles about singular sensitive function can
be referred to reference [5–9].

Considering the proliferation and death of cells, many
scholars have done corresponding research on the above
model to add the logistic source. We refer the reader to the
survey [10–15] and the references therein. There are also
some models involving nonlinear diffusion and rotation
terms, which can be referred to [16–19].
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It is also important to consider the indirect signal
model because the attractive signal and repulsive signal
exist simultaneously in some Keller-Segel models. Lin-
Mu-Wang established the global existence and large-time
behavior in [20].

The blow-up solution was studied by Fujie and Senba in
[21]. Tao and Wang [22] considered the global solvability,
boundedness, blow-up, existence of nontrivial stationary
solutions, and asymptotic behavior. Stinner et al. [23] have
given the global existence and some basic boundedness of
weak solutions for a PDE-ODE system

Considering the singular sensitivity function, we study
the following singular chemotaxis model of indirect signal
generation

nt = Δn + χ∇ ⋅
n

φ cð Þ∇c
� �

, x ∈Ω, t > 0,

ct = Δc − c +w, x ∈Ω, t > 0,
wt = Δw −w + n, x ∈Ω, t > 0,

8>>>><
>>>>:

ð3Þ

where the parameter χ is a positive constant and φ is a known
function. On the other hand, the case ofΩ ⊂ℝNðN = 2, 3Þis a
bounded domain, under the assumption of the no-flux Neu-
mann boundary condition for n,c and w, i.e.,

∂n
∂ν

= ∂c
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t > 0, ð4Þ

where ν is the unit outward normal vector on ∂Ω and of the
initial conditions

n x, 0ð Þ = n0 xð Þ, c x, 0ð Þ = c0 xð Þ,w x, 0ð Þ =w0 xð Þ, x ∈Ω
ð5Þ

satisfy

0 ≤ n0 xð Þ ∈ C0 �Ω
� �

and n0 xð Þ ≢ 0, x ∈ �Ω,

c0 xð Þ ∈W1,∞ Ωð Þ is nonnegative and inf
x∈Ω

c0 xð Þ > 0,

w0 ∈W
1,∞ Ωð Þ is nonnegative,

φ xð Þ ∈ C1 0,+∞ð Þ, φ′ xð Þ > 0, x ∈ 0,+∞ð Þ and lim
x⟶0+

φ xð Þ = 0:

8>>>>>>><
>>>>>>>:

ð6Þ

There are some sensitivity functions φ satisfying the
fourth conditions of (6). For example, φðxÞ = xα, α > 0
or-
φðxÞ = log ð1 + xÞ, φðxÞ = arctan x, φðxÞ = xα log ð1 + xÞ, φð
xÞ = Ð x

0τ
α log ð1 + τÞdτ, and so on are all satisfied with

conditions of (6).
Under these assumptions, we give the well-posedness and

asymptotic behavior results as follows.

Theorem 1. Let Ω ⊂ℝN be a bounded domain with smooth
boundary. Suppose that n0, c0,w0, φ satisfy (6). Then, for
any q > 1, systems (3)–(4) possess a global classical solution
ðn, c,wÞ which enjoys the regularity properties:

Moreover, this solution is uniformly bounded in the sense
that

n ·, tð Þk kL∞ Ωð Þ + c ·, tð Þk kW1,q Ωð Þ
+ w ·, tð Þk kW1,q Ωð Þ ≤ C,  for all t ∈ 0,∞ð Þ,

ð8Þ

with some positive constant C.

Theorem 2. Let Ω ⊂ℝN be a bounded domain with smooth
boundary. Suppose that (6) holds. Then, there exists ϵ0 > 0
such that if m satisfies

m < ϵ ð9Þ

for some 0 < ϵ < ϵ0, the solution of (3) has the following decay
estimates:

n ·, tð Þ − m
Ωj j

����
����
L∞ Ωð Þ

⟶ 0,

c ·, tð Þ − m
Ωj j

����
����
L∞ Ωð Þ

⟶ 0,

w ·, tð Þ − m
Ωj j

����
����
L∞ Ωð Þ

⟶ 0,

ð10Þ

where m≔ kn0ð·ÞkL1ðΩÞ and jΩj is Lebesgue measure.

n ϵC0 �Ω × 0,∞Þb� �
∩ c2,1 �Ω × 0,∞ð Þ� �

,

c ϵC0 �Ω × 0,∞Þb� �
∩ c2,1 �Ω × 0,∞ð Þ� �

∩ L∞ 0,∞ð Þ ; W1,q Ωð Þ� �
,

w ϵC0 �Ω × 0,∞Þb� �
∩ c2,1 �Ω × 0,∞ð Þ� �

∩ L∞ 0,∞ð Þ ; W1,q Ωð Þ� �
:

8>><
>>:

ð7Þ
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2. Preliminaries and Bounded Estimates

We first establish the local existence result; then the global
existence of the solutions is obtained by using a priori
estimate.

Lemma 1. For N ∈ f2, 3g, let Ω ⊂ℝN be a bounded domain
with smooth boundary. Assume that n0, c0,w0, φ satisfy (6).
Then, there exist Tmax ∈ ð0,∞� and a classical solution ðn, c,
wÞ of (3)–(4) in Ω × ð0, TmaxÞ such that

Proof. Let c∗ = ð1/eÞ inf
x∈Ω

c0ðxÞ > 0. With adaptations of the

methods akin to those used in [24] and ([25], Thm. 2.3 i) to
deal with the singular sensitivity, R > 0 and T ∈ ð0, 1Þ to be
specified below, in Banach’s space

X ≔ L∞ O, Tð Þ ; C0 Ωð Þ ×W1,q Ωð Þ ×W1,q Ωð Þ� �
, for all q > 0,

ð12Þ

we consider the closed set

S≔ n, c,wð Þ ∈ X ∣ nk kL∞ Ωð Þ + ck kW1,q Ωð Þ
n

+ wk kw1,q Ωð Þ ≤ R, for a:e:t ∈ 0, Tð Þ°
o ð13Þ

and introduce a mapping Φ = ðΦ1,Φ2,Φ3Þ on S by defining

Φ1 n, c,wð Þ≔ etΔn0 − χ
ðt
t0

e t−sð ÞΔ∇∙
n

φ cð Þ∇c
� �

ds,

Φ2 n, c,wð Þ≔et Δ−1ð Þc0 +
ðt
t0

e t−sð Þ Δ−1ð Þw ·, sð Þds,

Φ3 n, c,wð Þ≔Φ2 n, c,wð Þ≔et Δ−1ð Þw0 +
ðt
t0

e t−sð Þ Δ−1ð Þn ·, sð Þds,

ð14Þ

for ðn, c,wÞ ∈ S and t ∈ ð0, TÞ. Using the reasoning (see [26],
Lemma 1) based on Banach’s fixed point theorem applied in
a closed bounded set in L∞ðð0, TÞ ; C0ð�ΩÞ ×W1,qðΩÞ ×
W1,qðΩÞÞ for suitably small T > 0, the following regularity
arguments, proving this local existence and uniqueness
result. ☐

In order to get time-independent pointwise lower bounds
of w and c, we need to use the L1-conservation of n. The pur-
pose of this method is to eliminate the singularity of the func-
tion 1/φðCÞ at zero.

Lemma 2. For any t ∈ ð0, TmaxÞ, there exist C > 0, η > 0, and
m > 0 such that

n ·, tð Þk kL1 Ωð Þ = n0 ·ð Þk kL1 Ωð Þ, ð15Þ

min   w :,tð Þ,c:,tÞf g ≥ η: ð16Þ

Moreover, we have

w ·, tð Þk kL1 Ωð Þ ≤m + w0 xð Þk kL1 Ωð Þ · e
−t , ð17Þ

c ·, tð Þk kL1 Ωð Þ ≤m + c0 xð Þk kL1 Ωð Þ · e
−t: ð18Þ

Proof. Integrate the first equation of (3) to obtain (15).
Using the representation formula of Neumann heat semi-

group and point lower bound estimation in [27], we have

w ⋅ ,tð Þ = et Δ−1ð Þu0 +
ðt
0
e t−sð Þ Δ−1ð Þn ⋅ ,sð Þds

≥
ðt
0

1
4π t − sð Þð Þn/2

e− t−sð Þ+ diamΩð Þ2/ 4 t−sð Þð Þð Þð Þ

⋅ n ⋅ ,sð Þk kL1 Ωð Þds =m
ðt
0

1
4π t − sð Þð Þn/2

� e− t−sð Þ+ diamΩð Þ2/ 4 t−sð Þð Þð Þð Þds

=m
ðt0
0

1
4πτð Þn/2 e

− τ+ diamΩð Þ2/4τð Þð Þ ≔ η1 > 0,

ð19Þ

where η1 is a positive constant and diamΩ≔max
x,y∈Ω

jx − yj. In
the same way, we see that

n ∈ C0 �Ω × 0, TmaxÞb� �
∩ C2,1 �Ω × 0, Tmaxð Þ� �

,

c ∈ C0 �Ω × 0, TmaxÞb� �
∩ C2,1 �Ω × 0, Tmaxð Þ� �

∩ L∞ 0,∞ð Þ ; W1,q Ωð Þ� �
,

w ∈ C0 �Ω × 0, TmaxÞb� �
∩ C2,1 �Ω × 0, Tmaxð Þ� �

∩ L∞ 0,∞ð Þ ; W1,q Ωð Þ� �
,

8>><
>>:

Tmax =∞ or lim
t⟶Tmax

n :,tð Þk kL∞ Ωð Þ + c ·, tð Þk kW1,q Ωð Þ + w ·, tð Þk kW1,q Ωð Þ
� �

=∞:

ð11Þ
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c ⋅ ,tð Þ = et Δ−1ð Þc0 +
ðt
0
e t−sð Þ Δ−1ð Þw ⋅ ,sð Þds

≥
ðt
0

1
4π t − sð Þð Þn/2 e

− t−sð Þ+ diamΩð Þ2/ 4 t−sð Þð Þð Þð Þ

⋅ w ⋅ ,sð Þk kL1 Ωð Þds ≥ η1 Ωj j
ðt
0

1
4π t − sð Þð Þn/2

� e− t−sð Þ+ diamΩð Þ2/ 4 t−sð Þð Þð Þð Þds

= η1 Ωj j
ðt0
0

1
4πτð Þn/2 e

− τ+ diamΩð Þ2/4τð Þð Þdτ≔ η2 > 0,

ð20Þ

where η2 is a positive constant. Taking η =min fη1, η2g > 0,
we get (16).

We integrate the third equation of (3) to obtain

d
dt

ð
Ω

w x, tð Þdx +
ð
Ω

w x, tð Þdx =
ð
Ω

n x, tð Þdx =m: ð21Þ

Applying Lemma 3.4 in [23], we obtain (17). In a similar
way, we can get (18). ☐

Lemma 3. Let

�p =
+∞, N = 2,
3, N = 3:

(
ð22Þ

For any p ∈ ð0, �pÞ, there exists constant C such that

w ·, tð Þk kLp Ωð Þ ≤ C, for all t ∈ 0, Tmaxð Þ: ð23Þ

Moreover, if Tmax =∞, then,

w ·, tð Þk kLp Ωð Þ ≤ Cm, as t⟶∞: ð24Þ

Proof. We represent w according to

w ⋅ ,tð Þ = et Δ−1ð Þu0 +
ðt
0
e t−sð Þ Δ−1ð Þn ⋅ ,sð Þds, for all 0 < t < Tmax:

ð25Þ

Using the properties of fractional powers ð−Δ + 1Þθ with
a dense domain Dðð−Δ+1ÞθÞ, θ ∈ ð0, 1Þ in [28], we see from
N/2ð1 − ð1/pÞÞ < 1 that

w ⋅ ,tð Þk kLp Ωð Þ ≤ C1 −Δ+1ð Þθw ⋅ ,tð Þ
��� ���

Lp Ωð Þ

≤ C1 −Δ + 1ð Þθet Δ−1ð Þw0

��� ���
Lp Ωð Þ

+ C1

ðt
0

−Δ + 1ð Þθe t−sð Þ Δ−1ð Þn ⋅ ,sð Þ
��� ���

Lp Ωð Þ
ds

≤ C2t
−θe−λ1t w0k kLp Ωð Þ+C2

�
ð+∞
0

t − sð Þ−θ− N/2ð Þ 1−1/pð Þe−λ1 t−sð Þ nk kL1 Ωð Þds

≤ C3 t−θe−λ1t + n0k kL1 Ωð Þ
� �

,

ð26Þ

where λ1 ∈ ð0, 1Þ and C1, C2, C3 > 0 are constants. If Tmax
=∞, we can take the time t large enough such
thatkwð·, tÞkLpðΩÞ ≤ Cm: ☐

Lemma 4. For any q ∈ ð0,+∞Þ, there exists constant C such
that

ck kW1,q Ωð Þ ≤ C, for all t ∈ 0, Tmaxð Þ: ð27Þ

Moreover, if Tmax =∞, then

ck kW1,q Ωð Þ ≤ Cm, as t⟶∞: ð28Þ

Proof. By applying the representation formula, we have

c ·, tð Þ = et Δ−1ð Þc0 +
ðt
0
e t−sð Þ Δ−1ð Þw ·, sð Þds, t > 0: ð29Þ

We apply ð−Δ + 1Þθ to both sides of equation (29) to
obtain

c ⋅ ,tð Þk kLq Ωð Þ ≤ C1 −Δ+1ð Þθc ⋅ ,tð Þ
��� ���

Lq Ωð Þ

≤ C1 −Δ + 1ð Þθet Δ−1ð Þc0
��� ���

Lq Ωð Þ

≤ C1

ðt
0

−Δ + 1ð Þθe t−sð Þ Δ−1ð Þw ⋅ ,sð Þ
��� ���

Lq Ωð Þ
ds

≤ C2t
−θe−λ1t c0ð Þk kLq Ωð Þ

≤ C2

ð+∞
0

t − sð Þ−θ− N/2ð Þ 1/p−1/qð Þe−λ1 t−sð Þ wk kLp Ωð Þds

≤ C3 t−θe−λ1t + wk kLp Ωð Þ
� �

:

ð30Þ
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Then by

∇c ⋅ ,tð Þk kLq Ωð Þ ≤ C1 ∇et Δ+1ð Þc0
��� ���

Lq Ωð Þ

+ C1

ðt
0
∇e t−sð Þ Δ+1ð Þw ⋅ ,sð Þ

��� ���
Lq Ωð Þ

ds

≤ C1 1 + t−1/2e−λ1t c0k kLq Ωð Þ
� �

+C2

ð+∞
0

1 + t − sð Þ−1/2− N/2ð Þ 1/p−1/qð Þ
� �

� e−λ1 t−sð Þ wk kLp Ωð Þds

≤ C3 1 + t−1/2
� �

e−λ1t + wk kLq Ωð Þ
� �

:

ð31Þ

If Tmax =∞, taking the time t large enough and by virtue
of Lemma 3, we can complete the proof. ☐ ☐

Lemma 5. For any r > 1, there exists constant C such that

nk kLr Ωð Þ ≤ C
�
m2 q−Nð Þ/Nq r−1ð Þ+4q−2N

�
1

+mN q r−1ð Þ+2½ �/2 Nq r−1ð Þ+4q−2N½ �

+m2Nq r−1ð Þ+4q/2 Nq r−1ð Þ+4q−2N½ �
�

+ n ⋅ ,t0ð Þk kLr Ωð Þe
−1/r t−t0ð Þ

�
, for all t ≥ t0,

ð32Þ

with some fixed t0 > 0.

Proof. Multiplying nr−1 by the first equation of (3) and inte-
gration by parts, using Hölder’s inequality and Young
inequality, we have that

d
dt

ð
Ω

nrdx + 4 r − 1ð Þ
r

ð
Ω

∇nr/2
		 		2dx

= χr r − 1ð Þ
ð
Ω

nr−1

φ cð Þ∇n ⋅ ∇cdx

≤ 2χ r − 1ð Þ 1
φ ηð Þ ∇nr/2

�� ��
L2 Ωð Þ nr/2∇c

�� ��
L2 Ωð Þ

≤
2 r − 1ð Þ

r

ð
Ω

∇nr/2
		 		2dx + χ2r r − 1ð Þ

2φ2 ηð Þ
ð
Ω

nr/2∇c
		 		2dx:

ð33Þ

That is,

d
dt

ð
Ω

nrdx + 2 r − 1ð Þ
r

ð
Ω

∇nr/2
		 		2dx

≤
χ2r r − 1ð Þ
2φ2 ηð Þ

ð
Ω

nr/2∇c
		 		2dx:

ð34Þ

To handle the right-hand side of (34), we use Hölder’s
inequality and Gagliardo-Nirenberg inequality to get

nr/2∇c
�� ��

L2 Ωð Þ ≤ nr/2
�� ��

L2q/q−2 Ωð Þ ∇ck kLq Ωð Þ

≤ CGN ∇nr/2
�� ��2N+Nq r−1ð Þ/2q+Nq r−1ð Þ

L2 Ωð Þ

�

� nr/2
�� ��2 r−1ð Þ/2q+Nq r−1ð Þ

L2 Ωð Þ + CGN nr/2
�� ��

L2/r Ωð Þ

�

� ∇ck kLq Ωð Þ ≤ CGN ∇nr/2
�� ��2N+Nq r−1ð Þ/2q+Nq r−1ð Þ

L2 Ωð Þ

� nk kr q−Nð Þ/2q+Nq r−1ð Þ
L1 Ωð Þ ∇ck kLq Ωð Þ

+ CGN nk kr/2L1 Ωð Þ ∇ck kLq Ωð Þ
= CGNm

r q−Nð Þ/2q+Nq r−1ð Þ ∇ck kLq Ωð Þ

� ∇nr/2
�� ��2N+Nq r−1ð Þ/2q+Nq r−1ð Þ

L2 Ωð Þ
+ CGNm

r/2 ∇ck kLq Ωð Þ,
ð35Þ

where CGN > 0 is constant and q > n.
Similarly, using the Gagliardo-Nirenberg inequality,

there is CGN > 0 such that

nk krL2 Ωð Þ = nr/2
�� ��2

L2 Ωð Þ ≤ CGN nr/2
�� ��2r/N r−1ð Þ+2

L1 Ωð Þ

� ∇nr/2
�� ��2N r−1ð Þ/N r−1ð Þ+2

L2 Ωð Þ + CGN nk krL1 Ωð Þ

= CGN nk k2r/N r−1ð Þ+2
L1 Ωð Þ ∇nr/2

�� ��2N r−1ð Þ/N r−1ð Þ+2
L2 Ωð Þ

+ CGN nk krL1 Ωð Þ = CGN m2r/N r−1ð Þ+2
�

� ∇nr/2
�� ��2N r−1ð Þ/N r−1ð Þ+2

L2 Ωð Þ +mr
�
:

ð36Þ

From (35) and (36), we obtain C4 > 0 such that

nr/2∇c
�� ��2

L2 Ωð Þ ≤
2φ2 ηð Þ

χ2r r − 1ð Þ
�
r − 1
2r ∇nr/2

�� ��2
L2 Ωð Þ

+ C4m
2r q−Nð Þ/Nq r−1ð Þ+4q−2N

� 1 +mrN q r−1ð Þ+2½ �/2 Nq r−1ð Þ+4q−2N½ �
� ��

,

ð37Þ

nk krLr Ωð Þ ≤
r − 1
2r ∇nr/2

�� ��2
L2 Ωð Þ ≤ C4m

r: ð38Þ

We now substitute (37)–(38) into (34) to obtain that

d
dt

nk krLr Ωð Þ + nk krLr Ωð Þ +
r − 1
r

∇nr/2
�� ��2

Lr Ωð Þ

≤ C4m
2r q−Nð Þ/Nq r−1ð Þ+4q−2N

� 1 +mrN q r−1ð Þ+2½ �/2 Nq r−1ð Þ+4q−2N½ �
�

+mr 2Nq r−1ð Þ+4q½ �/2 Nq r−1ð Þ+4q−2N½ �
�
:

ð39Þ

5Advances in Mathematical Physics



Applying Gronwall’s inequality, we see that

nk krLr Ωð Þ ≤ C4m
2r q−Nð Þ/Nq r−1ð Þ+4q−2N

� 1 +mrN q r−1ð Þ+2½ �rN q r−1ð Þ+2½ �/2 Nq r−1ð Þ+4q−2N½ �
�

+mr 2Nq r−1ð Þ+4q½ �/2 Nq r−1ð Þ+4q−2N½ �
�

+ n ⋅ ,t0ð Þk krLr Ωð Þe
− t−t0ð Þ, for all t ≥ t0,

ð40Þ

with some fixed t0 > 0. Due to knkLrðΩÞ being uniformly
bounded, we can obtain (32) immediately. ☐

Lemma 6. For any p ∈ ð0,∞Þ, there exists constant C such that

w ·, tð Þk kW1,p Ωð Þ ≤ C, for all t ∈ 0, Tmaxð Þ: ð41Þ

Proof. Using the variation-of-constant formula for w again,
we obtain

w ·, tð Þ = et Δ−1ð Þu0 +
ðt
0
e t−sð Þ Δ−1ð Þn ·, sð Þds, for all 0 < t < Tmax:

ð42Þ

Therefore, the estimate of knkLrðΩÞ provides us with C5
> 0 and C6 > 0, for any t ∈ ð0, TmaxÞ satisfying

w ⋅ ,tð Þk kLp Ωð Þ ≤ e−t etΔw0
�� ��

Lp Ωð Þ +
ðt
0
e− t−sð Þ e t−sð ÞΔn ⋅ ,sð Þ

��� ���
Lr1 Ωð Þ

ds

≤ C5 w0k kL∞ Ωð Þ + C5

ðt
0
e− t−sð Þ

� 1 + t − sð Þ−1/2−N/s 1/r2−1/r1ð Þ
� �

n ⋅ ,sð Þk kLr Ωð Þds

≤ C6 + C6

ðt
0
e− t−sð Þ 1 + t − sð Þ−1/2−N/s 1/r−1/r1ð Þ

� �
ds,

ð43Þ

wherein the last integral is finite since 1/2 +N/2ðð1/rÞ − ð1/
r1ÞÞ < ð1/2Þ. Similarly, we can deduce that

∇w ⋅ ,tð Þk kLp Ωð Þ

≤ C5 ∇et Δ−1ð Þw0

��� ���
Lp Ωð Þ

+ C5

ðt
0
∇e t−sð Þ Δ−1ð Þn ⋅ ,sð Þ

��� ���
Lp Ωð Þ

ds

≤ C5 1 + t−1/2
� �

e−λ1t w0k kLp Ωð Þ

+C6

ð+∞
0

1 + t − sð Þ−1/2−N/2 1/r−1/pð Þ
� �

e−λ1 t−sð Þ nk kLp Ωð Þds

≤ C7, for all t ∈ 0, Tmaxð Þ,
ð44Þ

with some C7 > 0, where we can select some p > r > 1 such
that N/2ðð1/rÞ − ð1/pÞÞ < ð1/2Þ Thus, by virtue of (43) and
(44), we finish the proof of Lemma 6. ☐ ☐

Proof of Theorem 1. In light of the prior estimates obtained in
Lemma 2–Lemma 6 and the local existence results obtained
in Lemma 1, we can complete the proof of Theorem 1. ☐

3. Asymptotic Behavior

To simplify notation, we shall abbreviate the deviations from
the nonzero homogeneous steady state by the following
transformation:

U x, tð Þ = n x, tð Þ − m
Ωj j ,

V x, tð Þ = c x, tð Þ − m
Ωj j ,

W x, tð Þ =w x, tð Þ − m
Ωj j ,

8>>>>>>><
>>>>>>>:

ð45Þ

for all x ∈Ω and t > 0. Through simple calculation, we see
that ðU , V ,WÞ satisfies the following initial boundary value
problem:

Ut = ΔU+∇ ⋅
n

φ cð Þ∇V
� �

, x ∈Ω, t > 0,

Vt = ΔV −V +W, x ∈Ω, t > 0,
Wt = ΔW −W +U , x ∈Ω, t > 0,
∂U
∂ν

= ∂V
∂ν

= ∂W
∂ν

= 0, x ∈ ∂Ω, t > 0,

U x, 0ð Þ = n0 xð Þ − m
Ωj j , V x, 0ð Þ = c0 xð Þ − m

Ωj j ,W x, 0ð Þ = u0 xð Þ − m
Ωj j , x ∈Ω:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð46Þ
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In order to prove Theorem 2, we need several lemmas.

Lemma 7. For any r > 1, q >N, there exists constant C such
that

lim
t⟶∞

U ·, tð Þk kL∞ Ωð Þ ≤ Cm1+2 q−Nð Þ/Nq r−1ð Þ+4q−2N : ð47Þ

Proof. By using the variation-of-constant representation,

U ⋅ ,tð Þ = e t−t2ð ÞΔU ⋅ ,t2ð Þ −
ðt
t2

e t−sð ÞΔ∇ ⋅
n ⋅ ,sð Þ

φ c ⋅ ,sð Þð Þ∇V ⋅ ,sð Þ
� �

ds,

ð48Þ

for all t > t2, we obtain

U ⋅ ,tð Þk kL∞ Ωð Þ = e t−t2ð ÞΔU ⋅ ,t2ð Þ
��� ���

L∞ Ωð Þ

+
ðt
t2

e t−sð ÞΔ∇ ⋅
n ⋅ ,sð Þ

φ c ⋅ ,sð Þð Þ∇V ⋅ ,sð Þ
� �����

����
L∞ Ωð Þ

ds

≔ I1 + I2, for all t > t2:

ð49Þ

For I1, there is a constant c1 > 0 such that

U ⋅ ,t2ð Þk kLr Ωð Þ = n x, t2ð Þ − m
Ωj j

����
����
Lr Ωð Þ

≤ n x, t2ð Þk kLr Ωð Þ +
m
Ωj j

����
����
Lr Ωð Þ

≤ c1:
ð50Þ

Noticing that
Ð
Ω
Uð⋅ ,tÞdx = 0, we have

I1 = e t−t2ð ÞΔU ⋅ ,t2ð Þ
��� ���

L∞ Ωð Þ
≤ c1 1 + t − t2ð Þ−N/2r� �

e−λ1 t−t2ð Þ

= U ⋅ ,t2ð Þk kLr Ωð Þ ⟶ 0, as t⟶∞:

ð51Þ

For I2, taking r > r1 >N , q >N , using the estimate of
Neumann heat semigroup and Hölder’s inequality, we obtain

I2 =
ðt
t2

e t−sð ÞΔ∇ ⋅
n ⋅ ,sð Þ
φ cð Þ ∇V ⋅ ,sð Þ

� �����
����
L∞ Ωð Þ

ds

≤ c2

ðt
t2

1 + t − sð Þ−1/2−N/2r1� �
e−λ1 t−sð Þ n ⋅ ,sð Þ

φ cð Þ ∇V ⋅ ,sð Þ
����

����
Lr1 Ωð Þ

ds

≤ c2η
ðt
t2

1 + t − sð Þ−1/2−N/2r1� �
e−λ1 t−sð Þ

� n ⋅ ,sð Þk kLr Ωð Þ ∇V ⋅ ,sð Þk krr1/Lr−r1 Ωð Þds

≤ c2η
ðt
t2

1 + t − sð Þ−1/2−N/2r1� �
e−λ1 t−sð Þ

� n ⋅ ,sð Þk kLr Ωð Þ c ⋅ ,sð Þk kW1rr1/r−r1 Ωð Þds

≤ c3m
1+2 q−Nð Þ/Nq r−1ð Þ+4q−2N ,

ð52Þ
where c2, c3 > 0 are constants. We now substitute (51)–(52)
into (49) to complete the proof. ☐ ☐

Next, we want to extend ~T0 to infinity. Applying the
Lemma 7, we can select t3 = t3ðn, c, uÞ > 0 to obtain

U ⋅ ,tð Þk kL∞ Ωð Þ ≤ 2c3m1+2 q−Nð Þ/Nq r−1ð Þ+4q−2N , ð53Þ

for some r > 1, q >N .
For any p ∈ ð1, �pÞ, one has

W ⋅ ,tð Þk kLP Ωð Þ

≤ e t−t2ð Þ Δ−1ð ÞW ⋅ ,tð Þ
��� ���

LP Ωð Þ
+
ðt
t2

e t−t2ð Þ Δ−1ð ÞU ⋅ ,tð Þ
��� ���

LP Ωð Þ
ds

≤ c3 t−t2ð Þ−θeλ1t W ⋅ ,t2ð Þk kLP Ωð Þ

+ c3

ðt
t2

t − sð Þ−θ−n/2 1−1/pð Þe−λ1 t−sð Þ U ⋅ ,sð Þk kL1 Ωð Þds

= c3 t−t2ð Þ−θe−λ1t W ⋅ ,t2ð Þk kLP Ωð Þ ⟶ 0, as t⟶∞:

ð54Þ
By combining Lemma 3 and (45), we see that

W ·, tð Þk kLp Ωð Þ ≤ 2c3m, for all t > t3: ð55Þ

Applying the Lemma 4, we can get

∇V ·, tð Þk kLp Ωð Þ = ∇c ·, tð Þk kLp Ωð Þ ≤ c3m, for all t > t3: ð56Þ

We now choose m small enough such that

c3m
2 q−Nð Þ/Nq r−1ð Þ+4q−2N ≤

1
2 : ð57Þ

It is easy to see that

U ·, t3ð Þk kL∞ Ωð Þ ≤
1
2 ϵ, for all t ≥ t3: ð58Þ

Let

~T0 ≔ T ≥ t3 ∣ U ·, tð Þk kL∞ Ωð Þ ≤ ϵe−λ1 t−t3ð Þ, for all t ∈ t3, T0½ �
n o

,

ð59Þ
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where T0 is a given positive constant. Then, ~T0 is well-
defined since (49), (51), and (58). In order to extend ~T0 to
infinity, we give the following lemmas.

Lemma 8. For any p ∈ ð1, �pÞ, there exists a constant c4 > 0 sat-
isfying

W ·, tð Þk kLp Ωð Þ ≤ 2c4ϵe
−λ1 t−t3ð Þ, for all t ∈ t3, Tð Þ: ð60Þ

Proof. We first use (46) to represent W according to

W ·, tð Þ = e t−t3ð Þ Δ−1ð ÞW ·, t1ð Þ +
ðt
t3

e t−sð Þ Δ−1ð ÞU ·, sð Þds ð61Þ

and the fact that λ1 < 1 and (55) to estimate

e t−t3ð Þ Δ−1ð ÞW ⋅ ,t3ð Þ
��� ���

Lp Ωð Þ
≤ e− t−t3ð Þ e t−t3ð ÞΔW ⋅ ,t3ð Þ

��� ���
Lp Ωð Þ

≤ c4ϵe
−λ1 t−t3ð Þ, for all t > t3:

ð62Þ

Furthermore, using Hölder’s inequality and the defini-
tions of¨T and c5 entails that

ðt
t3

e t−sð Þ Δ−1ð ÞU ⋅ ,sð Þds
�����

�����
Lp Ωð Þ

≤ c3

ðt
t3

e− t−sð Þ e t−sð ÞΔU ⋅ ,sð Þ
��� ���

Lp Ωð Þ
ds

≤ c3

ðt
t3

1 + t − sð Þ−N/2 1−1/pð Þ
� �

e− λ1+1ð Þ t−sð Þ U ⋅ ,sð Þk kL1 Ωð Þds

≤ c3 Ωj j
ðt
t3

1 + t − sð Þ−N/2 1−1/pð Þ
� �

e− λ1+1ð Þ t−sð Þ U ⋅ ,sð Þk kL∞ Ωð Þds

≤ c3ϵ Ωj j
ðt
t3

1 + t − sð Þ−N/2 1−1/pð Þ
� �

e− λ1+1ð Þ t−sð Þe−λ1 s−t3ð Þds

≤ c3ϵ Ωj j
ðt−t3
0

1 + t − σ − t3ð Þ−N/2 1−1/pð Þ
� �

e− λ1+1ð Þ t−σ−t3ð Þe−λ1σ
dσ

≤ c3ϵ Ωj je− λ1+1ð Þ t−t3ð Þ
ðt−t3
0

1 + t − σ − t3ð Þ−N/2 1−1/pð Þ
� �

eσdσ

≤ c4ϵe
−λ1 t−t3ð Þ for all t ∈ t3, Tð Þ:

ð63Þ

Thus, substituting (62) and (63) into (61), we obtain the
Lemma 8. ☐ ☐

Lemma 9. For any q ∈ ð1, +∞Þ, there exists constant c5 such
that

∇V ·, tð Þk kLq Ωð Þ ≤ c5ϵe
−λ11 t−t3ð Þ, for all t ∈ t3, Tð Þ: ð64Þ

Proof. By means of the variation-of-constant representation
for V , combined with (56) and Lemma 8, we show that

∇V ⋅ ,tð Þk kLq Ωð Þ ≤ ∇e t−t3ð Þ Δ−1ð ÞV ⋅ ,t3ð Þ
��� ���

Lq Ωð Þ

+
ðt
t3

∇e t−sð Þ Δ−1ð ÞW ⋅ ,sð Þ
��� ���

Lq Ωð Þ
ds

= e− t−t3ð Þ ∇e t−t3ð ÞΔV ⋅ ,t3ð Þ
��� ���

Lq Ωð Þ

+
ðt
t3

e− t−sð Þ∇e t−sð ÞΔW ⋅ ,sð Þ
��� ���

Lq Ωð Þ
ds

≤ c1e
− λ1+1ð Þ t−t3ð Þ ∇V ⋅ ,t3ð Þk kLq Ωð Þ + c2

�
ðt
t3

1 + t − sð Þ−1/2−N/2 1/p−1/qð Þ
� �

� e− λ1+1ð Þ t−sð Þ W ⋅ ,sð Þk kLp Ωð Þds

≤ c1c3

ð
e− λ1+1ð Þ t−t3ð Þ

+ c2

ðt
t3

1 + t − sð Þ−1/2−N/2 1/p−1/qð Þ
� �

� e− λ1+1ð Þ t−sð Þ2c4
ð
e−λ1 s−t3ð Þds

≤ c1c3

ð
e− λ1+1ð Þ t−t3ð Þ + 2c2c4

ð
e−λ1 s−t3ð Þc2

�
ðt−t3
0

1 + σ−1/2−N/2 1/p−1/qð Þ
� �

e−σds

≤ c5

ð
e−λ1 t−t3ð Þ, for all t ∈ t3, Tð Þ,

ð65Þ

with some c5 > 0. ☐ ☐

Lemma 10. Let λ1 > 0 denote the first nonzero eigenvalue of
−Δ in Ω under Neumann boundary conditions. Then, there
exists constant c6 such that

U ·, tð Þk kL∞ Ωð Þ ≤ c6e
−λ1 t−t3ð Þ, for all t > t3: ð66Þ

Proof. Notice that the fact of U has the following estimate:

U ·, tð Þk kL∞ Ωð Þ ≤ c6e
−λ1 t−t3ð Þ, for all t ∈ t3, Tð Þ: ð67Þ

Furthermore, we can use (45) to obtain

n ∙,tð Þk kL∞ Ωð Þ = U ∙,tð Þ + m
Ωð Þ

����
����
L∞ Ωð Þ

≤ U ∙,tð Þk kL∞ Ωð Þ +
m
Ωð Þ

≤ ϵ e−λ1 t−t3ð Þ + m
Ωð Þ

� �
:

ð68Þ
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We next write

U ·, tð Þk kL∞ Ωð Þ ≤ e t−t3ð ÞΔU ·, t3ð Þ
��� ���

L∞ Ωð Þ

�
ðt
t3

e t−Sð ÞΔ∇
n ·, sð Þ
φ cð Þ ∇V ·, sð Þ

� �����
����
L∞ Ωð Þ

ds

ð69Þ

and employ the estimate (53) to obtain

e t−t3ð ÞΔU ⋅ ,t3ð Þ
��� ���

L∞ Ωð Þ
≤ c5e

−λ1 t−t3ð Þ U ⋅ ,t3ð Þk kL∞ Ωð Þ

≤ 2c3c5m1+2 q−Nð Þ/Nq r−1ð Þ+4q−2Ne−λ1 t−t3ð Þ

≤ 2c3c5
ð1+2 q−Nð Þ/Nq r−1ð Þ+4q−2N

e−λ1 t−t3ð Þ:

ð70Þ

We next recall (18) and (45) and employ the estimates
(64) and (68) to see that

ðt
t3

e t−sð ÞΔ∇ ⋅
n ⋅ ,sð Þ
φ cð Þ ∇V ⋅ ,sð Þ

� �����
����
L∞ Ωð Þ

ds

≤ c5

ðt
t3

1 + t − sð Þ−1/2−N/2r� �
e−λ1 t−sð Þ n ⋅ ,sð Þ

φ cð Þ ∇V ⋅ ,sð Þ
����

����
Lr Ωð Þ

ds

≤
c5
φη

ðt
t3

1 + t − sð Þ−1/2−N/2r� �
e−λ1 t−sð Þ

� n ⋅ ,sð Þk kL∞ Ωð Þ ∇V ⋅ ,sð Þk kLr Ωð Þds

≤
c5
φη

ðt
t3

1 + t − sð Þ−1/2−N/2r� �
e−λ1 t−sð Þ

�
ð

e−λ1 s−t3ð Þ + 1
Ωj j

� �
c5

ð
e−λ1 s−t3ð Þds

≤
c25
Ð 2

φ ηð Þ e
−λ1 t−t3ð Þ

ðt
t3

1 + t − sð Þ−1/2−N/2r� �
e−λ1 s−t3ð Þ + 1

Ωj j
� �

ds

≤
c25
Ð 2

φ ηð Þ e
−2λ1 t−t3ð Þ

ðt−t3
0

1 + σ−1/2−N/2r� �
eλ1σ + 1

Ωj j
� �

dσ

≤
c25c7

Ð 2
φ ηð Þ e−λ1 t−t3ð Þ,

ð71Þ

for all r >N and c7 > is a constant.
Thus, substituting (70) and (71) into (69), we have

U ∙,tð Þk kL∞ Ωð Þ ≤
1
2 c8ϵ

1+2 q−Nð Þ/Nq r−1ð Þ+ 4q−2Nð Þe−λ1 t−t3ð Þ,

 for all t ∈ t3, Tð Þ,
ð72Þ

where c8 is a positive constant. Then, we select ϵ0 > 0 as suf-
ficiently small to fulfilling

c8ϵ
1+2 q−Nð Þ/Nq r−1ð Þ+ 4q−2Nð Þ ≤

1
2 : ð73Þ

In conjunction with (57) and (73), this yields

U ∙,tð Þk kL∞ Ωð Þ ≤
1
2 ϵe

−λ1 t−t3ð Þ, for all t ∈ t3, Tð Þ: ð74Þ

By the continuity of U , we can extend ~T0 =∞. So, we
complete the proof. ☐ ☐

Lemma 11. Let λ1 ∈ ð0, 1Þ. Then, there is constant c9 > 0 sat-
isfying

c ⋅ ,tð Þ − m
Ωj j

����
����
L∞ Ωð Þ

≤ c9e
−λ1/2t ,

w ⋅ ,tð Þ − m
Ωj j

����
����
L∞ Ωð Þ

≤ c9e
−λ1/2t:

ð75Þ

for all t > 0.

Proof. Let ðx, tÞ≔ cðx, tÞ − ðm/jΩjÞ. From the second equa-
tion of (3), we can get the following system:

ψt − Δψ + ψ = u −
m
Ωj j , x ∈Ω, t > 0,

∂ψ
∂ν

= 0, x ∈ ∂Ω, t > 0,

ψ x, 0ð Þ = c0 xð Þ − m
Ωj j ≔ ψ0 xð Þ, x ∈Ω:

8>>>>>>><
>>>>>>>:

ð76Þ

Let ψ∗ be the solution of the following initial value prob-
lem:

ψ∗
t + ψ∗ = c10e

−λ1t , t > 0,
ψ∗ 0ð Þ = ψ∗k kL∞ Ωð Þ:

(
ð77Þ

Using the comparison principle in [29], we see that ψ∗ðtÞ
is a supersolution of the system (76), and thus,

ψ x, tð Þ ≤ ψ∗ tð Þ, for all x ∈Ω, t > 0: ð78Þ

Similarly, we have ψðx, tÞ ≥ −ψ∗ðtÞ for all x ∈Ω, t > 0.
Hence, we furthermore obtain that

ψ x, tð Þj j ≤ ψ∗ tð Þ, for all x ∈Ω, t > 0: ð79Þ

On the other side, direct computation shows that there
are some constants c11 and c12 such that

0 ≤ ψ∗ tð Þ ≤ c11 1 + ψ∗k kL∞ Ωð Þ
� �

e−λ1tc12e−λ1/2t , for all t > 0:

ð80Þ
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Thus, we can deduce that

c ⋅ ,tð Þ − m
Ωð Þ

����
����
L∞ Ωð Þ

= ψ ⋅ ,tð Þk kL∞ Ωð Þ

≤ ψ∗ tð Þc12e−λ1/2t , for all t > 0:
ð81Þ

In a similar way, we can get the convergence of w. Thus,
we complete the proof. ☐ ☐

Proof of Theorem 1. Using the estimates of Lemma 10 and
Lemma 11, we obtain the decay estimates of n, c, and w.
Hence, the proof is completed.
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