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This paper discusses a boundary value problem of nonlinear fractional integrodifferential equations of order 1 < α ≤ 2 and 1 < β ≤ 2
and boundary conditions of the form xð0Þ = xð1Þ = cDβxð1Þ = cDβxð0Þ = 0. Some new existence and uniqueness results are
proposed by using the fixed point theory. In particular, we make use of the Banach contraction mapping principle and
Krasnoselskii’s fixed point theorem under some weak conditions. Moreover, two illustrative examples are studied to support the
results.

1. Introduction

Fractional differential equations are relevant in many fields of
science, such as chemistry, fluid systems, and electromag-
netic; for more details about the theory of fractional differen-
tial equations and their applications, we invite the readers to
see [1–16] and the references therein.

Some physical applications of fractional differential equa-
tions include viscoelasticity, Schrodinger equation, fractional
diffusion equation, and fractional relaxation equation; for
more details, we refer the readers to [17].

In addition, fractional integrodifferential equations are
used as an important tool to gain insight into some emerging
problems from several science areas, for more details, we give
the following references [18–23].

More recently, in [24], the existence and uniqueness of
positive solutions for the fractional integrodifferential equa-
tion were proved.

In [25], the authors discussed the existence and unique-
ness of solutions for nonlinear integrodifferential equations
of fractional order with three-point nonlocal fractional
boundary conditions. The existence of solutions for nonlin-
ear fractional integrodifferential equations has been studied
in [26].

Motivated by all these works and by the fact that there are
no papers dealing with the new existence results for nonlin-
ear fractional integrodifferential equations, in this work, we
consider the existence and uniqueness of solutions for the
following problem:

cDα cDβ
� �

x tð Þ = f t, x tð Þ,Φx tð Þ, ψx tð Þð Þ, t ∈ 0, 1½ �,

x 0ð Þ = x 1ð Þ = cDβx 1ð Þ= cDβx 0ð Þ = 0,

8<
:

ð1Þ

where 1 < α ≤ 2, 1 < β ≤ 2,cDα,cDβ are the Caputo fractional
derivatives, f : ½0, 1� ×ℝ3 ⟶ℝ is a continuous function, and

Φx tð Þ =
ðt
0
λ t, sð Þx sð Þds,

ψx tð Þ =
ðt
0
δ t, sð Þx sð Þds,

ð2Þ

where λ, δ : ½0, 1� × ½0, 1� −⟶½0,+∞Þ, with ϕ∗ = sup
t∈½0,1�

j
Ð t
0λðt, sÞdsj <∞, ψ∗ = sup

t∈½0,1�
jÐ t0δðt, sÞdsj <∞.
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This paper is organized as follows. In Section 2, we pres-
ent some preliminaries and notations that will be required for
the later sections. After that, in Section 3, we establish the
main results by using the fixed point theory. And, in the last
section, we give two examples to illustrate the results.

2. Preliminaries and Notations

In this section, we give some notations, definitions, and
lemmas which will be required for the rest of the paper.

Definition 1 [5]. The fractional integral of order α > 0 with
the lower limit zero for a function f can be defined as

Iα f tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1 f sð Þds: ð3Þ

Definition 2 [5]. The Caputo derivative of order α > 0 with
the lower limit zero for a function f can be defined as

cDα f tð Þ = 1
Γ n − αð Þ

ðt
0
t − sð Þn−α−1 f nð Þ sð Þds, ð4Þ

where n ∈ℕ, 0 ≤ n − 1 < α < n, t > 0.

Theorem 3 [27]. Let M be a bounded, closed, convex, and
nonempty subset of a Banach space X. Let A and B be two
operators such that

(i) Ax + By ∈M whenever x, y ∈M
(ii) A is compact and continuous

(iii) B is a contraction mapping

Then, there exists z ∈M such that z = Az + Bz.

Lemma 4 [5]. Let α, β ≥ 0; then, the following relation hold:

Iαtβ = Γ β + 1ð Þ
Γ α + β + 1ð Þ t

α+β: ð5Þ

Lemma 5 [5]. Let n ∈ℕ and n − 1 < α < n. If f is a continuous
function, then we have

IαcDα f tð Þ = f tð Þ + a0 + a1t + a2t
2+⋯+an−1tn−1: ð6Þ

Lemma 6. Let h ∈ Cð½0, 1�,ℝÞ. Then, the unique solution of
the problem

cDα cDβ
� �

x tð Þ = h tð Þ, t ∈ 0, 1½ �,

x 0ð Þ = x 1ð Þ = cDβx 1ð Þ = cDβx 0ð Þ = 0,

8<
: ð7Þ

is given by

x tð Þ = 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1h sð Þds

−
tβ+1 + t

Γ αð ÞΓ β + 2ð Þ
ð1
0
1 − sð Þα−1 × h sð Þds

−
t

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1h sð Þds:

ð8Þ

Proof. By applying Lemma 5, we have

cDβx tð Þ = Iαh tð Þ + a0 + a1t,

x tð Þ = Iα+βh tð Þ + Iβa0 + Iβa1t + a2 + a3t,
ð9Þ

where a0, a1, a2, a3 ∈ℝ. So

x tð Þ = 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1h sð Þds + tβ

Γ β + 1ð Þ a0

+ tβ+1

Γ β + 2ð Þ a1 + a2 + a3t:

ð10Þ

And by using cDβxð0Þ = xð0Þ = 0, we obtain a0 = a2 = 0. As a
result of cDβxð1Þ = 0, we have that

a1 = −
1

Γ αð Þ
ð1
0
1 − sð Þα−1h sð Þds: ð11Þ

Now, we use xð1Þ = 0 to get

a3 = −
1

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1h sð Þds

+ 1
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1h sð Þds:

ð12Þ

By substituting the value of a0, a1, a2, a3, we obtain the fol-
lowing

x tð Þ = 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1h sð Þds

−
tβ+1 − t

Γ αð ÞΓ β + 2ð Þ
ð1
0
1 − sð Þα−1 × h sð Þds

−
t

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1h sð Þds:

ð13Þ

Conversely, by direct computations, we obtain the desired
result.

3. Main Results

Let X be the Banach space of all continuous functions from
½0, 1�⟶ℝ endowed with the norms kyk = sup fjyðtÞj: t
∈ ½0, 1�g and kykυ = sup

t∈½0,1�
ðjyðtÞj/eυtÞ, where υ > ðð1 + ϕ∗ +

φ∗Þ/ðΓðα + βÞÞÞkσk, and σ will be defined later.
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Theorem 7. Assume that
(H1) for all t ∈ ½0, 1� and x1, x2, x3, y1, y2, y3 ∈ℝ, we have

j f ðt, x1, x2, x3Þ − f ðt, y1, y2, y3Þj ≤ σðtÞðjx1 − y1j + jx2 − y2j +
jx3 − y3jÞ with σ ∈ Cð½0, 1� ; ½0,∞ÞÞ

(H2) j f ðt, x, y, zÞj ≤ θðtÞ, ∀ðt, x, y, zÞ ∈ ½0, 1� ×ℝ3 with θ
∈ Cð½0, 1� ;ℝ+Þ. Then, the problem (1) has at least one
solution.

Proof. We consider the ball Br = fy ∈ X : kykυ ≤ rg with r ≥
ðkθk/υÞððð2ðeυ − 1ÞÞ/ðΓðαÞΓðβ + 2ÞÞÞ + ððeυÞ/ðΓðα + βÞÞÞÞ
.We define the operators F = F1 + F2 on Br , where.

F1y tð Þ =
1

Γ α + βð Þ
ðt
0
t − sð Þα+β−1 f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þds,

ð14Þ

F2y tð Þ = −
tβ+1 − t

Γ αð ÞΓ β + 2ð Þ
ð1
0
1 − sð Þα−1 f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þds

−
1

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1 f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þds:

ð15Þ
For x, y ∈ Br , we have

F1x tð Þ
��� ���

υ
≤ sup

t∈ 0,1½ �

1
eυt

1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þds

����
����

≤ sup
t∈ 0,1½ �

1
eυt

1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 θ sð Þj jds

≤ sup
t∈ 0,1½ �

1
eυt

1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 θ sð Þj jeυs

eυs
ds

≤ sup
t∈ 0,1½ �

θk kυ
eυtΓ α + βð Þ

ðt
0
t − sð Þα+β−1eυsds

≤ sup
t∈ 0,1½ �

θk kυ
eυtΓ α + βð Þ

ðt
0
eυsds ≤ sup

t∈ 0,1½ �

θk kυ
υΓ α + βð Þ

eυt − 1
eυt

≤
θk kυ

υΓ α + βð Þ ,

F2y tð Þ
��� ���

υ
≤ sup

t∈ 0,1½ �

1
eυt

−
tβ+1 − t

Γ αð ÞΓ β + 2ð Þ
ð1
0
1 − sð Þα−1 f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þds

����
−

t
Γ α + βð Þ

ð1
0
1 − sð Þα+β−1 f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þds

����
≤ sup

t∈ 0,1½ �

1
eυt

2
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1 θ sð Þj jeυs

eυs
ds

�

+ 1
Γ α + βð Þ ×

ð1
0
1 − sð Þα+β−1 θ sð Þj jeυs

eυs
ds
�

≤ sup
t∈ 0,1½ �

θk kυ
eυt

2
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1eυsds + 1

Γ α + βð Þ
�

×
ð1
0
1 − sð Þα+β−1eυsds

�
≤ sup

t∈ 0,1½ �

θk kυ
eυt

2
Γ αð ÞΓ β + 2ð Þ

ð1
0
eυsds

�

+ 1
Γ α + βð Þ

ð1
0
eυsds

�
≤ sup

t∈ 0,1½ �

θk kυ
υeυt

2 eυ − 1ð Þ
Γ αð ÞΓ β + 2ð Þ + eυ − 1

Γ α + βð Þ
� 	

≤
θk kυ
υ

2 eυ − 1ð Þ
Γ αð ÞΓ β + 2ð Þ + eυ − 1ð Þ

Γ α + βð Þ
� 	

:

ð16Þ

Therefore,

F1x + F2yk kυ ≤
θk k
υ

2 eυ − 1ð Þ
Γ αð ÞΓ β + 2ð Þ +

eυ

Γ α + βð Þ
� 	

: ð17Þ

Then,

F1x + F2y ∈ Br: ð18Þ

Now, we prove that F1 is a contraction. For x, y ∈ Br , we have

F1y tð Þ − F1x tð Þk kυ ≤ sup
t∈ 0,1½ �

1
Γ α + βð Þeυt

ðt
0
t − sð Þα+β−1

× f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þ − f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj jds

≤ sup
t∈ 0,1½ �

1
Γ α + βð Þeυt

ðt
0
t − sð Þα+β−1σ sð Þ y sð Þ − x sð Þj jð

+ ϕy sð Þ − ϕx sð Þj j + ψy sð Þ − ψx sð Þj jÞds ≤ sup
t∈ 0,1½ �

σk k
Γ α + βð Þeυt

�
ðt
0
eυs y − xk kυ + ϕ ∗ y − xk kυ + ψ ∗ y − xk kυ


 �
ds

≤ sup
t∈ 0,1½ �

1 + ϕ∗+ψ ∗ð Þ σk k
υΓ α + βð Þ

eυt − 1
eυt

y − xk kυ

≤
1 + ϕ∗+ψ ∗ð Þ σk k y − xk kυ

Γ α + βð Þυ :

ð19Þ

By using the condition of the new norm, we conclude that F1
is a contraction.

Next, we will prove that F2 is compact and continuous.
Continuity of f implies that the operator F2 is continu-

ous. Also, F2 is uniformly bounded on Br as

F2yk k ≤ θk kυ eυ − 1ð Þ
υ

2
Γ αð ÞΓ β + 2ð Þ + 1

Γ α + βð Þ
� 	

: ð20Þ

Suppose that 0 ≤ t1 < t2 ≤ 1. We have

F2y t2ð Þ − F2y t1ð Þj j ≤
tβ+12 − tβ+11

��� ��� + t2 − t1j j
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1

× f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj jds + t2 − t1j j
Γ α + βð Þ

�
ð1
0
1 − sð Þα+β−1 f s:x sð Þ, ϕx sð Þ, ψx sð Þð Þj jds:

ð21Þ

Then, jF2yðt2Þ − F2yðt1Þj⟶ 0, as t1 ⟶ t2 independently
from y ∈ Br .

This shows that the operator F2 is relatively compact on
Br . Thus, by the Arzela Ascoli theorem, we obtain that F2 is
compact on Br .

By the Krasnoselskii fixed point theorem, the problem (1)
has at least one solution on Br .
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Theorem 8. Suppose that f : ½0, 1� ×ℝ3 ⟶ℝ is a continu-
ous function satisfying

ðH1Þ for all t ∈ ½0, 1� and x1, x2, x3, y1, y2, y3 ∈ℝ, we have
j f ðt, x1, x2, x3Þ − f ðt, y1, y2, y3Þj ≤ σðtÞðjx1 − y1j + jx2 − y2j +
jx3 − y3jÞ with σðtÞ ∈ L1ð½0, 1� ; ½0,∞ÞÞ.Then, there exists a
unique solution for the problem (1) under the following con-
dition: r1 < 1, where r1 = 2ð1 + ϕ∗+ψ ∗Þσ ∗ ðð1/Γðα + βÞÞ +
ð1/ΓðαÞΓðβ + 2ÞÞÞ,

with σ ∗ =
Ð 1
0σðtÞdt.

Proof. Define F : X⟶ X by

Fx tð Þ = 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þ, ψx sð Þð Þds

−
tβ+1 − t

Γ αð ÞΓ β + 2ð Þ
ð1
0
1 − sð Þα−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þds

−
t

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þds:

ð22Þ

Setting sup
0≤t≤1

j f ðt, 0, 0, 0Þj = P.

We consider the set Br = fx ∈ X : kxk ≤ rg, where r ≥
ðr2/ð1 − r1ÞÞ, with

r2 = 2P 1
Γ α + βð Þ + 1

Γ αð ÞΓ β + 2ð Þ
� 	

: ð23Þ

For each t ∈ ½0, 1� and x ∈ Br , we have

Fx tð Þj j ≤ 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj jds

+ tβ+1 + t
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj jds

+ t
Γ α + βð Þ

ð1
0
1 − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj j

≤
1

Γ α + βð Þ
ð1
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þjð

− f s, 0, 0, 0ð Þj + f s, 0, 0, 0ð Þj jÞds + tβ+1 + t
Γ αð ÞΓ β + 2ð Þ

�
ð1
0
1 − sð Þα−1 × f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þ − f s, 0, 0, 0ð Þj jð

+ f s, 0, 0, 0ð Þj jÞds + 1
Γ α + βð Þ

�
ð1
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þ − f s, 0, 0, 0ð Þj jð

+ f s, 0, 0, 0ð Þj jÞds ≤ 1
Γ α + βð Þ

�
ð1
0
t − sð Þα+β−1 σ sð Þ x sð Þj j + ϕx sð Þj j + ψx sð Þj jð Þ + Pð Þds

+ 2
Γ αð ÞΓ β + 2ð Þ

ð1
0
1 − sð Þα−1 σ sð Þ x sð Þj j + ϕx sð Þj jðð

+ ψx sð Þj jÞ + PÞds + 2
Γ α + βð Þ

ð1
0
1 − sð Þα+β−1 σ sð Þ x sð Þj jðð

+ ϕx sð Þj j + ψx sð Þj jÞ + PÞds ≤ 1 + ϕ ∗ +ψ ∗ð Þ xk k
Γ α + βð Þ

�
ð1
0
σ sð Þds + P

Γ α + βð Þ
ðt
0
t − sð Þα+β−1ds + 2 1 + ϕ ∗ +ψ ∗ð Þ xk k

Γ αð ÞΓ β + 2ð Þ
�
ð1
0
σ sð Þds + 2P

Γ αð ÞΓ β + 2ð Þ +
1 + ϕ ∗ +ψ ∗ð Þ xk k

Γ α + βð Þ
ð1
0
σ sð Þds

+ P
Γ α + βð Þ ≤

2 1 + ϕ ∗ +ψ ∗ð Þ xk k
Γ α + βð Þ σ∗ + 2P

Γ α + βð Þ
+ 2P
Γ αð ÞΓ β + 2ð Þ + 2 1 + ϕ ∗ +ψ ∗ð Þ xk k

Γ αð ÞΓ β + 2ð Þ σ∗

≤ 2 1 + ϕ ∗ +ψ ∗ð Þσ∗ 1
Γ α + βð Þ + 1

Γ αð ÞΓ β + 2ð Þ
� 	

xk k

� + 2P 1
Γ α + βð Þ + 1

Γ αð ÞΓ β + 2ð Þ
� 	

:

ð24Þ

Then, kFxk ≤ r.
Therefore, FBr ⊆ Br .
Next, we show that F is a contraction mapping.
For x, y ∈ Br , we have

Fx tð Þ − Fy tð Þj j ≤ 1
Γ α + βð Þ

ðt
0
t − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þj

− f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þjds + tβ+1 + t
Γ αð ÞΓ β + 2ð Þ

ðt
0
1 − sð Þα−1

× f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þ − f s, y sð Þ, ϕy sð Þ, ψy sð Þð Þj jð Þds

+ 1
Γ α + βð Þ

ðt
0
1 − sð Þα+β−1 f s, x sð Þ, ϕx sð Þ, ψx sð Þð Þjð

− f s, y sð Þ, ϕy sð Þ, ψy sð Þð ÞjÞds ≤ 1
Γ α + βð Þ

�
ðt
0
t − sð Þα+β−1σ sð Þ x sð Þ − y sð Þj j + ϕx sð Þ − ϕy sð Þj jð

+ ψx sð Þ − ψy sð Þj jÞds + tβ+1 + t
Γ αð ÞΓ β + 2ð Þ

ðt
0
1 − sð Þα−1σ sð Þ

× x sð Þ − y sð Þj j + ϕx sð Þ − ϕy sð Þj j + ψx sð Þ − ψy sð Þj jð Þds

+ t
Γ α + βð Þ

ð1
0
1 − sð Þα+β−1σ sð Þ x sð Þ − y sð Þj j + ϕx sð Þ −j jϕy sð Þð

+ ψx sð Þ − ψy sð Þj jÞds ≤ 1 + ϕ ∗ +ψ ∗ð Þ x − yk k
Γ α + βð Þ

ð1
0
σ sð Þds

+ 2 1 + ϕ ∗ +ψ ∗ð Þ x − yk k
Γ αð ÞΓ β + 2ð Þ ×

ð1
0
σ sð Þds + 1 + ϕ ∗ +ψ ∗ð Þ x − yk k

Γ α + βð Þ
�
ð1
0
σ sð Þds + 1

Γ α + βð Þ
ð1
0
1 − sð Þα+β−1σ sð Þ x sð Þ − y sð Þj jð

+ ϕx sð Þ − ϕy sð Þj j + ψx sð Þ − ψy sð Þj jÞds ≤ 1 + ϕ ∗ +ψ ∗ð Þ x − yk k
Γ α + βð Þ

�
ð1
0
σ sð Þds + 2 1 + ϕ ∗ +ψ ∗ð Þ x − yk k

Γ αð ÞΓ β + 2ð Þ ×
ð1
0
σ sð Þds

+ 1 + ϕ ∗ +ψ ∗ð Þ x − yk k
Γ α + βð Þ

ð1
0
σ sð Þds ≤ 2 1 + ϕ∗+ψ ∗ð Þ x − yk k

Γ α + βð Þ σ∗

+ 2 1 + ϕ ∗ +ψ ∗ð Þ x − yk k
Γ αð ÞΓ β + 2ð Þ σ∗ ≤ 2 1 + ϕ ∗ +ψ ∗ð Þσ∗

� 1
Γ α + βð Þ + 1

Γ αð ÞΓ β + 2ð Þ
� 	

x − yk k:

ð25Þ
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Since r1 < 1, then F is a contraction. Therefore, the system
(1) has a unique solution.

4. Examples

In this section, we give two examples to show the applicabil-
ity of our results.

Example 1. Consider the following problem:

Here,

β = 16
11 ,

α = 17
11 ,

f t, x, y, zð Þ = t3

400
x tð Þj je−t
1 + x tð Þj j +

y tð Þj j cos tð Þ
1 + y tð Þj j + z tð Þj j sin tð Þ

1 + z tð Þj j
� 	

,

λ t, sð Þ = δ t, sð Þ = t + sð Þ3
400 ,

σ tð Þ = t3

400 ,

θ tð Þ = 3t3
400 : ð27Þ

It follows that

ϕ∗ = ψ∗ = 15
1600 ,

σ∗ = 1
1600 :

ð28Þ

Then, by Theorem 7, we obtain that the problem (26) has at
least one solution.

Example 2. Consider the following system:

cD
10
7 cD

11
7

� �
x tð Þ = t2

200
1

1 + x tð Þj j +
1
100

ðt
0
t4s3x sð Þds

� 	
, t ∈ 0, 1½ �,

x 0ð Þ = x 1ð Þ= cD
11
7 x 0ð Þ= cD

11
7 x 1ð Þ = 0:

8><
>:

ð29Þ

Here,

B = 11
7 ,

α = 10
7 ,

f t, x, y, zð Þ = t2

200
1

1 + x tð Þj j + y tð Þ + z tð Þ
� 	

,

λ t, sð Þ = δ t, sð Þ = t4s3

200 ,

σ tð Þ = t2

200 :

ð30Þ

It is clear that

ϕ∗ = ψ∗ = 1
800 ,

σ∗ = 1
600 ,

r1 ≈ 0, 0036:

ð31Þ

By Theorem 8, we conclude that the problem (29) has a
unique solution.

5. Conclusion

In this paper, we proved the existence and uniqueness of
solutions for nonlinear fractional integrodifferential equa-
tions of order 1 < α ≤ 2 and 1 < β ≤ 2 using the Banach con-
traction mapping principle and Krasnoselskii’s fixed point
theorem under some weak conditions. Furthermore, we pro-
vided two examples to illustrate the main results.
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cD
17
11 cD

16
11

� �
x tð Þ = t3

400
x tð Þe−tj j
1 + x tð Þj j +

ðt
0

t + sð Þ3 x sð Þj j cos sð Þ + sin sð Þð Þ
400 1 + x sð Þj jð Þ x 0ð Þ = x 1ð Þ= cD

16
11x 0ð Þ= cD

16
11x 1ð Þ = 0:

t∈ 0,1½ �,

0
B@

1
CA

8><
>: ð26Þ
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