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We analyze a nondegenerate three-level cascade laser with an open cavity and coupled to a two-mode thermal reservoir employing
the stochastic differential equations for atomic operators associated with the normal ordering. Applying the large-time
approximation scheme, we obtain the solutions for the corresponding equations of evolution of the expectation values of atomic
operators. Furthermore, employing the resulting solutions, we studied the photon as well as cavity atomic-state entanglement
amplification of the cavity radiation.

1. Introduction

Three-level cascade lasers have received considerable atten-
tion over the years in connection with the strong correlation
between the modes of the generated radiation that leads to a
substantial degree of nonclassical features [1–24]. When a
three-level atom in a cascade configuration makes a transi-
tion from top to the bottom level via the intermediate level,
two photons are generated. If the two photons have the same
frequency, then the three-level atom is called a degenerate
three-level atom; otherwise, it is called nondegenerate. The
squeezing and statistical properties of the light produced by
three-level lasers when the atoms are initially prepared in a
coherent superposition of the top and bottom levels or when
these levels are coupled by a strong coherent light have been
studied by several authors [10, 25–33]. The authors have
found that these quantum optical systems can generate
squeezed light under certain conditions.

Moreover, Abebe [9] has studied the squeezing and
entanglement properties of the light generated by a coher-
ently driven nondegenerate three-level laser possessing an
open cavity and coupled to a two-mode vacuum reservoir.
He has obtained that the maximum quadrature squeezing
of the light generated by the laser, operating below threshold,
and found to be 50% below the vacuum-state level. Similarly,
Abebe [24] also studied the quantum properties of the light

produced by a coherently driven nondegenerate three-level
laser with a closed cavity and coupled to a two-mode vacuum
reservoir. In this study, he found that the maximum quadra-
ture squeezing is 43% below the vacuum-state level, which is
slightly less than the result found on open cavity [9]. He also
found that the photon numbers of a two-mode light beams
are correlated. The analysis of [24] showed that the intracav-
ity quadrature squeezing is enhanced due to the driven
coherent light. It is found that the squeezing and entangle-
ment in the two-mode light are directly related. As a result,
an increase in the degree of squeezing directly implies an
increase in the degree of entanglement. This shows that
whenever there is squeezing in the two-mode light, there
exists entanglement in the system.

Continuous variable entanglement is the quantum feature
that can be generated by the correlated photons produced in
the quantum optical system as studied by [13–16, 20, 21].
Quantum entanglement, which has no classical counterpart,
is the key ingredient for quantum information as a resource
of tasks like quantum memories for quantum computers,
quantum information and communication, quantum dense
coding, quantum teleportation for secure communication,
and atom clocks and interferometers for quantum sensing
and metrology to name a few of its only fascinating applica-
tions [17, 19, 22, 34, 35]. In general, degree of entanglement
degrades as it interacts with the environment. On the other
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hand, the efficiency of quantum information processing highly
depends on the degree of entanglement. As a consequence, it is
desirable to generate strongly entangled continuous variable
states which can survive from environmental noise. Moreover,
many schemes have been proposed to produce a strong
entangled light from three-level laser using different tech-
niques theoretically [12–16, 24]. Some authors have studied
the effect of thermal reservoir on the quantum properties of
light generated by the three-level laser [15]. Gashu et al. have
found that the effect of thermal light in the laser cavity
decreases the degree of entanglement [13].

In this paper, we study the quantum properties of the
cavity light beams produced by a coherently driven nonde-
generate three-level laser with an open cavity and coupled
to a two-mode thermal reservoir via a single-port mirror.
First, we obtain the master equation for a coherently driven
nondegenerate three-level atom with the cavity modes and
the quantum Langevin equations for the cavity mode opera-
tors. Employing the master equation and the large-time
approximation scheme, we drive the equations of evolution
of the expectation values of the atomic operators. Hence,
we determine the steady-state solutions of the resulting equa-
tions of evolution. Here, we carry out our calculation by put-
ting the noise operators associated with the two-mode
thermal reservoir in normal order. Applying the steady-
state solutions of the resulting equations of evolution along
with the quantum Langevin equations, we obtain the photon
and cavity atomic-state entanglement.

2. The Model

We consider here the case in which N nondegenerate three-
level atoms in cascade configuration are available in an open
cavity. We denote the top, intermediate, and bottom levels of
the three-level atom by jaik, jbik, and jcik, respectively. As
shown in Figure 1 for nondegenerate cascade configuration,
when the atom makes a transition from level jaik to jbik
and from levels jbk to jcik, two photons with different fre-
quencies are emitted. The emission of light when the atoms
make the transition from the top level to the intermediate
level is light mode a and the emission of light when the atoms
make the transition from the intermediate level to the bottom
level is light mode b. We assume that the cavity mode a is at
resonance with transition jaik → jbik and the cavity mode b
is at resonance with the transition jbik → jcik, with top and
bottom levels of the three-level atom coupled by coherent
light. The interaction of the three-level atoms with the cavity
mode radiation and classical field is described by the Hamil-
tonian of the following form [1, 25].

Ĥ = Ĥ0 + ĤI , ð1Þ

where the first term can be rewritten, assuming ℏ = 1 for
simplicity sake only, as follows:

Ĥ0 = 〠
j=a,b,c

ωj jj i jh j + ωaba∧
†â + ωbcb∧

†b̂, ð2Þ

in which ωa, ωb, and ωc indicate the frequencies of the three
states of the atom. On the other hand, ωab = ωa − ωb and
ωbc = ωb − ωc represent the frequencies of the allowed dipole
atomic transitions and are resonant with the annihilation
operators of the two cavity modes â and b̂.

The interaction of a nondegenerate three-level atom with
two-mode cavity radiation can be expressed in the interac-
tion picture with the rotating wave approximation (RWA)
by the Hamiltonian of the following form [1, 33].

ĤS = ig bσ†k
a â − a∧†bσk

a + bσ†k
b b̂ − b∧†bσk

b

h i
+ iΩ

2 bσ†k
c − bσk

c

h i
,

ð3Þ

where g is the coupling constant between the atom and cavity
mode a or b; â and b̂ are the annihilation operators for light
modes a and b, and

bσk
a = bj ik k ajh ,

bσk
b = cj ik k bh j,

bσk
c = cj ik k ah j

ð4Þ

are the lowering atomic operators. Here,Ω = 2ελ, in which ε,
considered to be real and constant, is the amplitude of the
driving coherent light and λ is the coupling constant between
the driving coherent light and the three-level atom.

2.1. The Master Equation. The quantum analysis of the inter-
action of a system such as a cavity mode or a three-level atom
with the external environment is a relatively complex prob-
lem. The external environment, usually referred to as a reser-
voir, can be thermal light, ordinary, or squeezed vacuum. We

N-atoms

|a > k

|b > k

|c > k

ωa

ωb
Two-made

thermal light

K

ℇ

Figure 1: Schematic representation of a nondegenerate three-level
laser coupled to a two-mode thermal reservoir. Here, ε is the
amplitude of the driving coherent light that couples the top and
bottom levels of the atom. And also κ is the cavity damping
constant and it is assumed the same for both transitions. The top,
intermediate, and bottom levels of the three-level atom are
denoted by jaik, jbik, and jcik, respectively, where k = 1, 2,⋯,N
are the number of atoms inside the cavity. When the atom makes
a transition from level jaik → jbik and from levels jbik → jcik, two
photons with different frequencies (ωa and ωb) are emitted (color
online).
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are interested in the dynamics of the system and this is
describable by the master equation or quantum Langevin
equations. Here, we obtain the above set of dynamical equa-
tions for a cavity mode coupled to a thermal reservoir via a
single-port mirror. The resulting equations are easily adapt-
able to the case when the external environment is either a
thermal or a vacuum reservoir. We then focus our study
when the cavity mode is coupled to a thermal reservoir. A
system coupled with a thermal reservoir can be described
by the Hamiltonian [2, 25].

Ĥ = ĤS + ĤSR, ð5Þ

where ĤS is the Hamiltonian of the system and ĤSR describes
the interaction between the system and the reservoir. Sup-
pose bχðtÞ is the density operator for the system and the res-
ervoir, then the equation of evolution of this density operator
is given by the following [2, 25]:

d
dt

bχ tð Þ = −i ĤS tð Þ + ĤSR, bχ tð Þ� �
: ð6Þ

We are interested in the quantum dynamics of the system
alone. Hence, taking into account Equation (6), we see that
the density operator for the system, also known as the
reduced density operator

bρ tð Þ = TrRbχ tð Þ, ð7Þ

evolves in time according to

d
dt

bρ tð Þ = −i Ĥ tð Þ, bρ tð Þ� �
− iTr ĤSR tð Þ, bχ tð Þ� �

, ð8Þ

in which TrR indicates the trace over the reservoir variables
only. On the other hand, a formal solution of Equation (6)
can be written as follows [2, 25]:

bχ tð Þ = bχ 0ð Þ − i
ðt
0
ĤS t ′

� �
+ ĤSR t ′

� �
, bχ t ′

� �h i
dt ′: ð9Þ

In order to obtain mathematically manageable bχðt ′Þ by
some approximately valid expression, then, in the first place,
we would arrange the reservoir in such a way that its density
operator R̂ remains constant in time. This can be achieved by
letting a beam of thermal light (or light in a vacuum state)
of constant intensity fall continuously on the system. More-
over, we decouple the system and reservoir density opera-
tors, so that

bχ t ′
� �

= bρ t ′
� �

R̂: ð10Þ

Therefore, with the aid of this, one can rewrite Equation
(9) as follows:

bχ tð Þ = bρ 0ð ÞR̂ −
ðt
0
ĤS t ′

� �
+ ĤSR t ′

� �
, bρ t ′

� �
R̂

h i
dt ′: ð11Þ

Now on substituting Equation (11) into Equation (8),
there follows

d
dt

bρ tð Þ = −i ĤS tð Þ, bρ tð Þ� �
− i ĤSR tð Þ� �

R
, bρ 0ð Þ� �

−
ðt
0

ĤSR tð Þ� �
R
, ĤS t ′

� �
, bρ t ′

� �h ih i
dt ′

−
ðt
0
TrR ĤSR tð Þ, ĤSR t ′

� �
, bρ t ′

� �
R̂

h ih i
dt ′,

ð12Þ

where S and R refer to the system and reservoir variables
and bρð0Þ represents the radiation initially in the cavity.
The interaction of Hamiltonian for N nondegenerate
three-level atoms coupled to thermal reservoir is as fol-
lows [25]:

ĤSR tð Þ = i〠
j

λj bσ†k
a âj − â†j bσk

a + bσ†k
b b̂j − b̂

†
j bσk

b

h i
, ð13Þ

where λj is the coupling constant for the jth mode of the

reservoir and ðâj, b̂jÞ are the annihilation operators of the
two-mode thermal reservoir. Now, using the density oper-
ator of the thermal reservoir [32],

R̂ = 〠
∞

n=0

�nnth
1 + �nthð Þn+1 nij njh , ð14Þ

one can easily check that

âj
� �

R
= 〠

∞

n=0

�nnth
1 + �nthð Þn+1 TrR nij njh âj

� 	
= 〠

∞

n=0

�nnth
1 + �nthð Þn+1 n ∣ n − 2h i = 0:

ð15Þ

Following the same procedure, we obtain the following:

b̂j
D E

R
= â2j
D E

= b̂
2
j

D E
= â†j b̂j
D E

R

= 0, b̂
†
j âj

D E
R
= âjb̂j
D E

R
= b̂jâj
D E

R
= 0:

ð16Þ

In view of these results, we see that

ĤSR tð Þ� �
R
= 0: ð17Þ

Therefore, the second and the third commutation rela-
tions in Equation (12) are zero. This confirms that the ther-
mal light in the cavity does not directly contribute to the
master equation. In addition, applying the commutation
relation ½âj, â†j � = 1, we then note that hâjâ†j i = �nth + 1 and

hâ†j âji = �nth, where �na = �nb = �nth is the mean photon num-
ber for the thermal reservoir. As a result, solving the
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remaining terms by following the standard approach yields
the following equation [2]:

d
dt

bρ tð Þ = g bσ†k
a âbρ − a∧†bσk

abρ + bσ†k
b b̂bρ − b∧†bσk

bbρh
− bρbσ†k

a â + bρa∧†bσk
a − bρbσ†k

b b̂ + bρb∧†bσk
b

i
+ Ω

2 bσ†k
c bρ − bσk

c bρ − bρbσ†k
c + bρbσk

c

h i
+ γ

2 �nth 2bσ†k
a bρbσk

a − bσk
abσ†k

a bρ − bρbσk
abσ†k

a

h i
+ γ

2 �nth + 1ð Þ 2bσk
abρbσ†k

a − bσ†k
a bσk

abρ − bρbσ†k
a bσk

a

h i
+ γ

2 �nth 2bσ†k
b bρbσk

b − bσk
bbσ†k

b bρ − bρbσk
bbσ†k

b

h i
+ γ

2 �nth + 1ð Þ 2bσk
bbρbσ†k

b − bσ†k
b bσk

bbρ − bρbσ†k
b bσk

b

h i
,

ð18Þ

where γa = γb = γ = 2hλ2, considered to be the same for levels
jai and jbi, is the spontaneous emission decay constant.

2.2. Quantum Langevin Equations. We recall that the laser
cavity is coupled to a two-mode thermal reservoir via a
single-port mirror. In addition, we carry out our calculation
by putting the noise operators associated with the thermal
reservoir in normal order. Thus, the noise operators will
not have any effect on the dynamics of the cavity mode oper-
ators [2, 9, 24]. We can therefore drop the noise operators
and write the quantum Langevin equations for the operators
â and b̂ as follows:

dâ
dt

= −
κ

2 â − i â, Ĥ
� �

, ð19aÞ

db̂
dt

= −
κ

2 b̂ − i b̂, Ĥ
h i

, ð19bÞ

where κ is the cavity damping constant. Then, in view of
Equation (3), the quantum Langevin equations for cavity
mode operators â and b̂ turn out to be

dâ
dt

= −
κ

2 â − gbσk
a, ð20aÞ

db̂
dt

= −
κ

2 b̂ − gbσk
b:

ð20bÞ

Following the procedure described in Reference [9, 24],
for N number of atoms, we have the following:

dâ
dt

= −
κ

2 â +
gffiffiffiffi
N

p m̂a, ð21aÞ

db̂
dt

= −
κ

2 b̂ +
gffiffiffiffi
N

p m̂b: ð21bÞ

The sum of Equations (21a) and (21b) yields

dĉ
dt

= −
κ

2 ĉ +
gffiffiffiffi
N

p m̂: ð22Þ

2.3. Stochastic Differential Equations. Here, we seek to obtain
the equations of evolution of the expectation values of the
atomic operators by applying the master equation and the
large-time approximation scheme. To this end, making use
of the master equation described by Equation (18) for any
operator Â and the fact that

d
dt

Â
� �

= Tr
dbρ tð Þ
dt

Â
� �

, ð23Þ

along with the master (Equation (18)), one can readily estab-
lish that

d
dt

bσk
a

D E
= g bηk

bâ
D E

− bηkaâD E
+ b∧†bσk

c

D Eh i
+ Ω

2 bσ†k
b

D E
−
γ

2 3�nth + 2ð Þ bσk
a

D E
,

ð24aÞ

d
dt

bσk
b

D E
= g bηkc b̂D E

− a∧†bσk
c

D E
− bηk

bb̂
D Eh i

−
Ω

2 bσ†k
a

D E
−
γ

2 3�nth + 2ð Þ bσk
b

D E
,

ð24bÞ
d
dt

bσk
c

D E
= g bσk

bâ
D E

− bσk
ab̂

D Eh i
+ Ω

2 bηkcD E
− bηk

a

D Eh i
− γ �nth + 1½ � bσk

c

D E
,

ð24cÞ
d
dt

bηk
a

D E
= g bσ†k

a â
D E

+ a∧†bσk
a

D Eh i
+ Ω

2 bσk
c

D E
+ bσ†k

c

D Eh i
−
γ

2 �nth + 1½ � bηkaD E
,

ð24dÞ
d
dt

bηk
b

D E
= g bσ†

bb̂
D E

+ b∧†bσk
b

D E
− bσ†k

a â
D E

− a∧†bσk
a

D Eh i
− γ 2�nth + 1ð Þ bηk

a

D E
− bηk

b

D Eh i
,

ð24eÞ
where

bηk
a = aij k k ajh , ð25aÞ

bηkb = bij k k bjh , ð25bÞ

bηkc = cij k k cjh : ð25cÞ
We see that Equations (24a)–(24e) are the nonlinear dif-

ferential equations, and hence, it is not possible to find exact
time-dependent solutions of these equations. We intend to
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overcome this problem by applying the large-time approxi-
mation [9, 24]. Therefore, employing this approximation
scheme, we get from Equations (21a) and (21b) the approxi-
mately valid relations:

â = −
2g
κ

bσk
a, ð26aÞ

b̂ = −
2g
κ

bσk
b: ð26bÞ

Now introducing Equations (26a) and (26b) into Equa-
tions (24a)–(24e) and summing over N three-level atoms,
we get the following:

d
dt

m̂ah i = −
1
2 γ + γcð Þ 3�nth + 2ð Þ m̂ah i + Ω

2 m̂†
b

� �
, ð27aÞ

d
dt

m̂bh i = −
1
2 γ + γcð Þ 3�nth + 1ð Þ m̂bh i − Ω

2 m̂†
a

� �
, ð27bÞ

d
dt

m̂ch i = −
1
2 γ + γcð Þ 2�nth + 1ð Þ m̂ch i + Ω

2 N̂c

� �
− N̂a

� �� �
,

ð27cÞ
d
dt

N̂a

� �
= − γ + γcð Þ �nth + 1ð Þ N̂a

� �
+ Ω

2 m̂ch i + m̂†
c

� �� �
,

ð27dÞ
d
dt

N̂b

� �
= γ + γcð Þ 2�nth + 1ð Þ N̂b

� �
− N̂a

� �� �
, ð27eÞ

where γc = 4g2/κ is the stimulated emission decay constant.

For N number of atoms, we see that m̂j =∑N
k=1bσk

j and N̂ j =
∑N

k=1bηkj , where j = a, b, c. Hence, the operators N̂a, N̂b, and

N̂c represent the number of atoms in the top, middle, and
bottom levels, respectively. In addition, employing the
completeness relation,

bηka + bηk
b + bηk

c = Î, ð28Þ

we easily arrive at

N̂a

� �
+ N̂b

� �
+ N̂c

� �
=N: ð29Þ

Furthermore, using the definition bσk
a = jbikkhaj and set-

ting for any k, bσk
a = jbihaj, we have m̂a =Njbihaj. Following

the same procedure, one can also easily establish that m̂b =
Njcihbj, m̂c =Njcihaj, N̂a =Njaihaj, N̂b =Njbihbj, and
N̂c =Njcihcj. Using the definition m̂ = m̂a + m̂b [9], it can
be readily established that

m∧†m̂ =N N̂a + N̂b

� 	
, ð30aÞ

m̂m∧† =N N̂b + N̂c

� 	
, ð30bÞ

m∧2 =Nm̂c: ð30cÞ

Following a straightforward algebra described by [9, 24],
it is possible to obtain the steady-state solution of the sto-
chastic differential equation of the atomic operators:

N̂a

� �
= Ω2N

γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ + 3Ω2

" #
, ð31aÞ

N̂b

� �
= Ω2N

γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ + 3Ω2

" #
, ð31bÞ

N̂c

� �
= γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ +Ω2� �

N

γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ + 3Ω2

" #
, ð31cÞ

m̂ch i = Ω γc + γð Þ �nth + 1ð ÞN
γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ + 3Ω2

" #
: ð31dÞ

3. Entanglement

In this section, we seek to study the degree of entanglement of
photon states and the atom entanglement of the two-mode
cavity light produced by a system under consideration.

3.1. Photon Entanglement.Quantum entanglement is a phys-
ical phenomenon that occurs when pairs or groups of parti-
cles cannot be described independently; instead, a quantum
state may be given for the system as a whole. Measurements
of physical properties such as position, momentum, spin, and
polarization performed on entangled particles are found to
be appropriately correlated. A pair of particles is taken to
be entangled in quantum theory, if its states cannot be
expressed as a product of the states of its individual constitu-
ents. The preparation and manipulation of these entangled
states that have nonclassical and nonlocal properties lead to
a better understanding of the basic quantum principles. It is
in this spirit that this section is devoted to the analysis of
the entanglement of the two-mode photon states. In other
words, it is a well-known fact that a quantum system is said
to be entangled, if it is not separable. That is, if the density
operator for the combined state cannot be described as a
combination of the product density operators of the constit-
uents,

bρ ≠〠
k

pkbρ 1ð Þ
k ⊗ bρ 2ð Þ

k , ð32Þ

in which pk ≫ 0 and ∑kpk = 1 to verify the normalization of
the combined density states. On the other hand, a maximally
entangled CV state can be expressed as a co-eigenstate of a
pair of EPR-type operators [34] such as x̂a − x̂b and P̂a − P̂b.
The total variance of these two operators reduces to zero
for maximally entangled CV states. According to the insepa-
rable criteria given by Duan et al. [35], cavity photon states of
a system are entangled, if the sum of the variance of a pair of
EPR-like operators,

ŝ = x̂a − x̂b, ð33aÞ
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Figure 2: A plot of the photon entanglement of the two-mode cavity light (Equation (37)) versus Ω and �nth for γc = 0:4 and γ = 0:2 (color
online) N = 50.
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Figure 3: Plots of the photon entanglement of the two-mode cavity
light (Equation (37)) versus Ω for γc = 0:4 and γ = 0:2, and for
different values of �nth (color online) N = 50.

Table 1: Numerical value of the degree of entanglement from
Figure 3 for values of κ = 0:8, γc = 0:4, �nth = 0:5, and N = 50.

Spontaneous emission Δs2 + Δt2 Occurs at

γ = 0 33:5% Ω = 0:4343
γ = 0:1 33:5% Ω = 0:3636
γ = 0:2 33:5% Ω = 0:2929
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Figure 4: A plot of the photon entanglement of the two-mode cavity
light (Equation (37)) versus Ω and �nth for γc = 0:4 and γ = 0:2, and
for different values of �nth.

Table 2: Numerical value of the degree of entanglement from
Figure 4 for values of κ = 0:8, γc = 0:4, γ = 0:2, and N = 50.

�nth Δs2 + Δt2 Occurs at

�nth = 0 36% Ω = 0:4343
�nth = 0:2 34:2% Ω = 0:3636
�nth = 0:5 33:5% Ω = 0:2929

t̂ = p̂a + p̂b, ð33bÞ

with

x̂a =
1ffiffiffi
2

p â + a∧†� 	
, 

x̂b =
1ffiffiffi
2

p b̂ + b∧†
� �

,
ð34aÞ

p̂a =
iffiffiffi
2

p a∧† − â
� 	

, 

p̂b =
iffiffiffi
2

p b∧† − b̂
� � ð34bÞ

are quadrature operators for modes a and b, satisfy

Δs2 + Δt2 < 2N , ð35Þ
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and recalling the cavity mode operators â and â are Gaussian
variables with zero mean, we readily get

Δs2 + Δt2 = 2γc
κ

N + N̂b

� �
± 2 m̂ch i� �

: ð36Þ

On the account of Equations (31b) and (31d), the photon
entanglement of the two-mode cavity light takes, at steady
state, the form

Δs2 + Δt2 = 2 γc
κ
N

� � γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ
Δ

"

+ 4Ω2 − 2Ω γc + γð Þ �nth + 1ð Þ
Δ


,

ð37Þ

where

Δ = γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ + 3Ω2� �
: ð38Þ

This is with the help of the criterion (Equation ((35)))
that a significant entanglement between the states of the light
generated in the cavity. This is due to the strong correlation
between the radiations emitted when the atoms decay from
the upper energy level to the lower via the intermediate level.

It is clearly indicated in Figure 2 the cavity radiation is
found to be entangled for all parameters under consideration.
It can be observed that the degree of entanglement increases
for smaller values of the driving coherent light Ω, but
decreases for the larger values. Moreover, when we see the
plots in Figure 3 as well as from the data in Table 1 that as
the spontaneous emission decay constant increases, the pho-
ton entanglement also decreases for a fixed value of pumping.
Furthermore, it is not difficult to see from the plots in
Figure 4 that as a thermally seeded light mean photon num-
ber value increases, the photon entanglement also decreases.
From this plot, the thermal light significantly damages the
photon entanglement in the earlier stages (at Ω = 0) of the
lasing process.

On the other hand, Figure 4 shows the degree of entan-
glement of the cavity radiation versus the thermal light, �nth,
and the driving coherent light, Ω, for values of κ = 0:8, γc =

0:4, γ = 0:2, and N = 50 (Table 2). As we see from the plot,
the degree of entanglement increases for small values of �nth
and for small values of the pumping light which couples the
top and bottom levels of the atoms. The effect of the absence
of thermal reservoir, �nth = 0, is to increase the intracavity
degree of entanglement for small values of Ω. In addition, it
is clearly shown in Figure 5 that the photon entanglement
increases for small values of γ and the driving coherent light,
Ω. On both figures, the maximum degree of entanglement
occurs at which Ω = 0:2929.

3.2. Cavity Atomic-State Entanglement. The quantum entan-
glement between the two cavity modes a and b is proposed by
Duan-Giedke-Cirac-Zoller (DGCZ) [35], which is a suffi-
cient condition for entangled quantum states. According to
DGCZ, a quantum state of a system is said to be entangled
if the sum of the variances of the EPR-like quadrature oper-
ators, û and v̂, satisfy the inequality

Δu2 + Δv2 < 2N2: ð39Þ
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Figure 5: A plot of the photon entanglement of the two-mode cavity light (Equation (37)) versus Ω and γ for γc = 0:4 and �nth = 0:5 (color
online) N = 50.
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Figure 6: Plots of the atom entanglement of the two-mode cavity
light (Equation (44)) versus Ω for γc = 0:4 and γ = 0:2, and for
different values of �nth (color online) N = 50.
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On the other hand, cavity atomic states of a system are
entangled, if the sum of the variance of a pair of EPR-like
operators

û = x̂′a − x̂′b, ð40aÞ

v̂ = p̂′a + p̂′b, ð40bÞ
where

x̂′a =
1ffiffiffi
2

p m̂a + m̂†
a

� 	
,

x̂′b =
1ffiffiffi
2

p m̂b + m̂†
b

� 	
,

ð41aÞ

p̂′a =
iffiffiffi
2

p m̂†
a − m̂a

� 	
,

p̂′b =
iffiffiffi
2

p m̂†
b − m̂b

� 	
,

ð41bÞ

are the atomic quadrature operators. Since m̂a and m̂b are
Gaussian variables with zero means, so one can easily verify
that,

Δu2 + Δv2 = m̂†
am̂a

� �
+ m̂am̂

†
a

� �
+ m̂†

bm̂b

� ��
+ m̂bm̂

†
b

� �
− m̂†

bm̂
†
a

� �
− m̂am̂bh i�: ð42Þ

It then follows that

Δu2 + Δv2 =N N + N̂a

� �
− 2 m̂ch i� �

: ð43Þ

On the account of Equations (31a) and (31d), the cavity
atomic-state entanglement of the two-mode cavity light
takes, at steady state, the form

Δu2 + Δv2 =N2 γc + γð Þ2 �nth + 1ð Þ 2�nth + 1ð Þ½
Δ

"

+ 4Ω2 − 2Ω γc + γð Þ �nth + 1ð Þ
Δ


:

ð44Þ
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Figure 7: Plots of the atom entanglement of the two-mode cavity light (Equation (44)) versus Ω for γc = 0:4 and γ = 0:2, and for different
values of �nth (color online) N = 50.
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Figure 8: A plot of the atom entanglement of the two-mode cavity light (Equation (44)) versus γ and Ω for γc = 0:4 and �nth = 0:5 (color
online) N = 50.
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When we observe Equation (44), the cavity atomic-state
entanglement of the two-mode cavity light highly depends
on the number of atoms.

On the other hand, in the absence of the driving coherent
light, Ω = 0, Equation (44) turns out to be

Δu2 + Δv2 =N2: ð45Þ

On the basis of the criteria (Equation (45)), we clearly see
from Figure 6 that the two states of the generated light are
strongly entangled at steady state. It is not difficult to observe
that entanglement disappears when there is no pumping, and
it would be stronger for certain values of a driving coherent
light for each value of the spontaneous emission decay con-
stant, γ. Moreover, when we see the plots in Figure 6 that
as the spontaneous emission decay constant increases, the
atom entanglement also decreases when it occurs at the same
value of Ω.

When we see the plots in Figure 7 that as a thermally
seeded light mean photon number value increases, the atom
entanglement also decreases. Similarly, as we observe the
data on the plots from this figure, the photon entanglement
increased with increasing of a thermally seeded light mean

photon number value. In addition, the comparison of
Figures 8 and 9 as well as Tables 3 and 4 unfortunately reveals
that the degree of entanglement increases with the decrease
in spontaneous emission and thermal light, respectively. This
indicates that the degree of entanglement enhanced for small
values of γ and �nth with other parameters is fixed.

It is clearly shown in Figures 8 and 9 that the atom entan-
glement increases with the decrease in �nth and γ, respectively.
On both figures, the maximum degree of entanglement
occurs at which Ω = 0:2929 is the maximum degree of a cav-
ity light entanglement occurring point as we observe from the
plots of Figures 3 and 5. This indicates that similar to the
photon entanglement, the atom entanglement is also directly
related to the two-mode quadrature squeezing [9].

On the basis of the criteria (Equation (35) and Equation
(39)), we clearly see that the two states of the generated light
are strongly entangled at steady state. Moreover, the absence
of thermal light leads to an increase in the degree of
entanglement.

4. Conclusion

In this study, the quantum properties of a nondegenerate
three-level laser driven by coherent light and coupled to a
two-mode thermal reservoir via a single-port mirror whose
open cavity contains N nondegenerate three-level atoms are
thoroughly analyzed. It is carried out the analysis by putting
the noise operators associated with the thermal reservoir in
normal order and by considering the interaction of the
three-level atoms with the thermal reservoir outside the
cavity. The master equation and the quantum Langevin
equations for the cavity light are obtained. Applying these
equations, the stochastic differential equations for the atomic
operators are determined. Making use of the large-time
approximation scheme, we found the solutions of atomic
and cavity mode operators. Applying these results, the entan-
glement photons as well as atoms, at steady state, are
calculated.

The analysis showed that the intracavity photon entan-
glement is enhanced due to in the absence of spontaneous
emission as well as initially seeded thermal light. Hence, the
presence of the spontaneous emission decreases the degree
of photon entanglement for fixed values of driving coherent

Table 3: Numerical value of the degree of atom entanglement from
Figure 6 for values of κ = 0:8, γc = 0:4, �nth = 0:5, and N = 50.

Spontaneous emission Δu2 + Δv2 Occurs at

γ = 0 36% Ω = 0:2929
γ = 0:1 36% Ω = 0:3636
γ = 0:2 36% Ω = 0:4343

Table 4: Numerical value of the degree of entanglement from
Figure 7 for values of κ = 0:8, γc = 0:4, γ = 0:2, and N = 50.

�nth Δu2 + Δv2 Occurs at

�nth = 0 43:44% Ω = 0:2626
�nth = 0:2 39:32% Ω = 0:3232
�nth = 0:5 36% Ω = 0:4343
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Figure 9: A plot of the atom entanglement of the two-mode cavity light (Equation (44)) versus Ω and �nth for γc = 0:4 and γ = 0:2 (color
online) N = 50.
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light Ω which couples the top and bottom levels of a three-
level atom. Moreover, when the spontaneous emission decay
constant increases, the atom entanglement also decreases
when it occurs at the same value of Ω. Both the photon
entanglement and the atom entanglement increased with
the decreasing in a thermally seeded light mean photon num-
ber value and for small values of a spontaneous emission
decay constant.
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