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Based on the bilinear method, rational lump and mixed lump-solitary wave solutions to an extended (2+1)-dimensional KdV
equation are constructed through the different assumptions of the auxiliary function in the trilinear form. It is found that the
rational lump decays algebraically in all directions in the space plane and its amplitude possesses one maximum and two
minima. One kind of the mixed solution describes the interaction between one lump and one line solitary wave, which exhibits
fission and fusion phenomena under the different parameters. The other kind of the mixed solution shows one lump interacting
with two paralleled line solitary waves, in which the evolution of the lump gives rise to a two-dimensional rogue wave. This
shows that these three interesting phenomena exist in the corresponding physical model.

1. Introduction

The study of integrable nonlinear systems has become a hot
topic in wave propagations and mathematical physics. Inte-
grable systems approximately describe the evolution of vari-
ous waves in many physical settings, including shallow-
water waves with weakly nonlinear restoring forces, pulse
propagation in optical fibers and wave guides, long internal
waves in a density-stratified ocean, and ion acoustic waves
in plasma [1–16]. In the higher-dimensional extensions of
integrable nonlinear wave equation, the (2+1)-dimensional
KdV equation or the asymmetrical Nizhnik-Novikov-
Veselov (ANNV) equation [17]

ut + uxxx + 3 u∂−1y ux
� �

x
= 0 ð1Þ

was firstly proposed by Boiti et al. in the sense of the weak Lax
pair. This model arose in the incompressible fluid and was
shown to possess an infinite number of conservation laws,
multiple soliton solutions, and other integrability properties
[17]. By introducing two terms ∂−1y uxx and uy = ∂−1y uyy into

equation (1), a generalized (2+1)-dimensional KdV equation
with arbitrary constant coefficients has been recently devel-
oped [18]

ut + vxxx + α u∂−1y ux
� �

x
+ β ∂−1y uxx

� �
+ γ ∂−1y uyy

� �
= 0, ð2Þ

which describes the ion-acoustic waves in plasmas, shallow
water waves in oceans, and pulse waves in large arteries.
Here, α, β, and γ are real constants. Equation (2) reduces to
the ANNV equation (1) when α = 3 and β = γ = 0 and
becomes the classical KdV equation when y = x. The (2+1)-
dimensional equation (2) was investigated through the Pain-
levé test, and its multiple-soliton solutions were derived via
the simplified Hirota algorithm [18]. More recently, a lot of
rational lump solutions, hybrid solutions consisting of lump
waves and kink waves, loop-like kink breather solutions,
and the lump interacting with the line soliton solutions have
been constructed via the Hirota bilinear method [19–46].
Although these results can also be derived by Darboux trans-
formation [47–50], modified extended mapping method [1],
and direct algebraic method [2], the bilinear method is still a
powerful tool for solving integrable systems. It is worth
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mentioning that Seadawy et al. obtained some new exact
solutions of many integrable systems by using various
methods, such as extend simple equation method and the
exp ðϕðξÞÞ expansion method [1–16]. For the ANNV equa-
tion (1), the lump solutions, mixed lump-stripe solutions,
and periodic lump solutions were presented in [19].

Recently, researches about trilinear form have become a
hot topic. Trilinear form is an extension of Hirota’s bilinear
form [51]. A group of scholars who work on integrable sys-
tems have found that some new analytic solutions of nonlin-
ear PDEs can be obtained through trilinear differential
equations [52, 53]. Hence, we aim to construct the rational
lump and the lump-solitary wave solutions to the extended
(2+1)-dimensional KdV equation (2) through the trilinear
form.

The rest of the paper is organized as follows. In Section 2,
we firstly transform the extended (2+1)-dimensional KdV
equation (2) to the trilinear form through the certain variable
transformation and construct the exact rational lump solu-
tion. The mixed solution composed of one lump and one line
solitary wave is derived in Section 3. Section 4 devotes to
studying the interaction solution consisting of one lump
and two line solitary waves, which can be viewed as a two-
dimensional rogue wave excited from the line soliton pair.

2. Lump Solution

Through the dependent variable transformation u = ð6/αÞ
ðln f Þxy, the extended (2+1)-dimensional KdV equation (2)
is transformed to the following trilinear form:

f , B1 f · f½ �y + β f ,D2
x f · f

� �
x
− 3 f xx,DxDy f · f

� �
x

+ 3 f xx,D2
x f · f

� �
y
= 0,

ð3Þ

where

B1 f · f =DxDt f · f +D4
x f · f + γDxDy f · f ,

a, b½ �x = axb −
1
2 abx,

a, b½ �y = ayb −
1
2 aby,

ð4Þ

and the Hirota bilinear operators Dx, Dy, and Dt are defined
by [54]

Dn
xD

m
y D

l
t a · bð Þ = ∂

∂x
−

∂
∂x′

� �n ∂
∂y

−
∂
∂y′

� �m ∂
∂t

−
∂
∂t ′

� �l

� a x, y, tð Þbx′, y′, t ′��x ′=x,y ′=y,t ′=t :
ð5Þ

In order to find the rational lump solution for equa-
tion (2), we set the auxiliary variable f in equation (3)

as the following form:

f = g2 + h2 + a9,
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,

ð6Þ

with

a1 a2

a5 a6

�����
����� ≠ 0, ð7Þ

where aiði = 1, 2,⋯,9Þ are real parameters and will be
determined. Based on symbolic computation, we substitute
the assumption equation (6) into the trilinear equation (3)
and then collect the coefficients of the independent variables
x, y, and t. Consequently, one has a set of algebraic equations
with respect to the parameters aiði = 1, 2,⋯,9Þ. To solve these
equations, one can get the parameter relations as follows:

a3 = −
β a2 a21 − a25

	 

+ 2a1a5a6

� �
a22 + a26

− γa2,

a7 = −
β a6 a25 − a21

	 

+ 2a1a2a5

� �
a22 + a26

− γa6,
ð8Þ

a9 = −
3 a21 + a25
	 


a22 + a26
	 


a1a2 + a5a6ð Þ
β a1a6 − a2a5ð Þ2 : ð9Þ

This in turn gives rise to the rational lump solution as

u = 12 a1a2 + a5a6ð Þ
α g2 + h2 + a9
	 
 −

24 a1g + a5hð Þ a2g + a6hð Þ
α g2 + h2 + a9
	 
2 , ð10Þ

where the functions g and h are given in equation (6) with the
parameters’ conditions (8) and (9). To guarantee that the
function f is well defined and the solution u in equation (10)
decays in all directions in the x, y plane, these parameters are
restricted by three conditions: a22 + a26 ≠ 0 and −ðð3ða21 + a25Þð
a1a2 + a5a6ÞÞ/βÞ > 0.

For the local analysis, we find that the rational lump solu-
tion u in equation (10) possesses the maximum amplitude
−ðð4βða1a6 − a2a5Þ2Þ/ðαða21 + a25Þða22 + a26ÞÞÞ, which is cen-
tered at the point

a2a8 − a4a6 + a2a7 − a3a6ð Þt
a1a6 − a2a5

, a4a5 − a1a8 + a3a5 − a1a7ð Þt
a1a6 − a2a5

� �
:

ð11Þ

It is concluded that this rational lump moves along the
route line l0: y = ðða3a5 − a1a7Þ/ða2a7 − a3a6ÞÞx + ðða3a8 −
a4a7Þ/ða2a7 − a3a6ÞÞ and with the velocities Vx = ða2a7 − a3
a6Þ/ða1a6 − a2a5Þ and Vy = ða3a5 − a1a7Þ/ða1a6 − a2a5Þ,
respectively.

The specific lump’s structure and its moving path are
illustrated in Figure 1. With the given parameter’s values,

2 Advances in Mathematical Physics



Figure 1(a) shows the three-dimensional plot of the ratio-
nal lump equation (10) at time t = 0, and Figure 1(b) cor-
responds to the contour curves at the different time, which
exhibits the moving track of the lump. The direct calcula-
tion indicates that the illustrated lump in Figure 1 moves
along the straight line l0 : y = −ð151/90Þx, its velocities
are Vx = −ð90/101Þ, Vy = 151/101, and its maximum
amplitude is 242/101.

3. The Mixed Solution Composed of One
Rational Lump and One Line Solitary Wave

To construct the mixed solution that is composed of one
rational lump and one line solitary wave, we use the following
assumption of the function f :

f = g2 + h2 + a9 + keη,
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,
η = k1x + k2y + k3t,

ð12Þ

where aiði = 1, 2,⋯,9Þ, k, and kiði = 1, 2, 3Þ are real parame-
ters and will be determined. Here, the rational and the expo-
nential functions are responsible for the rational lump and
the line solitary wave, respectively. Similar to the case of the
purely rational lump, one needs to collect the coefficients of
x, y, and t and exponential functions after substituting equa-
tion (12) into equation (3). Then, we have a set of algebraic
equations with respect to the parameters aiði = 1, 2,⋯,9Þ, k,
and kiði = 1, 2, 3Þ, which gives the parameters’ relations as
follows:

a3 = −
β a2 a21 − a25

	 

+ 2a1a5a6

� �
a22 + a26

− γa2,

a7 = −
β a6 a25 − a21

	 

+ 2a1a2a5

� �
a22 + a26

− γa6,
ð13Þ

a9 = −
3 a21 + a25
	 


a22 + a26
	 


a1a2 + a5a6ð Þ
β a1a6 − a2a5ð Þ2 ,

k3 = −k31 − β
k21
k2

− γk2,
ð14Þ

k1 =
a1a2 + a5a6
a22 + a26

k2 −
3 a21 + a25
	 


2β a22 + a26
	 
 k32,

k2 =
δ1
3

6β a1a2 + a5a6ð Þ
a21 + a25

+ 6σ2β
a22 + a26
a21 + a25

� �1/2" #1/2

,
ð15Þ

with σ2
i = 1 for i = 1, 2. This in turn leads to the mixed solu-

tion composed of one lump and one line solitary wave as

u = 6 2a1a2 + 2a5a6 + kk1k2e
ηð Þ

α g2 + h2 + a9 + keη
	 


−
6 2a1g + 2a5h + kk1e

ηð Þ 2a2g + 2a6h + kk2e
ηð Þ

α g2 + h2 + a9 + keη
	 
2 ,

ð16Þ

where

a1a6 − a2a5 ≠ 0, 22 + a26 ≠ 0,− 3 a21 + a25
	 


a1a2 + a5a6ð Þ
β

> 0, k > 0:

ð17Þ

Here, g, h, and η are defined by equation (12) with the
parameters’ relations (13), (14), and (15). The restricted con-
ditions in equation (16) are to be able to form a lump wave
and guarantee the regularity of the function f .

In the interaction processes between one lump and one
line solitary wave, fission and fusion phenomena [55, 56]
will appear under the different parameters. If we set x
and y as constants, the structure of the mixed solution
equation (16) can be explained as follows. When the coef-
ficient of the time k3 > 0, the exponential term is dominant
and only the line solitary wave exists for t > 0, while the
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Figure 1: The rational lump solution equation (10) with a1 = a5 = α = −β = γ = 1, a2 = −1/5, a6 = 2, and a4 = a8 = 0: (a) the three-dimensional
plot at t = 0; (b) the moving path with the contour curves of lumps at the different times.
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rational term is dominant and the rational lump emerges
for t < 0. Thus, such interaction processes correspond to
a fission phenomenon. On the contrary, the negative coef-
ficient of the time k3 gives rise to a fusion phenomenon.
To illustrate this type of the mixed solution, we exhibit
the fission phenomenon through the three-dimensional

plots in Figure 2 and the corresponding contour plots in
Figure 3. It can be seen clearly that only one line solitary
wave exists firstly and then one rational lump arises grad-
ually. Although the integrable system studied in this paper
is not the same system as those in Refs. [55, 56], they have
similar fusion and fission phenomena.
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Figure 2: The three-dimensional plots of the mixed solution equation (16) with a1 = 1/20, a5 = 2, k = 1/10, a2 = a6 = α = −β = γ = −σ1 = −
σ2 = 1, and a4 = a8 = 0: (a) t = −100; (b) t = −25; (c) t = 0; (d) t = 50.
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Figure 3: The corresponding contour plots of the mixed solution equation (16) with a1 = 1/20, a5 = 2, k = 1/10, a2 = a6 = α = −β = γ = −σ1
= −σ2 = 1, and a4 = a8 = 0: (a) t = −100; (b) t = −25; (c) t = 0; (d) t = 50.
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4. The Mixed Solution Composed of One
Rational Lump and Two Line Solitary Waves

In this section, we seek to construct the mixed solution
composed of one rational lump and two line solitary
waves. This type of interaction solution will describe fis-
sion and fusion phenomena simultaneously. According to
the last section, we need to assume the function f as the
following form:

f = g2 + h2 + a9 + keη + le−η,
g = a1x + a2y + a3t + a4,
h = a5x + a6y + a7t + a8,
η = k1x + k2y + k3t,

ð18Þ

where aiði = 1, 2,⋯,9Þ, k, l, and kiði = 1, 2, 3Þ are real
parameters and will be determined. Here, the rational

and the exponential terms support the rational lump and
the line soliton pair, respectively. Proceeding as before,
we have the parameters’ relations as follows:

a3 = −
β a2 a21 − a25

	 

+ 2a1a5a6

� �
a22 + a26

− γa2,

a7 = −
β a6 a25 − a21

	 

+ 2a1a2a5

� �
a22 + a26

− γa6,
ð19Þ

a9 = −
3 a21 + a25
	 


a22 + a26
	 


a1a2 + a5a6ð Þ
β a1a6 − a2a5ð Þ2

+ 8βkl β a1a6 − a2a5ð Þ2 + 3k22 a21 + a25
	 


a1a2 + a5a6ð Þ� �
3 a1a6 − a2a5ð Þ2 3k22 a21 + a25

	 

− 2β a1a2 + a5a6ð Þ� � ,

ð20Þ

3

2

1

0

0

yx
100

200 –200
–100

0

u

(a)

3

2

1

0

–50

yx
50

150 –150
–75

0

u

(b)

3

2

1

0

–70

yx
0

70 –50
0

50

u

(c)

3

2

1

0

–150

yx
–50

50 0
75

150

u

(d)

3

2

1

0

–200

yx
–100

0 0
100

200

u

(e)

Figure 4: The three-dimensional plots of the mixed solution equation (23) with a1 = 1/20, a5 = 2, k = l = 1/10, a2 = a6 = α = −β = γ = −σ1 =
−σ2 = 1, and a4 = a8 = 0: (a) t = −100; (b) t = −25; (c) t = 0; (d) t = 25; (e) t = 100.
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k3 = −k31 − β
k21
k2

− γk2,

k1 =
a1a2 + a5a6
a22 + a26

k2 −
3 a21 + a25
	 


2β a22 + a26
	 
 k32,

ð21Þ

k2 =
δ1
3

6β a1a2 + a5a6ð Þ
a21 + a25

+ 6σ2β
a22 + a26
a21 + a25

� �1/2" #1/2

, ð22Þ

with σ2i = 1 for i = 1, 2. This in turn gives the mixed solu-
tion composed of one lump and two line solitary waves as

u = 6 2a1a2 + 2a5a6 + k1k2 keη + le−ηð Þ½ �
α g2 + h2 + a9 + keη + le−η
	 


−
6 2a1g + 2a5h + k1 keη − le−ηð Þ½ � 2a2g + 2a6h + k2 keη − le−ηð Þ½ �

α g2 + h2 + a9 + keη + le−η
	 
2 ,

ð23Þ

with

a1a6 − a2a5 ≠ 0, a22 + a26 ≠ 0, a9 > 0, k > 0, l > 0: ð24Þ

Here, g, h, and η are defined by equation (18) with the
parameters’ relations (19), (20), (21), and (22). In this interac-
tion processes described by equation (23), both fission and
fusion phenomena will occur under the certain parameters’
values. Thus, it can be realized that the lump is only observed
on a certain region or during a specific time period. More pre-
cisely, by setting x and y as the fixed constants in the mixed

solution equation (18), one can give the simple analysis:

lim
t⟶±∞

g2

h2
= a23
a27

,

lim
t⟶±∞

g2

keη + le−η
= 0,

lim
t⟶±∞

h2

keη + le−η
= 0,

  k, l > 0ð Þ:

ð25Þ

It implies that only two line solitary waves exist when the
time approaches to infinity, and the lump emerges and reaches
its maximum amplitude when the time approaches to zero.
Hence, the evolution of the lump coincides with the characters
of rogue wave: short-lived occurrence and large amplitude.
The rational lump is identified as a two-dimensional rogue
wave originating in the line soliton pair. The three-
dimensional plots and corresponding contour plots for this
type of the mixed solution at different times are shown in
Figures 4 and 5, respectively. It can be observed that in the
evolution process the lump acts as a rogue wave but the line
soliton pair remains the same shape. The whole interaction
means that a two-dimensional rogue wave is excited from
two paralleled line solitary waves.

5. Conclusions

In this paper, we have constructed rational lump and mixed
lump-solitary wave solutions of the extended (2+1)-dimen-
sional KdV equation by using the bilinear method. Under
the appropriate variable transformation, the extended
(2+1)-dimensional KdV equation is firstly changed into the
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Figure 5: The corresponding contour plots of the mixed solution equation (23) with a1 = 1/20, a5 = 2, k = l = 1/10, a2 = a6 = α = −β = γ = −
σ1 = −σ2 = 1, and a4 = a8 = 0: (a) t = −100; (b) t = −25; (c) t = 0; (d) t = 25; (e) t = 100.
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trilinear form. Then, three groups of exact solutions are
derived by assuming the auxiliary function as the quadratic
and exponential functions. The first kind of solution is given
by the purely rational form, it possesses one maximum and
twominima, and its peak decays algebraically in all directions
in the space plane. Figure 1 shows these characteristics of a
lump wave intuitively and clearly. The second kind of solu-
tion is expressed by the mixed rational-exponential function,
which exhibits fission and fusion phenomena between one
lump and one line solitary wave. Equation (16) gives specific
mathematical expressions for the second type of solution,
and Figures 2 and 3 elaborate on these interesting fission
and fusion phenomena. The last one contains one lump
and two line solitary waves; these local waves’ interaction
shown in Figure 5 is able to describe a two-dimensional rogue
wave excited from the line soliton pair. Because the extended
(2+1)-dimensional KdV equation describes the ion-acoustic
waves in plasmas, shallow water waves in oceans, and pulse
waves in large arteries, we believe that there are fission and
fusion phenomena in corresponding physical models.
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