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By energy estimate approach and the method of upper and lower solutions, we give the conditions on the occurrence of the
extinction and nonextinction behaviors of the solutions for a quasilinear parabolic equation with nonlinear source. Moreover,
the decay estimates of the solutions are studied.

1. Introduction

The main goal of this article is to investigate the extinction
behavior and decay estimate of the following parabolic initial
boundary value problem

ut = div uα ∇uj jm−1∇u
� �

+ λup
ð
Ω

uqdx, x, tð Þ ∈Ω × 0,+∞ð Þ,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,+∞ð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈ �Ω:

8>>>><
>>>>:

ð1Þ

Here, Ω ⊂ RN , N ≥m + 1, is an open bounded domain with
smooth boundary ∂Ω,m, p, q, and λ that are positive param-
eters, 0 <m + α < 1, and um+α/m

0 ∈ L∞ðΩÞ ∩W1,m+1
0 ðΩÞ is a

nonzero nonnegative function.
It is well known that this type of equation describes lots of

phenomena in nature, such as heat transfer, chemical reac-
tions, and population dynamics (one can see [1–4] for more
detailed physical background). In particular, problem (1) can
be used to describe the nonstationary flows in a porous
medium of fluids with a power dependence of the tangential
stress on the velocity of displacement under polytropic con-
ditions. In this physical context, uðx, tÞ is the density of the
fluid, uαj∇ujm−1∇u denotes the momentum velocity, and

λup
Ð
Ω
uqdx stands for the nonlinear nonlocal source. The

parameter m acts as a characteristic of the medium, to be
exact, the medium with m = 1 is called Newtonian fluid, the
medium with m > 1 is called dilatant fluid, and that with 0
<m < 1 is called pseudoplastic.

Extinction phenomenon, as one of the most remarkable
properties that distinguish nonlinear parabolic problems
from the linear ones, attracted extensive attentions of
mathematicians in the past few decades (see [5–16] and the
references therein). Especially, many authors devoted to con-
cern with the extinction behavior of the following parabolic
problem

ut − div a x, t, u,∇φ uð Þð Þð Þ = f x, t, uð Þ, x, tð Þ ∈Ω × 0,+∞ð Þ,
u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,+∞ð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈ �Ω:

8>><
>>:

ð2Þ

Gu [17] discussed (2) with aðx, t, u,∇φðuÞÞ = ∇u and
f ðx, t, uÞ = −up, and concluded that the extinction phenome-
non occurs if and only if p ∈ ð0, 1Þ. Tian and Mu [18] dealt
with problem (2) with aðx, t, u,∇φðuÞÞ = j∇ujp−2∇u and f ðx
, t, uÞ = λup, and derived that q = p − 1 is the critical extinc-
tion exponent of problem (2). The authors of [19, 20] gener-
alized the results in [18] to aðx, t, u,∇φðuÞÞ = j∇umjp−2∇um.
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The authors of [5, 21] concerned with the extinction behavior
of problem (2) with aðx, t, u,∇φðuÞÞ = j∇umjp−2∇um and f ðx
, t, uÞ = λ

Ð
Ω
uqdx, and they pointed out that the effect of the

nonlocal source term λ
Ð
Ω
uqdx on the extinction behavior is

very different from that of the local source λuq. Recently,
Zhou and Yang [22] dealt with the extinction singularity of
problem (2) in the case aðx, t, u,∇φðuÞÞ = ∇um and f ðx, t, uÞ
= λup

Ð
Ω
uqdx. For some relevant works on other types of

nonlinear evolution equations, the readers can refer to the
references [23–28].

However, to our best knowledge, there is no literature on
the study of the extinction and decay estimate of the solutions
for problem (1). Motivated by those works above, we con-
sider the extinction property of problem (1). More precisely,
our purpose is to understand how the nonlinear nonlocal
source affects the extinction behavior of problem (1). In other
words, the aim of this article is to evaluate the competition
between the diffusion term which may produce extinction
phenomenon and the nonlinear nonlocal source which may
prevent the occurrence of the extinction phenomenon. We
want to find a critical extinction exponent and give a com-
plete classification on the extinction and nonextinction cases
of the solutions to problem (1). Meanwhile, we will deal with
the decay estimates of the extinction solutions.

Since equation (1) is degenerate (or singular) at the
points where u = 0 or ∇u = 0, there is no classical solution
in general, and hence we consider the nonnegative solution
of (1) in some weak sense.

Definition 1. Let ΣT =Ω × ð0, TÞ, and

S =
n
u ∈ L2p ΣTð Þ ∩ L2q ΣTð Þ ∩ L2 ΣTð Þ ; u ∈ C

· 0, T½ � ; L1 Ωð Þ� �
;∇um+α

m ∈ Lm+1 ΣTð Þ
o
:

ð3Þ

We say that a function uðx, tÞ ∈S is a weak lower solu-
tion of problem (1) if

ð
Ω

u x, Tð Þζ x, Tð Þdx +∬
ΣT

uα ∇uj jm−1∇u · ∇ζ − uζt
� �

dxdt

≤
ð
Ω

u x, 0ð Þζ x, 0ð Þdx +∬
ΣT

λup
ð
Ω

uqdx
� �

ζdxdt

ð4Þ

holds for any T > 0 and any nonnegative test function

ζ ∈ u ∈ L2 ΣTð Þ ; u ∈ C 0, T½ � ; L2 Ωð Þ� �
; ut ∈ L2 ΣTð Þ;∇u ∈ Lm+1 ΣTð Þ ; u��∂Ω = 0

n o
:

ð5Þ

Moreover,

u x, 0ð Þ ≤ u0 xð Þ for x ∈ �Ω, and u x, tð Þ ≤ 0 for x, tð Þ ∈ ∂Ω × 0, Tð Þ:
ð6Þ

Replacing ‘‘ ≤ } by ‘‘ ≥ } in the inequalities (4) and (6)

leads to the definition of the weak upper solution of problem
(1). We say that u is a weak solution of problem (1) in ΣT if it
is both a weak lower solution and a weak upper solution of
problem (1) in ΣT .

Proposition 2. Assume that u0ðxÞ is a nonzero nonnegative
function satisfying um+α/m

0 ∈ L∞ðΩÞ ∩W1,m+1
0 ðΩÞ. Then,

problem (1) has at least one local weak solution uðx, tÞ ∈S.

Remark 3. The proof of Proposition 2 is based on an approx-
imation procedure and the Leray-Schauder fixed-point theo-
rem, and it is standard and lengthy; so, we omit it here, while
one can refer to the proof of Proposition 2.1 in [5] (or Prop-
osition 2.3 in [19]) for more details. On the other hand, it is
necessary to point out that the weak solution of problem
(1) is unique for p ≥ 1 and q ≥ 1. In the non-Lipschitz case 0
< p < 1 or 0 < q < 1, the uniqueness of the weak solution
seems to be unknown (See Remark 44.1 of §44.1 in [29]).

The main results of this article are stated as follows.

Theorem 4.Assume that 0 <m + α < p + q. Then, the nonneg-
ative weak solution of problem (1) vanishes in finite time pro-
vided that the nonnegative initial datum u0ðxÞ is sufficiently
small. Moreover,

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α, t ∈ 0, T1½ Þ,

uk k2m+α
m

≡ 0, t ∈ T1,+∞½ Þ,

8<
: ð7Þ

for mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1, and kuf
kNð1−m−αÞ/m+1 ≤ ku0kNð1−m−αÞ/m+1ð1 − d8tÞ1/1−ðm+αÞ,t ∈ ½0, T2Þ,
kukNð1−m−αÞ/m+1 ≡ 0,t ∈ ½T2,+∞Þ,

for −m < α <mðN −m − 1/Nm +m + 1 − 1Þ, where T1 =
d−14 , T2 = d−18 , d4, and d8 are positive constants, given in Sec-
tion 2.

Theorem 5. Assume that 0 < p + q <m + α < 1 and λ are suf-
ficiently large. Then, for any nonnegative initial datum u0ðxÞ,
problem (1) admits at least one nonextinction weak solution.

Theorem 6. Assume that 0 <m + α = p + q < 1.

(1) The nonnegative weak solution of problem (1) van-
ishes in finite time provided that λ is sufficiently small.
Moreover,

uk k2m+α
m

≤ u0k k2m+α
m

1 − d14tð Þ 1
1−m−α, t ∈ 0, T3½ Þ,

uk k2m+α
m

≡ 0, t ∈ T3,+∞½ Þ,

8<
: ð8Þ

for mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1, and kuf
kNð1−m−αÞ/m+1 ≤ ku0kNð1−m−αÞ/m+1ð1 − d15tÞ1/1−m−α,t ∈ ½0, T4Þ,
kukNð1−m−αÞ/m+1 ≡ 0,t ∈ ½T4,+∞Þ,
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for −m < α <mðN −m − 1/Nm +m + 1 − 1Þ, where T3 =
d−114 , T4 = d−115 , d14, and d15 are positive constants, given in
Section 2.

(2) Problem (1) admits at least one non-extinction weak
solution for any nonnegative initial datum u0ðxÞ pro-
vided that λ is sufficiently large

2. Proofs of the Main Results

In this section, based on energy estimates approach and the
method of upper and lower solutions, we will give the proofs
of our main results.

Proof of Theorem 4. Multiplying equation (1) by us and
integrating over Ω, one has

1
s + 1

d
dt

ð
Ω

us+1dx + s
m + 1

m + α + s

� �m+1ð
Ω

∇u
m+α+s
m+1

��� ���m+1
dx

= λ
ð
Ω

up+sdx
ð
Ω

uqdx,
ð9Þ

where

s =

m + α

m
, if m N −m − 1

Nm +m + 1 − 1
� �

≤ α < 1,

N 1 −m − αð Þ −m − 1
m + 1 , if −m < α <m

N −m − 1
Nm +m + 1 − 1
� �

:

8>>><
>>>:

ð10Þ

We now divide the proof into two cases according to the
different values of p + q.

Case 1. m + α < p + q ≤ 1. For mðN −m − 1/Nm +m + 1 − 1Þ
≤ α < 1. It follows from Hölder inequality and (9) that

m
2m + α

d
dt

ð
Ω

u
2m+α
m dx + m

m + α

	 
mð
Ω

∇u
m+α
m

��� ���m+1
dx

≤ λ Ωj j2−m p+qð Þ+m+α
2m+α

ð
Ω

u
2m+α
m dx

� �m p+qð Þ+m+α
2m+α

:

ð11Þ

Using Hölder inequality and Sobolev embedding theo-
rem, one has

ð
Ω

u
2m+α
m dx ≤ Ωj j1−

2m+αð Þ N−m−1ð Þ
N m+1ð Þ m+αð Þ

ð
Ω

u
m+α
m ·N m+1ð Þ

N−m−1dx
� �2m+α

m+α ·N−m−1
N m+1ð Þ

≤ κ1 Ωj j1−
2m+αð Þ N−m−1ð Þ
N m+1ð Þ m+αð Þ

ð
Ω

∇u
m+α
m

��� ���m+1
dx

� � 2m+α
m+1ð Þ m+αð Þ

,

ð12Þ

which is equivalent to

κ
− m+1ð Þ m+αð Þ

2m+α
1 Ωj j1−m+1

N − m+1ð Þ m+αð Þ
2m+α

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤
ð
Ω

∇u
m+α
m

��� ���m+1
dx,

ð13Þ

where κ1 = κ1ðα,m,NÞ is the embedding constant. Insert-
ing (13) into (11) yields

d
dt

ð
Ω

u
2m+α
m dx + d1

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ d2

ð
Ω

u
2m+α
m dx

� �m p+qð Þ+m+α
2m+α

,

ð14Þ

where

d1 = 2m + αð Þmm−1 m + αð Þ−mκ−
m+1ð Þ m+αð Þ

2m+α
1 Ωj j1−m+1

N − m+1ð Þ m+αð Þ
2m+α ,

d2 = λ 2m + αð Þm−1 Ωj j2−m p+qð Þ+m+α
2m+α :

ð15Þ

Now, if u0ðxÞ is sufficiently small satisfying

d3 = d1 − d2

ð
Ω

u
2m+α
m

0 dx
� �m p+q−m−αð Þ

2m+α
> 0, ð16Þ

then (14) leads to

d
dt

ð
Ω

u
2m+α
m dx + d3

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ 0: ð17Þ

By integration, one can deduce that

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α
+ , ð18Þ

which tells us that uðx, tÞ vanishes in finite time T1 = d−14 ,
where

d4 =md3 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð19Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. By Sobolev
embedding theorem, one obtains

ð
Ω

us+1dx
� � m+α+s

m+1ð Þ s+1ð Þ
=
ð
Ω

u
N α+m+sð Þ
N−m−1 dx

� �N−m−1
N m+1ð Þ

≤ κ2

ð
Ω

∇u
α+m+s
m+1

��� ���m+1
dx

� � 1
m+1
:

ð20Þ

Here, κ2 = κ2ðα,m,NÞ is the embedding constant. Com-
bining (9) and (20), and in view of Hölder inequality, one
arrives at

d
dt

ð
Ω

us+1dx + d5

ð
Ω

us+1dx
� �m+α+s

s+1
≤ d6

ð
Ω

us+1dx
� �p+q+s

s+1
,

ð21Þ
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where

d5 = s s + 1ð Þ m + 1ð Þ κ2 m + α + sð Þð Þ−1� �m+1,

d6 = λ s + 1ð Þ Ωj j2−p+q+s
s+1 :

ð22Þ

Next, choosing u0ðxÞ sufficiently small such that

d7 = d5 − d6

ð
Ω

us+10 dx
� �p+q−m−α

s+1
> 0, ð23Þ

then from (21), one has

d
dt

ð
Ω

us+1dx + d7

ð
Ω

us+1dx
� �m+α+s

s+1
≤ 0: ð24Þ

Integrating (24) from 0 to t gives us that

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d8tð Þ 1
1−m−α
+ , ð25Þ

which means that uðx, tÞ vanishes in finite time T2 = d−18 ,
where

d8 = d7 m + 1ð Þ 1 −m − αð Þ N 1 −m − αð Þ½ �−1 u0k km+α−1
N 1−m−αð Þ

m+1
:

ð26Þ

Case 2. m + α < 1 < p + q. If p < 1 or q < s + 1, then the proof
is the same as that in Case 1. We only need to focus our atten-
tion on the subcase p ≥ 1 and q ≥ s + 1. Let ~Ω be a bounded
domain in RN satisfyingΩ ⊂ ⊂~Ω. Denote ~λ1 be the first eigen-
value and ~ΨðxÞ be the corresponding eigenfunction of prob-
lem (One can see Lemma 2.3 of [18] for more details on the
properties of the first eigenvalue and the corresponding
eigenfunction of (27).)

−div Uα ∇Uj jm−1∇U
� �

= λUα+1 Uj jm−1, x ∈ ~Ω,

U xð Þ = 0, x ∈ ∂~Ω:

(

ð27Þ

We assume that max
x∈~Ω

~ΨðxÞ = 1. Put

U1 x, tð Þ = μ~Ψ xð Þwith μ ∈ max
x∈ �Ω

u0 xð Þ
~Ψ xð Þ

, min
x∈ �Ω

~λ1 ~Ψ
m+α

xð Þ
λ Ωj j

 ! 1
p+q−m−α

0
@

1
A:

ð28Þ

Then, it is not difficult to show that U1ðx, tÞ is an upper
solution of problem (1). Therefore, one has uðx, tÞ ≤ μ~ΨðxÞ
≤ μ and

λ
ð
Ω

up+sdx
ð
Ω

uqdx ≤ λ Ωj jμp+q−1
ð
Ω

us+1dx: ð29Þ

It follows from (9) and (29) that

1
s + 1

d
dt

ð
Ω

us+1dx + s
m + 1

m + α + s

� �m+1ð
Ω

∇u
m+α+s
m+1

��� ���m+1
dx

≤ λ Ωj jμp+q−1
ð
Ω

us+1dx:

ð30Þ

For mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1. It follows
from (13) and (30) that

d
dt

ð
Ω

u
2m+α
m dx + d1

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ d9

ð
Ω

u
2m+α
m dx,

ð31Þ

where

d9 = λ Ωj j 2m + αð Þm−1μp+q−1: ð32Þ

Now, selecting u0ðxÞ sufficiently small satisfying

d10 = d1 − d9

ð
Ω

u
2m+α
m

0 dx
� �m 1−m−αð Þ

2m+α
> 0, ð33Þ

then (31) tells us that

d
dt

ð
Ω

u
2m+α
m dx + d10

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

≤ 0: ð34Þ

A simple integration of (34) over ð0, tÞ gives

uk k2m+α
m

≤ u0k k2m+α
m

1 − d4tð Þ 1
1−m−α
+ , ð35Þ

which means that uðx, tÞ vanishes in finite time, where

d4 =md10 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð36Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. Recalling
(20) and (30), one obtains

d
dt

ð
Ω

us+1dx + d5

ð
Ω

us+1dx
� �m+α+s

s+1
≤ d11

ð
Ω

us+1dx, ð37Þ

where

d11 = λ s + 1ð Þ Ωj jμp+q−1: ð38Þ

Next, if u0ðxÞ is sufficiently small such that

d12 = d5 − d11

ð
Ω

us+10 dx
� �1−m−α

s+1
> 0, ð39Þ
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then from (37), one arrives at

d
dt

ð
Ω

us+1dx + d12

ð
Ω

us+1dx
� �m+α+s

s+1
≤ 0: ð40Þ

Integrating (40), one can claim that

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d8tð Þ 1
1−m−α
+ , ð41Þ

which tells us that uðx, tÞ vanishes in finite time, where

d8 = d12 m + 1ð ÞN−1 u0k km+α−1
N 1−m−αð Þ

m+1
: ð42Þ

The proof of Theorem 4 is complete.

Proof of Theorem 5. Let λ1 be the first eigenvalue andΨðxÞ be
the corresponding eigenfunction of the following problem

−div Uα ∇Uj jm−1∇U
� �

= λUα+1 Uj jm−1, x ∈Ω,
U xð Þ = 0, x ∈ ∂Ω:

(

ð43Þ

In what follows, we assume that ΨðxÞ > 0 and max
x∈Ω

ΨðxÞ
= 1. Define f ðtÞ = ð1 − e−ctÞ1/1−p−q, where c ∈ ð0, ð1 − p − qÞ
ðλ∥Ψ∥qq − λ1ÞÞ. Then, it is easy to check that

f 0ð Þ = 0, and f tð Þ ∈ 0, 1ð Þ for t > 0: ð44Þ

In addition, one has

f ′ tð Þ + λ1 f
m+α tð Þ − λ∥Ψ∥qq f

p+q tð Þ ≤ 0: ð45Þ

Define U2ðx, tÞ = f ðtÞΨðxÞ: Then, one can verify that

U2t − div Uα
2 ∇U2j jm−1∇U2

� �
− λUp

2

ð
Ω

Uq
2dx

= f ′ tð ÞΨ xð Þ + λ1 f
m+α tð ÞΨm+α xð Þ − λ∥Ψ∥qq f

p+q tð ÞΨp xð Þ
< f ′ tð Þ + λ1 f

m+α tð Þ − λ∥Ψ∥qq f
p+q tð Þ

	 

Ψp xð Þ ≤ 0,

ð46Þ

which implies that U2ðx, tÞ is a strict weak lower solution
of problem (1) if λ > λ1∥Ψ∥−qq :

Now, consider the following problem

ut = div uα ∇uj jm−1∇u
� �

+ λ u+ + 1ð Þp
ð
Ω

u+ + 1ð Þqdx, x, tð Þ ∈Ω × 0,∞ð Þ,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ ≥ 0, x ∈ �Ω:

8>>>><
>>>>:

ð47Þ

Using Leray-Schauder fixed-point theorem, we can prove
that problem (47) admits at least one weak solution U3ðx, tÞ,
and we know that U3ðx, tÞ ≥ 0 by the weak maximum princi-

ple. In addition, the weak solution U3ðx, tÞ is also a weak
upper solution of problem (1).

Up to now, we have constructed a pair of weak upper and
lower solutions U3ðx, tÞ, U2ðx, tÞ. If U2ðx, tÞ ≤U3ðx, tÞ, then
problem (1) admits a weak solution ~u satisfying U2 ≤ ~u ≤
U3. By the definitions of U2 and U3, one has

ð
Ω

U2 x, tð Þ −U3 x, tð Þð Þζ x, tð Þdx −
ð
Ω

· U2 x, 0ð Þ −U3 x, 0ð Þð Þζ x, 0ð Þdx
+∬

Σt
Uα

2 ∇U2j jm−1∇U2 −Uα
3 ∇U3j jm−1∇U3

� �
· ∇ζdxdτ

−∬
Σt

U2 −U3ð Þζτdxdτ

≤ λ∬
Σt

Up
2

ð
Ω

Uq
2dx − U3+ + 1ð Þp

ð
Ω

U3+ + 1ð Þqdx
� �

ζdxdτ

= λ∬
Σt

Up
2

ð
Ω

Uq
2 − U3+ + 1ð Þq� �

dx + Up
2 − U3+ + 1ð Þp� ��

·
ð
Ω

U3+ + 1ð Þqdx
�
ζdxdτ:

ð48Þ

Take ζðx, tÞ =HεðUm+α/m
2 −Um+α/m

3 Þ, where HεðrÞ is a
monotone increasing smooth approximation of the following
function

H rð Þ =
1, r > 0,
0, otherwise:

(
ð49Þ

It is easy to check that Hε
′ðrÞ→ δðrÞ as ε→ 0. Letting ε

→ 0, it follows from (48) that

ð
Ω

U2 −U3ð Þ+dx ≤ λ∬
Σt

Up
2

ð
Ω

Uq
2 − U3+ + 1ð Þq� �

dx
� �

H

� U
m+α
m
2 −U

m+α
m
3

	 

dxdτ + λ∬

Σt

� Up
2 − U3+ + 1ð Þp� �ð

Ω

U3+ + 1ð Þqdx
� �

H

� U
m+α
m
2 −U

m+α
m
3

	 

dxdτ

≤ d13∬Σt
U2 −U3ð Þ+dxdτ,

ð50Þ

where d13 is a positive constant. Using Gronwall’s inequality,
one can conclude that U2ðx, tÞ ≤U3ðx, tÞ, a.e., in Ω × ð0,∞Þ.
Furthermore, since U2 does not vanish, neither does ~u. The
proof of Theorem 5 is complete.

Proof of Theorem 6.

(1) For mðN −m − 1/Nm +m + 1 − 1Þ ≤ α < 1. It follows
from (14) that
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d
dt

ð
Ω

u
2m+α
m dx ≤ d2 − d1ð Þ

ð
Ω

u
2m+α
m dx

� � m+1ð Þ m+αð Þ
2m+α

: ð51Þ

If λ is sufficiently small such that d1 − d2 ≥ 0, then above
inequality tells us that

uk k2m+α
m

≤ u0k k2m+α
m

1 − d14tð Þ 1
1−m−α
+ , ð52Þ

which means that uðx, tÞ vanishes in finite time T3 = d−114 ,
where

d14 =m d1 − d2ð Þ 1 −m − αð Þ 2m + αð Þ−1 u0k km+α−1
2m+α
m

: ð53Þ

For −m < α <mðN −m − 1/Nm +m + 1 − 1Þ. It follows
from (21) that

d
dt

ð
Ω

u
N 1−m−αð Þ

m+1 dx ≤ d6 − d5ð Þ
ð
Ω

u
N 1−m−αð Þ

m+1 dx
� �N−m−1

N

: ð54Þ

If λ is sufficiently small such that d5 − d6 ≥ 0, then (54)
leads to

uk kN 1−m−αð Þ
m+1

≤ u0k kN 1−m−αð Þ
m+1

1 − d15tð Þ 1
1−m−α
+ , ð55Þ

which implies that uðx, tÞ vanishes in finite time T4 = d−115 ,
where

d15 = m + 1ð Þ d5 − d6ð ÞN−1 u0k km+α−1
2m+α
m

: ð56Þ

(2) Let

U4 x, tð Þ = 1 − p − qð Þ λ∥Ψ∥qq − λ1
	 


t
h i 1

1−p−q
Ψ xð Þ: ð57Þ

One can easily prove that U4ðx, tÞ is a weak nonextinc-
tion lower solution of problem (1) if λ > λ1∥Ψ∥−qq . On the
other hand, let U5ðx, tÞ be a weak solution of problem (47)
with p + q =m + α; then, U5ðx, tÞ is a weak upper solution
of problem (1). Similar to the process of proof of Theorem
5, one can claim that problem (1) has at least one nonextinc-
tion weak solution ~u. The proof of Theorem 6 is complete.

3. Conclusion

In the present article, we mainly focus on the extinction phe-
nomenon and the decay estimates of the solution to a quasi-
linear parabolic equation with a coupled nonlinear source. By
analyzing the competition between the coupled nonlinear
source term and the fast diffusion term, along with energy
estimates approach and the method of upper and lower solu-
tions, we show that p + q =m + α is the critical extinction
exponent of the solutions. That is, if m + α < p + q, then for
sufficiently small initial datum, the solution possesses extinc-

tion property, while if p + q <m + α, then for any nonnega-
tive initial datum, problem (1) admits at least one
nonextinction solution provided that λ is sufficiently large.
In the critical case p + q =m + α, whether the solution
vanishes or not depends on the size of the parameter λ.

Our next work is to study the numerical extinction phe-
nomenon of the parabolic problems like (1). We hope to give
some numerical examples for our theoretical researches in
the near future.
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