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An integrable variable coefficient nonlocal nonlinear Schrödinger equation (NNLS) is studied; by employing the Hirota’s bilinear
method, the bilinear form is obtained, and the N-soliton solutions are constructed. In addition, some singular solutions and period
solutions of the addressed equation with specific coefficients are shown. Finally, under certain conditions, the asymptotic behavior
of the two-soliton solution is analyzed to prove that the collision of the two-soliton is elastic.

1. Introduction

In 1998, Bender and coworker first proposed the PT - (par-
ity-time-) symmetry for non-Hermitian quantum mechanics
[1]. Now, PT -symmetry has been extensively studied in
diverse areas such as lasers [2], acoustics [3], nonlinear optics
[4], Bose-Einstein condensation [5], and quantum mechanics
[6, 7]. The nonlinear Schrödinger equation has been regarded
as the basic model to describe the propagation of solitons in
optical fiber, and its spatial solitons have become the research
frontier of nonlinear science [8, 9]. In 2013, Ablowitz and
Musslimani incorporated the PT -symmetry with nonlinear
integrable systems and proposed the nonlocal or PT -sym-
metry nonlinear Schrödinger equation (NLS) [10],

iqt x, tð Þ + qxx x, tð Þ + 2q2 x, tð Þq∗ −x, tð Þ = 0, ð1Þ

where ∗ represents complex conjugation. Obviously, Equation
(1) is invariant under the parity-time (PT) transformation,
and its solution is evaluated at (x, t) and (−x, t). Since Equa-
tion (1) was proposed, many researchers have carried out a
lot of work on it. The integrability [10, 11], the Cauchy prob-
lem [12], the inverse scattering transform [13], and exact solu-
tions, such as breathers, periodic, and rational solutions [14],
general rogue waves [15], multiple bright soliton [16], higher
order rational solutions [17], and N-soliton solutions [18] of

(1) have been derived. Moreover, other nonlocal integrable
systems have also been investigated like nonlocal modified
Korteweg-de Vries equation [19, 20], nonlocal KP equation
[21], nonlocal vector nonlinear nonlinear Schrödinger equa-
tion [22, 23], nonlocal discrete nonlinear Schrödinger equa-
tion [24–26], nonlocal Davey-Stewartson I equation [27], etc.

Although much advance has been made in nonlocal sys-
tems, there are very few studies on nonlocal equations with
variable coefficients. From the realistic point of view, it is
more accurate to describe the physical phenomena by using
the variable coefficient equations in many physics situations
[28]. So it is a meaningful work to study the exact solutions
for nonlocal equations with variable coefficients. In [29],
authors constructed the soliton solutions for the variable
coefficient nonlocal NLS equation by using Darboux trans-
formation. In [30], analytical matter wave solutions of a
(2 + 1)-dimensional nonlocal Gross-Pitaevskii equation are
investigated. In this paper, we consider the variable coeffi-
cient nonlocal NLS equation,

iqt x, tð Þ − δ tð Þqxx x, tð Þ − 2δ tð Þq x, tð Þ2q∗ −x, tð Þ + α tð Þq x, tð Þ = 0,
ð2Þ

where the dispersion coefficient δðtÞ and the gain/loss coef-
ficient αðtÞ are arbitrary real continuous even functions of
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variable t. Obviously, Equation (2) keeps the parity-time
transformation x⟶ −x, t⟶ −t, qðx, tÞ⟶ q∗ð−x,−tÞ
invariant, so it is PT -symmetric. When δðtÞ = −1 and
αðtÞ = 0, Equation (2) reduces to the constant coefficient
self-focusing nonlocal NLS equation (1). When αðtÞ = 0,
Equation (2) becomes variable coefficient nonlocal NLS
equation which has been solved by Darboux transforma-
tions in [29]. The novelty of this paper is that the vari-
able coefficient NLS equation is firstly solved by Hirota’s
bilinear method, the more general two-soliton solution
and N-soliton solution are reported, and the collision of
the two solitons is firstly discussed.

The paper is organized as follows: In Section 2, the bilin-
ear form and the one-soliton, two-soliton, and N-soliton
solutions of Equation (2) are obtained based on the Hirota’s
direct method. In Section 3, the asymptotic behavior is stud-
ied to prove that the two-soliton collision is elastic. Finally,
conclusions are given in Section 4.

2. The Bilinear Form and Soliton Solutions

We implement the following dependent variable transfor-
mation to Equation (2)

q = eiβ tð Þ g
f
, ð3Þ

where g and f are complex functions and βðtÞ is a real func-
tion; then, the following bilinear equations of Equation (2)
are obtained as follows:

iDt − δ tð ÞD2
x

� �
g · f = 0,

f ∗ −x, tð ÞD2
x f · f = 2f gg∗ −x, tð Þ,

ð4Þ

where βðtÞ = Ð αðtÞdt and D is the bilinear operator [24]:

Dl
tD

m
x f x, tð Þ · g x, tð Þ = ∂

∂t
−

∂
∂t ′

� �l ∂
∂x

−
∂
∂x′

� �m

f x, tð Þg x′, t ′
� ������

x

′=x,t′=t:

ð5Þ

2.1. One-Soliton Solution. In order to construct the soliton
solutions for Equation (2), we expend f and g as follows:

f = 1 + ε2 f2 + ε4 f4 + ε6 f6+⋯,
g = εg1 + ε3g3 + ε5g5+⋯,

ð6Þ

where ε is an arbitrary small parameter. Then, substituting
Equation (6) into the bilinear equations (4) and collecting
the same power coefficients in ε, we get the following
equations:

ε1 : iDt − δ tð ÞD2
x

� �
g1 · 1 = 0, ð7Þ

ε2 : D2
x f2 · 1 + 1 · f2ð Þ = 2g1g∗1 −x, tð Þ, ð8Þ

ε3 : iDt − δ tð ÞD2
x

� �
g3 · 1 + g1 · f2ð Þ = 0, ð9Þ

ε4 : D2
x 1 · f4 + f4 · 1 + f2 · f2ð Þ + f ∗2 −x, tð ÞD2

x 1 · f2 + f2 · 1ð Þ
= 2 g1g

∗
3 −x, tð Þ + g∗1 −x, tð Þg3ð Þ + 2f2g1g

∗
1 −x, tð Þ,

ð10Þ
ε5 : iDt − δ tð ÞD2

x

� �
g5 · 1 + g3 · f2 + g1 · f4ð Þ = 0, ð11Þ

ε6 : D2
x 1 · f6 + f6 · 1 + f2 · f4 + f4 · f2ð Þ + f ∗2 −x, tð ÞD2

x 1 · f4ð
+ f4 · 1 + f2 f2Þ + f ∗4 −x, tð Þ ×D2

x 1 · f2 + f2 · 1ð Þ
= 2 g5g

∗
1 −x, tð Þ + g3g

∗
3 −x, tð Þ + g1g

∗
5 −x, tð Þð Þ

+ 2f2 g1g
∗
3 −x, tð Þ + g3g

∗
1 −x, tð Þð Þ + 2f4g1g∗

1 −x, tð Þ:
ð12Þ

Now, we construct the one-soliton solution for
Equation (2). Assuming g1 = eη with η = kx +wðtÞ, η∗ð−x, tÞ
= −k∗x +w∗ðtÞ, Equation (7) yields the dispersive relation
with wðtÞ = −ik2

Ð
δðtÞdt. Then, substituting the obtained g1

into Equation (8), we get f2 = Aeη+η
∗ð−x,tÞ with A = 1/

ðk − k∗Þ2. Hence, g1 and f2 can be expressed as

g1 = ekx−ik
2
Ð

δ tð Þdt ,

f2 =
1

k − k∗ð Þ2
e k−k∗ð Þx−i k2−k∗2ð Þ Ð δ tð Þdt:

ð13Þ

Other left equations are satisfied if we set g3 = g5 =⋯ = 0
and f4 = f6 =⋯ = 0. Hence, we get the one-soliton solution for
Equation (2) as

q = e
i
Ð
α tð Þdt εe

kx−ik2
Ð

δ tð Þdt /1+ε2 1/ k−k∗ð Þ2ð Þe k−k∗ð Þx−i k2−k∗2ð ÞÐ δ tð Þdt
� �

:

ð14Þ

Now, setting ε = 1 and αðtÞ = 0, we get several special solu-
tions for Equation (2):

(i) If k = −2λ2i and −4λ2i = γ2, where λ2 is a real num-
ber, Equation (14) turns into the following period
solution which has been reported in [29],

q = −
4iλ2γ2e

4iλ22
Ð

δ tð Þdt

γ22e2iλ2x + e−2iλ2x
: ð15Þ

(ii) If k = a + ib (a, b ∈ R, and ab ≠ 0), Equation (14)
becomes

q = eax+2ab
Ð

δ tð Þdtei bx+
Ð

α tð Þ− a2−b2ð Þδ tð Þð Þdt
� �

1 − 1/4b2
� �

e4ab
Ð

δ tð Þdte2ibx
: ð16Þ

Obviously, Equation (16) is the one-soliton solution
with the singular point ðx0, t0Þ = ðlπ/b, t0Þ, where t0 satisfiesÐ
δðtÞdt = −ln 4b2/4ab, and l ∈ Z.
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(iii) If k = ib, b ∈ R, and b ≠ 0, we get the spatial period
solution

qj j = 4b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b4 − 8b2 cos 2bx + 1

p , ð17Þ

where the period M = π/b.
To show the characteristics of the one-soliton solution,

we illustrate the singular solution (16) and the period solu-
tion (17) in Figure 1 (when δðtÞ = −1) and Figure 2 (when
δðtÞ = t2).

2.2. Two-Soliton Solution. To get the two-soliton solution,
we let g1 = eη1 + eη2 with η j = kjx +wjðtÞ, η∗j ð−x, tÞ = −k∗j x
+w∗

j ðtÞ, j = 1, 2. From Equation (7), we have wjðtÞ = −ik2Ð
δðtÞdt, j = 1, 2. Plugging the obtained g1 into Equation

(8) leads to

f2 = a 1, 1∗ð Þeη1+η∗1 −x,tð Þ + a 1, 2∗ð Þeη1+η∗2 −x,tð Þ

+ a 2, 1∗ð Þeη2+η∗1 −x,tð Þ + a 2, 2∗ð Þeη2+η∗2 −x,tð Þ,
ð18Þ

where aðl,m∗Þ = 1/ðkl − k∗mÞ2, l,m = 1, 2.

Then, plugging the known g1 and f2 into Equation (9)
and Equation (10), we derive g3 and f4 as

g3 = a 1, 2, 1∗ð Þeη1+η2+η∗1 −x,tð Þ + a 1, 2, 2∗ð Þeη1+η2+η∗2 −x,tð Þ,

f4 = a 1, 2, 1∗, 2∗ð Þeη1+η2+η∗1 −x,tð Þ+η∗2 −x,tð Þ:

ð19Þ

where

a l,mð Þ = 1
kl − kmð Þ2 , a l,m ∗ð Þ = 1

kl − k∗mð Þ2
, l,m = 1, 2,

a 1, 2, 1∗ð Þ = a 1, 2ð Þa 1, 1∗ð Þa 2, 1∗ð Þ,
a 1, 2, 2∗ð Þ = a 1, 2ð Þa 1, 2∗ð Þa 2, 2∗ð Þ,

a 1, 2, 1∗, 2∗ð Þ = a 1, 2ð Þa 1, 1∗ð Þa 1, 2∗ð Þa 2, 1∗ð Þa 2, 2∗ð Þa 1∗, 2∗ð Þ:
ð20Þ

Other equations are satisfied if we let f6 = f8 =⋯ = 0 and
g5 = g7 =⋯ = 0. Therefore, for ε = 1, we get the two-soliton
solution as
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Figure 1: (a) Soliton solution with singularity with parameters a = 0:12 and b = −0:35. (b) Spatial period soliton solution with parameters
a = 0 and b = 0:2, period M = 5π.
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Figure 2: (a) Soliton solution with singularity when a = 0:1 and b = −0:3. (b) Spatial period soliton solution with parameter a = 0 and b = 0:2
, period M = 5π.
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q = ei
Ð

α tð Þdt eη1 + eη2 + γ1e
η1+η2+η∗1 −x,tð Þ + γ2e

η1+η2+η∗2 −x,tð Þ

1 + ρ1e
η1+η∗1 + ρ2e

η1+η∗2 + ρ3e
η2+η∗1 + ρ4e

η2+η∗2 + θeη1+η2+η
∗
1 +η∗2

:

ð21Þ

where γ1 = að1, 2, 1∗Þ, γ2 = að1, 2, 2∗Þ, ρ1 = að1, 1∗Þ, ρ2 =
að1, 2∗Þ, ρ3 = að2, 1∗Þ, ρ4 = að2, 2∗Þ, ρ5 = að1, 2Þ, and θ =
að1, 2, 1∗, 2∗Þ. Specially, if k1 = b1i and k2 = b2i, the solu-
tion Equation (21) becomes a double spatial-period solu-
tion which is illustrated in Figure 3 (when δðtÞ = t2).

2.3. N-Soliton Solution. The N-soliton solution for Equation
(2) can be shown as follows:

q = ei
Ð

α tð Þdt g
f
, ð22Þ

where

f = 〠
eð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

g = 〠
oð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

g∗ −x, tð Þ = 〠
cð Þ

μ=0,1
exp 〠

2N

l=1
μlηl + 〠

2N

l<m
μlμmAlm

 !
,

ð23Þ

where

ηl = klx + ωl tð Þ, ωl tð Þ = −ik2
ð
δ tð Þdt,

ηl+N = η∗l −x, tð Þ, kl+N = k∗l l = 1, 2,⋯,Nð Þ,

Alm = ln 1
kl − kmð Þ2 l = 1, 2,⋯,N ,m =N + 1,⋯,2Nð Þ,

Alm = ln kl − kmð Þ2 l,m = 1, 2,⋯,N , orl,m =N + 1,⋯,2Nð Þ,
ð24Þ

and for μl = 0 or 1 (l = 1, 2,⋯N), ∑ðeÞ
μ=0,1 , ∑

ðoÞ
μ=0,1 , and ∑ðcÞ

μ=0,1
satisfy the following conditions, respectively,

〠
N

l=1
μl = 〠

N

l=1
μl+N , 〠

N

l=1
μl = 1 + 〠

N

l=1
μl+N , 1 + 〠

N

l=1
μl = 〠

N

l=1
μl+N :

ð25Þ

3. Asymptotic Analysis on Two-Soliton Solution

The asymptotic behavior of the two-soliton solution is
dependent on δðtÞ. In this section, under certain assumption
that lim

t⟶+∞

Ð
δðtÞdt = +∞, we investigate the asymptotic

behavior of the two-soliton solution. Since δðtÞ is an even
real function, we have lim

t⟶−∞

Ð
δðtÞdt = −∞. For simplicity,

we denote −ik2j by ωj, j = 1, 2, then η j = kjx + ωj
Ð
δðtÞdt,

j = 1, 2.
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(a) Two-soliton solution (δðtÞ = t2)
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Figure 3: (a) Double spatial-period soliton solution with parameters: k1 = 0:4i, k2 = 0:6i. (b) Cross-sectional shots of solution (a) at t = 0
(red), t = 5 (blue), and t = 10 (green).
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For fixed η1, we get

η2 =
k2
k1

η1 + w2 −
k2
k1

w1

� �ð
δ tð Þdt,

η∗2 −x, tð Þ = k∗2
k∗1

η∗1 −x, tð Þ + w∗
2 −

k∗2
k∗1

w∗
1

� �ð
δ tð Þdt,

η2 + η∗2 −x, tð Þ = 2 Re k2
k1

ξ1

� �
+ 2 Re w2 −

k2
k1

w1

� �ð
δ tð Þdt:

ð26Þ

where w2 − ðk2/k1Þw1 = ið−k22 + k2k1Þ.
Suppose that Re ðw2 − ðk2/k1Þw1Þ > 0, that is, Im ðk22 −

k2k1Þ < 0. The two-soliton solution asymptotically tends to
be one-soliton solution as follows:

q ~ 1
2 e

η1−η
∗
1 −x,tð Þ−ln ρ1/2ð Þ+i

Ð
δ tð Þdt sec h η1 + η∗1 −x, tð Þ + ln ρ1

2 , t⟶ −∞,

ð27Þ

q ~ ρ2ρ5
2 e η1−η

∗
1 −x,tð Þ−ln θ/ρ4ð Þ/2ð Þ+i

Ð
δ tð Þdt sec h ξ1 + ξ∗1 −x, tð Þ + ln θ/ρ4ð Þ

2 , t⟶ +∞:

ð28Þ
For fixed η2, suppose that Re ðw2 − ðk2/k1Þw1Þ > 0, in

a similar way, we get the asymptotic expressions of
Equation (21):

q ~ 1
2 e

η2+η∗2 −x,tð Þ−ln ρ4/2ð Þ+i
Ð

δ tð Þdt sec h η2 + η∗2 −x, tð Þ + ln ρ4
2 , t⟶ −∞,

ð29Þ

q ~ ρ3ρ5
2 e η2+η∗2 −x,tð Þ−ln θ/ρ1ð Þ/2ð Þ+i

Ð
δ tð Þdt sec h η2 + η∗2 −x, tð Þ + ln θ/ρ1ð Þ

2 , t⟶ +∞:

ð30Þ
We can see that the asymptotic solutions Equation (27)

and Equation (28), Equation (29) and Equation (30) have
the same form, which implies that the two-soliton collision is
elastic. But the two-soliton solution is not a travelling wave.
If we suppose that lim

t⟶+∞

Ð
δðtÞdt = −∞, the same conclusion

can be drawn.

4. Conclusion and Remarks

In the current paper, we studied an integrable variable
coefficient nonlocal nonlinear Schrödinger equation via the
Hirota’s bilinear method. We first constructed the bilinear
form and then the N-soliton solution. Furthermore, under
certain conditions, we analyzed the asymptotic behavior of
the two-soliton solution and proved that the collision of
the two soliton is elastic. Also, we demonstrated that by
choosing different special parameters, the obtained soliton
solutions can reduce to spatial period solution or singular
solution. We know that sometimes the higher-dimensional
nonlinear systems are more suitable to model the physical
phenomena such as ultrafast nonlinear optics, so we hope
to investigate the ð2 + 1Þ-dimensional variable coefficient
nonlocal partial equations in the future.
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