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The interaction of the solitary wave with an oil platform composed of four vertical circular cylinders is investigated for two attack
angle of the solitary wave β = 0° (square arrangement) and β = 45° (diamond arrangement). The solitary wave is generated using an
internal source line as proposed by Hafsia et al. (2009). This generation method is extended to three-dimensional wave flow and is
integrated into the PHOENICS code. The volume of fluid approach is used to capture the free surface evolution. The present model
is validated in the case of a solitary wave propagating on a flat bottom for H/h = 0:25 where H is the wave height and h is the water
depth. Compared to the analytical solution, the pseudowavelength and the wave crest are well reproduced. For a solitary wave
interacting with square and diamond cylinders, the simulated results show that the maximum run-ups are well reproduced. For
the diamond arrangements, the diffraction process seems to not affect the maximum run-ups, which approached the isolated
cylinder. For the square arrangement, the shielding effect leads to a maximum wave force more pronounced for the upstream
cylinder array.

1. Introduction

In the last decades, many researchers have focused on search-
ing different wave structures of nonlinear partial differential
equations. The interested readers can see [1–4]. The offshore
oil platforms and the coastal bridges are composed of multi-
ple cylinders disposed in different arrangements. When the
wave run-up and the following wave forces exceed the
expected values, the safety of these structures is compro-
mised. The available analytical solutions in the literature are
only valuable under some limiting assumptions. For this rea-
son, experimental and numerical methods are adopted to
solve this wave-platform interaction problem.

The interaction of a solitary wave (representing a real tsu-
nami wave) with a single circular cylinder was studied exper-
imentally by Yates and Wang (1994) in [5]. The effect of a
single row of circular cylinders on the transmission and
reflected coefficients is studied experimentally by Huang
(2010) in [6]. The consequent results are that the wave force
acting on a coastal structure protected by these cylinders can
be reduced to about 60% for S = 1:2D, where S is the distance
between the centers of adjacent cylinders, and D is the cylin-
der diameter. An experimental study was conducted by
Huang (2007) in [7] to measure the reflection and transmis-
sion coefficients in the case of single and twin rows of rectan-
gular cylinders, and simplified analytical expressions of these
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coefficients are proposed. Wang et al. (2021) in [8] investi-
gate experimentally, the back and front run-up and wave
forces induced by solitary wave for different truncated verti-
cal cylinders. Secondary peak for both the front run-up and
wave forces are observed due to the return flow.

An alternative method to the experimental measure-
ments of the free surface evolution is the use of a two-
dimensional (2-D) or three-dimensional (3-D) numerical
method. The first one is based on the depth averaged Boussi-
nesq equations and can be used for a long-term simulation.
Lin and Man (2007) in [9] validate the Boussinesq model
for one-dimensional and two-dimensional wave transforma-
tions. Mohapatra et al. (2020) in [10] studied the regular
wave diffraction by a floating fixed vertical cylinder by two
methods: using a CFD code and analytically based on a Bous-
sinesq model. Among the various Boussinesq models existing
in the literature, the nonlinear effects cannot well be repro-
duced (Zhao et al., 2007 in [11], Wang and Ren, 1999 in
[12], and Liu et al., 2012 in [13]). Hence, a full three-
dimensional (3-D) Navier-Stokes model is required. In order
to study the regular wave run-ups for a single and a group of
vertical cylinders, numerical virtual wave probes were used
by Cao and Wan (2017) in [14]. Frantzis et al. (2020) in
[15] adopted a (3-D) numerical wave tank (NWT) to study
the wave breaking induced by a single row of vertical cylin-
ders for different ranges of cylinder diameter to depth ratios.
The large eddy simulation (LES) model was used to repro-
duce the small scales of turbulence. Numerical results show
that the effect of the cylinder diameter is more significant
for larger values of solitary wave heights. Wang et al. (2018)
in [16] conducted a series of laboratory experiments on the
internal solitary wave (ISW) loads upon semisubmersible
platforms in a density stratified fluid tank, and investigated
the load components induced by different factors. The wave
loads on a platform composed of 2 × 2 circular cylinders in
side-by-side and tandem arrangements are numerically stud-
ied using the Reynolds-Averaged Navier-Stokes equations by
Yang et al. (2015) in [17]. The desired monochromatic wave
was generated by the prescribed velocity components at the
inlet of the computational domain. Using a CFD code,
Kamath et al. (2015) in [18] investigate the diffraction of
sinusoidal wave by 3 × 3 square array cylinders placed in
proximity and show that the wave force is highest when the
distance between the cylinder center is less than half of the
incident sinusoidal wave. The numerical results show that if
S > 4D, there is no interaction between the platform cylin-
ders. Xie et al. in [19] used a cut-cell method in a fully (3-
D) code to simulate solitary wave interaction with a vertical
circular cylinder and a thin horizontal plate. Several compu-
tational fluid dynamics (CFD) implemented a cut-cell algo-
rithm permitting to identify the contribution of a portion of
a rectangular grid to the convective and diffusive fluxes.

The main task of the present study is to investigate the
interaction of the solitary wave with one or four circular cyl-
inders in a square or diamond arrangement using a (3-D)
numerical wave tank (NWT). The proposed wave generation
method is based on an internal mass source. The cut-cell
implemented in the PHOENICS code is used to reproduce
the circular cylinder shape.

2. Mathematical Formulation

2.1. Computational Domain. The position of the still water
level h and the location of the mass source line for solitary
wave generation are shown in Figure 1(a). The direction of
propagation of the solitary wave is the positive x-direction.
In all simulated cases, the depth to cylinder radius ratio is
taken: h/a = 1, and the distance from the center of cylinders
is S = 3 a. For the square platform, there is one cylinder in
each corner of the square as indicated in Figure 1(b). The
two upstream cylinders are denoted 3 and 4, and the two
downstream cylinders are 1 and 2. The square arrangement
corresponding to the attack angle of solitary wave β = 0. This
angle is measured between the propagating direction and the
symmetric line of the platform (the line parallel to the line
joining 1 and 3). The diamond configuration of the platform
is shown in Figure 1(c) and corresponds to β = 45°. The effec-
tive computational domain has a length of L = 55 a. Two dis-
sipative zones are added in each open boundary to avoid
wave reflection having a length of ð25 aÞ. The considered
width is ð10 aÞ, ð13 aÞ, and ð12:25 aÞ, respectively, for a single
cylinder, square platform, and diamond platform.

The overall grid and the grid around the oil platform are
shown in Figure 2 for the diamond arrangement. Fine grids
are adopted around the four cylinders, and coarse grids are
imposed in the two dissipation regions. The cut-cell method
is used to mesh the circular cylinders in the Cartesian coordi-
nates system. Figure 2(b) shows the details of the cut-cell
grids around the four cylinders. The number of grid in x, y,
and z directions is, respectively NX ×NY ×NZ = 220 × 110
× 102 for the diamond arrangement and 220 × 100 × 102
for the square arrangement. For these two arrangements,
the time step is Δt = 0:01 s.

2.2. Governing Transport Equations. The proposed (NWT)
was based on the full three-dimensional (3-D) Navier-Stokes
transport equations coupled to the volume of liquid (VOF)
convective transport equation to reproduce the water wave
interface. For unsteady flow and incompressible fluid, the
mass and momentum conservation equations are written as:

(i) The mass conservation equation:

∂ρ
∂t

+ ∂ui
∂xi

= 0: ð1Þ

(ii) The momentum transport equation:

∂ui
∂t

+ uj
∂ui
∂xj

= −
1
ρ

∂p
∂xi

+ ∂
∂xj

ν
∂ui
∂xj

+
∂uj

∂xi

 !" #
+ gi + sd,i,

ð2Þ

where xi is the Cartesian coordinates, ui is the velocity
components, ρ is the density of the mixture, p is the pressure,
ν is the kinematic viscosity of the mixture, g is the
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acceleration due to gravity, and sd,z is a momentum source
term added to the momentum equation along z-direction to
avoid wave reflection at the open boundaries given by:

sd,z = γ xð Þw, ð3Þ

where γðxÞ is a linear damping function and w is the velocity
component along the z-vertical direction.

2.3. Free Surface Capture. The air-water interface is modeled
using the mixture model flow. If αq denoted the volume frac-
tion of the qth fluid in a cell, then,

(i) The density of the mixture is given by:

ρ = 〠
2

q=1
ρq αq, ð4Þ

where ρq is the density of the water when ðq = 1Þ and air
when ðq = 2Þ.

(ii) And dynamic viscosity of the mixture is

μ = 〠
2

q=1
μq αq, ð5Þ

where μq is the dynamic viscosity of the water if ðq = 1Þ
and air when ðq = 2Þ.

The volume fraction of fluid is determined by the follow-
ing mass conservation equation for each phase:

∂αq
∂t

+
∂ αq ui
� �
∂xi

= 0: ð6Þ

When αq = 0, the cell is occupied by air, αq = 1, the cell is
occupied by water, and 0 < αq < 1, the cell contains the inter-
face (Hirt and Nichols, 1981 in [20]).

2.4. Wave Generation. The desired solitary wave was gener-
ated by an internal source inlet across a source line as pro-
posed by Hafsia et al. (2009) in [21]. The inlet vertical
velocity is prescribed as a time-dependent inlet boundary
condition:

wI = 2 c η xs, tð Þ
Ls

, ð7Þ

where Ls is the length of the internal source line.
The wave celerity is given by (Dominguez et al., 2019 in

[22]):

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H + hð Þ

p
: ð8Þ

The solitary wave surface elevation ηðxs, tÞ is given by the
following equation:

η =H sech2 k xs − c tð Þ½ �, ð9Þ

whereH is the incident wave height and t is the time. The
distance xs permitting to have a negligible source at t = 0 s is
determined by the following equation:

xs =
4 hffiffiffiffiffiffiffiffi
H/h

p : ð10Þ

The equivalent wave number k is

k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3H
4 h2 H + hð Þ :

s
ð11Þ
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Figure 1: The computational domain and wave source line location; (a) side view; (b) top view.
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Following this equivalent wave number, the pseudowave-
length can be determined by:

L = 2π
k

: ð12Þ

The length Ls and the position of the source line are
determined by the calibration procedure as indicated by Haf-
sia et al. (2009) in [21].

2.5. Wave Force. The wave force F
!
acting on the cylinder is

computed by integrating the water pressure p and the normal
component of the viscous stress tensor τ on the wetted sur-
face of the cylinder S:

F
!
=
ð
S
−n! p + n!:τ
� �

dS, ð13Þ

where n! is the normal unit vector pointing into the water.
From the component of this wave force along the x

-direction, the force coefficient can be calculated as:

Cf ,x =
Fx

ρg h2 a
: ð14Þ

2.6. Initial and Boundary Conditions. The following initial
and boundary conditions are adopted for the governing
transport equations. The imposed initial condition is still
water with a depth h. For the top boundary, the pressure P
is set equal to the atmospheric pressure. Two dissipation
zones are adopted at the open boundaries (Figure 1). At all
the other boundaries of the computational domain, symmet-
ric boundary conditions are imposed.

2.7. Numerical Schemes. To solve this proposed model, we
adopt the PHOENICS code (Parabolic Hyperbolic or Elliptic
Numerical Integration Code Series). In this code, the SIM-
PLEST iterative algorithm is used to solve the pressure and
velocity coupling in the Navier-Stokes equations (Artemov
et al., 2009 in [23]). The upwind scheme is used for nonlinear
convection terms and an implicit formulation for the tran-
sient term. The (VOF) method is used to predict the interface
between the water wave and air. For all the presented simula-
tion results, the cut-cell within the PARSOL (PARtial SOLid)
treatment detects the solid-fluid interface, which is not
aligned with the Cartesian grid. The proposed three-

dimensional wave generation method is implemented in the
PHOENICS code.

3. Numerical Results

3.1. Solitary Wave on a Single Cylinder. The proposed wave
generation method based on an internal source line is vali-
dated for the nondimensional height H/h = 0:25: The

8 9 10 11 12 13

x (m)

0.18

0.20

0.22

0.24

0.26

0.28

z (
m

)

Numerical results
Analytical solution

Figure 3: Comparison between the numerical and analytical free
surface profiles at the centerline of the computational domain for
H/h = 0:25.
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Figure 4: Time evolution of the in-line force on a single cylinder.
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Figure 2: The grid of computational domain for the diamond arrangement of the four circular cylinders; (a) side view; (b) top view of the grid
details around the cylinders by cut-cell method.
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simulated results show that before reaching the vertical cylin-
der, the wave profile is invariant in the transverse direction
and can be represented by two-dimensional profiles.
Figure 3 represents the simulated wave profiles at the center
of the computational domain before impacting the cylinder.
The wave is not affected by the cylinder, and the free surface
profiles agree very well with the analytical one. The wave
crest and the pseudowavelength are in accordance with the
analytical one.

When a solitary wave passes around the cylinder, run-up
occurs at the front of the cylinder and the maximum run-up
depended on the incident wave energy. Then, the water level
drops at the front producing the rise of the water level at the

rear of the cylinder by wave diffraction. In order to validate
the cut-cell method, the maximum run-up is compared to
the available literature. The maximum wave run-up is

(a) (b)

Figure 5: A three-dimensional free-surface elevation at the maximum run-up of the cylinder 1 for H/h = 0:25: (a) square arrangement; (b)
diamond arrangement.
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Figure 6: The maximum solitary wave run-ups at each cylinder for the square arrangement; (a) cylinder 1; (b) cylinder 2; (c) cylinder 3; (d)
cylinder 4.

Table 1: Comparison of the simulated maximum run-up to the
wave height ratio with Zhao et al. (2007) in [11] for a diamond
arrangement.

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

Present study 1.36 1.38 1.38 1.36

Zhao et al. (2007)
in [11]

1.33 1.37 1.38 1.37
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determined from the evolution of the solitary wave profiles
along the centerline and is equal to Rmax = 0:068m corre-
sponding to the ratio Rmax/H = 1:36. Following the numerical
study of Zhao et al. (2007) in [11] for the same H/h = 0:25
and h/a = 1, this ratio is found equal to 1.37. There is no sig-
nificant difference between this nondimensional run-up. The
maximum wave force occurs at the same time as the maxi-
mum run-up that is equal to t = 2:9 s. Figure 4 shows the time
histories of the computed wave force on the x-direction act-
ing on an isolated cylinder. The maximum wave force at this
instant is equal to Fmax = 37:5N corresponding to the follow-
ing force coefficient Cf ,x = 0:479. The isolated cylinder is
taken as a reference case for the computed force coefficient
acting on each cylinder of the platform in the two studied
configurations.

3.2. Solitary Wave Diffraction by an Oil Platform. The flow
field due to the solitary wave diffraction by square and dia-
mond platform is analyzed at the instant of the maximum
run-up in terms of the free surface elevation, the maximum
run-up Rmax at each cylinder, and the maximum wave force
Fmax.

The perspective view of the free surface elevation is
shown in Figure 5 at the instant of the maximum run-up at
cylinder 1. The solitary wave crest has been altered by the dif-
fraction process. Impacting the cylinder obstacle, the wave
run-up is observed due to the transformation of the incident
wave to potential energy. The Rmax depends on the incoming
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Figure 7: The maximum solitary wave run-ups at each cylinder for the diamond arrangement; (a) cylinder 1; (b) cylinder 2; (c) cylinder 3; (d)
cylinder 4.

Table 2: Comparison of the simulated maximum run-up to the
wave height ratio with Zhao et al. (2007) for a square arrangement.

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

Present study 1.29 1.28 1.42 1.42

Zhao et al. (2007)
in [11]

1.37 1.37 1.40 1.40
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Figure 8: Time evolution of the in-line force on the square
arrangement for H/h = 0:25.
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wave and the nature of the obstacle. This interaction leads to
a complicated flow field as shown in Figure 5.

For square arrangement, the Rmax for the first array (cylin-
ders 3 and 4) occurs at the instant t = 2:90s and the for second
array (cylinders 1 and 2) at t = 3:45s. For diamond arrange-
ment, the first Rmax is observed for the most upstream cylinder
(cylinder 4) at t = 2:88s. The maximum run-ups for cylinders
2 and 3 occur at the same instant (t = 3:16s) and due to non-
linear effect, the Rmax for cylinder 1 is observed at t = 3:48s.

Figure 6 represents the free surface elevation at the
instant of the maximum run-up Rmax for each cylinder in
the square arrangement (zero solitary wave incidence). The
Rmax on the downstream cylinders (1 and 2) is smaller than
those on the upstream cylinders (3 and 4). The Rmax on cyl-
inders 1 and 2 is smaller than on the corresponding isolated
cylinder. This can be explained by the fact that some of the
incident wave energy has been reflected back by other cylin-
ders before the solitary wave impacting the downstream cyl-
inders array. The numerical results of Zhao et al. (2007) in
[11] confirm these conclusions, and the calculated Rmax/H
is closely the same as shown by Table 1.

The free surface elevation at the instant of the maximum
run-up Rmax for each cylinder in the diamond arrangement is
shown in Figure 7. The Rmax/H for cylinders 4 and 1 is
located at the centerline approach to that on the isolated cyl-
inder. The Rmax/H for cylinders 2 and 3 is slightly greater
than on the isolated cylinder. Table 2 shows good agreement
between the present simulations and Zhao et al. in [11]
results for the diamond arrangement.

The time evolution of the wave force in the positive x–
direction for each cylinder is presented in Figure 8 for the
square arrangement. The maximum wave force Fmax on
the most downstream array of the cylinders (1 and 2) is
slightly greater than on the isolated cylinder. The increase
of the Fmax relative to the isolated cylinder is more pro-
nounced for the first cylinder array (cylinders 3 and 4).
The platform and wave interactions lead to Fmax for the
first cylinders (3 and 4) array greater than on the second
array (cylinders 1 and 2). This can be attributed to the

shielding effect of the upstream cylinder array. These con-
clusions are in concordance with the computed run-ups
previously discussed.

For the diamond arrangement, Figure 9 presents the time
evolution of the wave force for each cylinder. The aligned cyl-
inders 4 and 1 have the same Fmax. Compared to the isolated
cylinder, this Fmax is significantly smaller. The two symmet-
ric cylinders about the centerline of the computational
domain are having the same Fmax as the isolated cylinder.
The approaching solitary wave for these cylinders seems to
be not disturbed by the diffraction process.

4. Conclusions

A full three-dimensional numerical wave tank (NWT) was
integrated on the PHOENICS code in order to study the sol-
itary wave diffraction with diamond or square cylinders
arrangements. The solitary wave was generated by an inter-
nal line source, and the cylinder structures are discretized
using the cut-cell method. For the diamond platform
arrangement, the maximum wave run-ups approach to that
on the isolated cylinder indicating that the diffraction process
does not affect the four cylinders. However, for a square
arrangement, the shielding effect of the upstream cylinders
leads to a maximum wave force for the first cylinders array
greater than the most downstream array.

The cut-cell method can be generalized for more complex
geometric coastal structures in the Cartesian coordinates sys-
tem. The proposed model based on an internal line source for
wave generation can be used to study the combined effects of
wave and current on the forces acting on multiple cylinders.
Different incident waves can be tested (monochromatic,
Stokes, and cnoidal waves). The present model can be used
to test the effect of the turbulence model, the effect of the
wave height, and the distance between the cylinders on the
wave forces and wave run-ups. Further wave-structure inter-
action cases can be studied such as the wave diffraction with
floating structures.
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