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In this paper, we define the notation of admissible hybridZ-contractions in the setting of extended b-metric spaces, which unifies
and generalizes previously existing results in literature. Furthermore, as an application, we discuss Ulam-Hyers stability and well-
posedness of a fixed point problem.

1. Introduction

The source of metric fixed point theory is considered to be
the Banach Contraction Principle which is a very impor-
tant mechanism for finding the existence and solutions
for many problems including differential and integral
equations. Afterwards, numerous papers on generalizations
and extensions of the Banach’s theorem for both single-
valued and multivalued mappings have been published,
either by changing the contraction conditions or by chang-
ing the structure of metric space to more generalized form,
e.g., see [1] and all the references therein.

The concept of a b-metric space was accomplished by
the works of Bourbaki [2], Bakhtin [3], and Czerwik [4].
Subsequently, several articles have appeared in literature
which dealt with the fixed point theorems by taking into
account more general forms, of a metric spaces, i.e., b-met-
ric space, see [5], and the applications of relaxed triangular
inequalities, like NEM (nonlinear elastic matching), ice floes,

etc., were also utilized in various directions [6, 7]. Following
the idea of b-metric spaces, a number of authors have pre-
sented several results in this direction, see [8, 9]. To have
some insight about miscellaneous generalizations of a met-
ric, we refer the readers to [10–15] for some works on b
-metric spaces.

In 2017, Kamran et al.[16] generalized the structure of a b
-metric space and referred it as an extended b-metric space.
He weakened the triangle inequality of a metric and estab-
lished fixed point results for a class of contractions. Thereaf-
ter, many researchers have studied and generalized fixed
point results for single and multivalued mappings. Proving
extensions of the Banach contraction principle from metric
spaces to b-metric spaces and hence to extended b-metric
spaces is useful to prove existence and uniqueness theorems
for different types of integral and differential equations.
Keeping the length of paper concise, we refer to [17–35]
and to references mentioned therein. For more topological
properties of extended b-metric spaces, see [20].
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The main purpose of this paper is to merge different lin-
ear and nonlinear results existing in literature in setup of an
extended b-metric space, which is a real generalization of a
b-metric and a standard metric space. We express our results
in a more refined form by combining the notations, like
admissible mappings, simulation functions, and hybrid con-
tractions. We will prove fixed point results involving a certain
type of mappings. The obtained results generalize [36].
Moreover, we prove Ulam-Hyers stability [37–39] and well-
posedness of fixed point problems as well.

2. Preliminaries

In this section, we recollect some definitions and results from
literature along with some examples.

Definition 1 [40]. Let X be a nonempty set and θ : X ×X

⟶ ½1,∞Þ. A function dθ : X ×X ⟶ ½0,∞Þ is called an
extended b-metric, if it satisfies the following properties for
all μ, γ, ν ∈X :

(dθ1) dθðμ, νÞ = 0⇐ μ = ν
(dθ2) dθðμ, νÞ = dθðν, μÞ
(dθ3) dθðμ, γÞ ≤ θðμ, γÞ½dθðμ, νÞ + dθðν, γÞ�
The pair ðX , dθÞ is called an extended b-metric space.

Example 1. Let X = ½0, 1� and θ : X ×X ⟶ ½1,∞Þ defined
by θðμ, νÞ = ð1 + μ + νÞ/ðμ + νÞ. Define dθ : X ×X ⟶ ½0,
∞Þ as

dθðμ, νÞ = 1/μν for μ, ν ∈ ð0, 1�, μ ≠ ν
dθðμ, νÞ = 0 for μ, ν ∈ ½0, 1�, μ = ν
dθðμ, 0Þ = dθð0, μÞ = 1/μν for μ ∈ ð0, 1�
Note that ðX , dθÞ is an extended b-metric space.

Example 2. Let X = f1, 2, 3g, θ : X ×X ⟶ ½1,∞Þ, and dθ
: X ×X ⟶ ½0,∞Þ as

θðμ, νÞ = 1 + μ + ν such that
dθð1, 1Þ= dθð2, 2Þ = dθð3, 3Þ = 0
dθð1, 2Þ = dθð2, 1Þ = 70
dθð1, 3Þ = dθð3, 1Þ = 90
dθð2, 3Þ = dθð3, 2Þ = 20
Here, dθ is an extended b-metric on X .

Note that the extended b-metric space becomes a b
-metric space, whenever θðμ, νÞ = δ, where δ ≥ 1 and a stan-
dard metric space for δ = 1.

Definition 2 [16]. Let ðX , dθÞ be an extended b-metric space.
The sequence fμng in X is termed as follows:

(i) Cauchy if and only if dθðμn, μmÞ⟶ 0 as n,m⟶∞

(ii) Convergent if and only if there exists μ ∈X such
that dθðμn, μÞ⟶ 0 as n⟶∞ and we write
limn⟶∞μn = μ

Note that the extended b-metric space ðX , dθÞ is com-
plete if every Cauchy sequence is convergent.

The b-metric is not continuous in general and so the
same for an extended b-metric. We define the concept of f
-orbital continuity (in case of an extended b-metric space)
as used in [41].

Definition 3 [42]. Given a mapping f : D ⊂X ⟶X . Sup-
pose that there exists some μ0 ∈D such that Oðμ0Þ = fμ0, f
μ0, f 2μ0,⋯g ⊂D. The set Oðμ0Þ is called the orbit of μ0 ∈
D. A self-mapping f : X ⟶X is called orbitally continuous
if lim

n⟶∞
f nðηÞ = η for some η ∈X implies that

limn⟶∞ f f n ηð Þð Þ = f ηð Þ: ð1Þ

Moreover, if every Cauchy sequence of the form f f nðηÞg
as n⟶∞, η ∈X converges in ðX , dθÞ, then an extended b
-metric space ðX , dθÞ is called f -orbitally complete.

Definition 4 [40]. Let ðX , dθÞ be an extended b-metric space.
A function ϕ : ℝ+ ⟶ℝ+ is called an extended b-compari-
son function if it is increasing and also there exists a mapping
f : D ⊂X ⟶X such that for some μ0 ∈D, Oðμ0Þ ⊂D,
∑∞

n=0ϕ
nðυÞQn

i=0θðμi, μmÞ converges for each υ ∈ℝ+ and for
every m ∈ℕ. Here, μn = f nμ0 for n = 0, 1, 2,⋯. We say that
ϕ is an extended b-comparison function for f at μ0 and
denotes the collection of all extended b -comparison func-
tions byΨs.

Example 3 [40]. Let ðX , dθÞ be an extended b-metric space
and f be a self mapping on X . Assume that limn,m⟶∞θðμn
, μmÞ exists. Define ϕ : ½0,∞Þ⟶ ½0,∞Þ such that ϕðυÞ = λυ
, with limn,m⟶∞θðμn, μmÞ < 1/λ. Then, the series, ∑∞

n=0ϕ
n

ðυÞQn
i=0θðμi, μmÞ converges by ratio test.

Here, λ ∈ ½0, 1Þ and μn = f nμ0 for n = 1, 2,⋯.

The notation of α-admissible mappings also played a vital
role in fixed point theory, see [43, 44].

Definition 5 [36]. Let α : X ×X ⟶ ½0,∞Þ be a mapping. A
function f : X ⟶X is α-orbital admissible if αðμ, f μÞ ≥
1αð f μ, f 2μÞ ≥ 1.

An α-orbital admissible, mapping f is called triangular α
-orbital admissible, if αðμ, νÞ ≥ 1 and αðν, f νÞ ≥ 1αðμ, f νÞ ≥
1 for all μ, ν ∈X .

Example 4. Let X = f0, 1, 2, 3g and f : X ⟶X such that f
0 = 0 and f 1 = f 2 = f 3 = 1. Consider α : X ×X ⟶ ½0,∞Þ
given as αð1, 2Þ = αð2, 1Þ = αð1, 3Þ = αð3, 1Þ = αð1, 1Þ = 1 and
0 otherwise. Clearly, f is α-orbital admissible.

Definition 6 [45]. A mapping ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ satis-
fying the following conditions

(ζ1) ζðt, sÞ < s − t for all t, s > 0
(ζ2) If ðtnÞn∈ℕ, ðsnÞn∈ℕ are the sequences in ð0,∞Þ such

that
limn⟶∞tn = limn⟶∞sn > 0. Then, limsupn⟶∞ζðtn, snÞ

< 0 is termed as a simulation function
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Let Z represents the set of all simulation functions
defined above.

The main idea of the simulation function is very useful
and effective. For a self-mapping T on a metric space, the
contraction dðT μ,T νÞ ≤ κdðμ, νÞ can be represented as 0
≤ κdðμ, νÞ − dðT μ,T νÞ = ζðdðμ, νÞ, dðT μ,T νÞÞ, where κ
∈ ½0, 1Þ and ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ. By letting dðμ, νÞ = s
and dðT μ,T νÞ = t, the corresponding simulation function
for Banach’s fixed point theorem is ζðt, sÞ = κs − t. It is clear
that for many other well-known results (Geraghty, Boyd-
Wong, etc.), one can find a corresponding simulation func-
tion, see [36, 46–51]. In other words, a simulation function
can be considered as a generator of different contraction type
inequalities.

Definition 7. A self-mapping f , defined on a metric space
ðX , dÞ, is called a Z-contraction with respect to ζ ∈Z , if it
satisfies

ζ d f μ, f νð Þ, d μ, νð Þð Þ ≥ 0 for all μ, ν ∈X: ð2Þ

EveryZ-contraction defined on a complete metric space
has a 0 fixed point, as described in [46]. A Z-contraction
generalizes the Banach contraction principle by assuming γ
∈ ½0, 1Þ and ζðt, sÞ = γs − t for all s, t ∈ ½0,∞Þ. It also unifies
several known type of contractions. Many authors have
extended their work on Z-contractions in order to prove a
more generalized version (see [47]).

The notion of admissible hybrid contractions is intro-
duced [36, 46, 48–50] in order to generalize and unify the
several existing fixed point results in the literature. The main
goal of this paper is to investigate the existence and unique-
ness of a fixed point of admissible hybrid Z-contractions in
the context of an extended b-metric space. We shall also list
some existing results in the literature as corollaries and con-
sequences of our main results. Consequently, the results in
the class of b-metric spaces and standard metric spaces
become a special case of our obtained results.

3. Main Results

Definition 8. Let ðX , dθÞ be an extended b-metric space. A
self-mapping f is called an admissible hybrid contraction if
there exist an extended b-comparison function ψ : ½0,∞Þ
⟶ ½0,∞Þ ∈Ψs and α : X ×X ⟶ ½0,∞Þ such that

α μ, νð Þdθ f μ, f νð Þ ≤ ψ P r
f μ, νð Þ

� �
, ð3Þ

where r ≥ 0 and λi ≥ 0, i = 1, 2, 3, 4, 5 with ∑5
i=1λi = 1, and

P r
f μ, νð Þ = Q μ, νð Þ½ �1/r , for r > 0 and μ, ν ∈X ,

R μ, νð Þ, for r = 0 and μ, ν ∈X ,

 
ð4Þ

where

Q μ, νð Þ≔ λ1d
r
θ μ, νð Þ + λ2d

r
θ μ, f μð Þ + λ3d

r
θ ν, f νð Þ + λ4

� dθ ν, f νð Þ 1 + dθ μ, f μð Þð Þ
1 + dθ μ, νð Þ

� �r

+ λ5
dθ ν, f μð Þ 1 + dθ μ, f νð Þð Þ

1 + dθ μ, νð Þ
� �r

,

ð5Þ

and

R μ, νð Þ≔ dλ1θ μ, νð Þ · dλ2θ μ, f μð Þ · dλ3θ ν, f νð Þ

· dθ ν, f νð Þ 1 + dθ μ, f μð Þð Þ
1 + dθ μ, νð Þ

� �λ4

· dθ μ, f νð Þ + dθ ν, f μð Þ
2θ μ, f νð Þ

� �λ5

:

ð6Þ

Definition 9. Let ðX , dθÞ be an extended b-metric space. A
self-mapping f is said to be an admissible hybrid Z-con-
traction, if there exist an extended b-comparison function
ψ ∈Ψs, α : X ×X ⟶ ½0,∞Þ, and ζ ∈Z such that

ζ α μ, νð Þdθ f μ, f νð Þ, ψ P r
f μ, νð Þ

� �� �
≥ 0,∀μ, ν ∈X: ð7Þ

Further, we discuss the existence and uniqueness of a fixed
point of an admissible hybrid Z-contraction mapping.

Note that we assume that dθ is continuous and
limm,n⟶∞θðμm, μnÞ <∞, throughout Section 3 and Section 4.

Theorem 10. Let ðX , dθÞ be an extended b-metric space. Let
f : X ⟶X be an admissible hybrid Z-contraction, which
satisfies the following axioms:

(i) The function f is triangular α-orbital admissible

(ii) There exists μ0 ∈X such that αðμ0, f μ0Þ ≥ 1

(iii) Either f is continuous or

(iv) f 2 is continuous and αðμ, f μÞ ≥ 1 for any μ ∈ Fixf 2
ðXÞ

Then, f possesses a fixed point.

Proof. Let μ0 ∈X be any arbitrary point. We start from μ0
and iteratively, we construct a sequence ðμnÞn∈ℕ such that
μn = f nμ0 for all n ∈ℕ. Suppose that there exists some m ∈
ℕ such that f μm = μm+1 = μm, we find that μm is a fixed point
of f , and in this way, the proof is completed. Thus, we can
assume that μn ≠ μn−1 for any n ∈ℕ. By condition (i), as f
is an admissible hybrid Z-contraction, so by assuming μ =
μn−1 and ν = μn in equation (3), we have

0 ≤ ζ α μn−1, μnð Þdθ f μn−1, f μnð Þ, ψ P r
f μn−1, μnð Þ

� �� �
< ψ P r

f μn−1, μnð Þ
�

− α μn−1, μnð Þdθ f μn−1, f μnð Þð Þ,
ð8Þ
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which gives,

α μn−1, μnð Þdθ f μn−1, f μnð Þ ≤ ψ P r
f μn−1, μnð Þ

� �
: ð9Þ

By condition (ii), as f is triangular α-orbital admissible
and αðμn−1, μnÞ ≥ 1, so

dθ μn, μn+1ð Þ ≤ α μn−1, μnð Þdθ f μn−1, f μnð Þ ≤ ψ P r
f μn−1, μnð Þ

� �
:

ð10Þ

☐

Case 1. Consider r > 0 so that

 P r
f μn�1, μnð Þ

 =
h
λ1d

r
θ μn�1, μnð Þ + λ2d

r
θ μn�1, f μn�1ð Þ

 + λ3d
r
θ μn, f μnð Þ

 + λ4
dθ μn, f μnð Þ 1 + dθ μn�1, f μn�1ð Þð Þ

1 + dθ μn�1, μnð Þ
� �r

 +λ5
dθ μn, f μn�1ð Þ 1 + dθ μn�1, f μnð Þð Þ

1 + dθ μn�1, μnð Þ
� �r�1/r

 =
h
λ1d

r
θ μn�1, μnð Þ + λ2d

r
θ μn�1, μnð Þ + λ3d

r
θ μn, μn+1ð Þ

 + λ4
dθ μn, μn+1ð Þ 1 + dθ μn�1, μnð Þð Þ

1 + dθ μn�1, μnð Þ
� �r

  +λ5
dθ μn, μnð Þ 1 + dθ μn�1, μn+1ð Þð Þ

1 + dθ μn�1, μnð Þ
� �r�λ5 dθ μn ,μnð Þ 1+dθ μn�1,μn+1ð Þð Þ

1+dθ μn�1,μnð Þ

� �

 = λ1d
r
θ μn�1, μnð Þ + λ2d

r
θ μn�1, μnð Þ½

 +λ3drθ μn, μn+1ð Þ + λ4 dθ μn, μn+1ð Þð Þr�1/r

 = λ1 + λ2ð Þdrθ μn�1, μnð Þ + λ3 + λ4ð Þdrθ μn, μn+1ð Þ½ �1/r:
ð11Þ

From equation (10),

dθ μn, μn+1ð Þ ≤ α μn−1, μnð Þdθ f μn−1, f μnð Þ ≤ ψ P r
f μn−1, μnð Þ

� �
= ψ λ1 + λ2ð Þdrθ μn−1, μnð Þ + λ3 + λ4ð Þdrθ μn, μn+1ð Þ½ �1/r
� �

:

ð12Þ

Suppose dθðμn−1, μnÞ ≤ dθðμn, μn+1Þ. As ψ is an increas-
ing function, so above inequality can be written as

dθ μn+1, μnð Þ ≤ α μn−1, μnð Þdθ fμn−1, fμnð Þ
≤ ψ λ1 + λ2ð Þdrθ μn−1, μnð Þ + λ3 + λ4ð Þdrθ μn, μn+1ð Þ½ �1/r
� �

≤ ψ λ1 + λ2 + λ3 + λ4ð Þdrθ μn, μn+1ð Þ½ �1/r
� �

= ψ λ1 + λ2 + λ3 + λ4ð Þ½ �1/rdθ μn, μn+1ð Þ
� �

:

ð13Þ

AsψðtÞ < t, so

dθ μn+1, μnð Þ < λ1 + λ2 + λ3 + λ4ð Þ½ �1/rdθ μn, μn+1ð Þ: ð14Þ

Since λ1 + λ2 + λ3 + λ4 ≤ 1, we get

dθ μn+1, μnð Þ < λ1 + λ2 + λ3 + λ4ð Þ½ �1/rdθ μn, μn+1ð Þ ≤ dθ μn, μn+1ð Þ,
ð15Þ

which is a contradiction. Thus, for every n ∈ℕ, dθðμn, μn+1Þ
< dθðμn−1, μnÞ, and thus equation (10) becomes

dθ μn, μn+1ð Þ ≤ ψ λ1 + λ2ð Þdrθ μn−1, μnð Þ + λ3 + λ4ð Þdrθ μn, μn+1ð Þ½ �1/r
� �

< ψ λ1 + λ2 + λ3 + λ4ð Þ½ �1/rdθ μn−1, μnð Þ
� �

≤ ψ dθ μn−1, μnð Þð Þψ2 dθ μn−2, μn−1ð Þð Þ
≤⋯≤ ψn dθ μ0, μ1ð Þð Þ:

ð16Þ

Let m > n, by triangular inequality, we have

dθ μn, μmð Þ ≤ θ μn, μmð Þdθ μn, μn+1ð Þ
+ θ μn, μmð Þθ μn+1, μmð Þdθ μn+1, μn+2ð Þ +⋯ + θ

� μn, μmð Þθ μn+1, μmð Þθ μn+2, μmð Þ⋯ θ

� μm−2, μmð Þθ μm−1, μmð Þdθ μm−1, μmð Þ
≤ θ μn, μmð Þψn dθ μ0, μ1ð Þð Þ + θ μn, μmð Þθ
� μn+1, μmð Þψn+1 dθ μ0, μ1ð Þð Þ+⋯+θ μn, μmð Þθ
� μn+1, μmð Þθ μn+2, μmð Þ⋯ θ μm−2, μmð Þθ
� μm−1, μmð Þψm−1 dθ μ0, μ1ð Þð Þ

≤ θ μ1, μmð Þθ μ2, μmð Þ⋯ θ μn−1, μmð Þθ μn, μmð Þψn

� dθ μ0, μ1ð Þð Þ + θ μ1, μmð Þθ μ2, μmð Þ⋯ θ

� μn, μmð Þθ μn+1, μmð Þψn+1 dθ μ0, μ1ð Þð Þ+⋯+θ
� μ1, μmð Þθ μ2, μmð Þ⋯ θ μn, μmð Þθ μn+1, μmð Þ⋯ θ

� μm−2, μmð Þθ μm−1, μmð Þψm−1 dθ μ0, μ1ð Þð Þ:
ð17Þ

Since ψ is an extended b-comparison function, the series

〠
∞

n=1
ψndθ μ0, μ1ð Þ

Yn
x=1

θ μx, μmð Þ, ð18Þ

is convergent for every m ∈ℕ.
Denote S =∑∞

n=1ψ
ndθðμ0, μ1Þ

Qn
x=1θðμx, μmÞ and Sn =

∑n
j=1ψ

jdθðμ0, μ1Þ
Qj

x=1θðμx, μmÞ.
Thus, for m > n, the above inequality becomes

dθ μn, μmð Þ ≤ Sm−1 − Sn½ �: ð19Þ

Letting n,m⟶∞, we get

dθ μn, μmð Þ⟶ 0, ð20Þ
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which implies that ðμnÞn∈ℕ is a Cauchy sequence in a com-
plete extended b-metric space. Therefore, it is convergent,
so there exists μ′ ∈ℕ such that

lim
n⟶∞

dθ μn, μ′
� �

= 0: ð21Þ

Now, we prove that μ′ is a fixed point of f . By condition
(iii), if f is continuous, we have

dθ μ′, f μ′
� �

= lim
n⟶∞

dθ μn, f μnð Þ = lim
n⟶∞

dθ μn, μn+1ð Þ = 0,

μ′ = f μ′:
ð22Þ

Therefore, μ′ is a fixed point of f . Now, consider that f 2 is
continuous. It follows that f 2μ′ = limn⟶∞ f 2μn = μ′. We
shall now prove that f μ′ = μ′. Contrarily, suppose that, f μ′
≠ μ′, from equation (3)

0 ≤ ζ α f μ′, μ′
� �

dθ f 2μ′, f μ′
� �

, ψ P r
f f μ′, μ′
� �� �� �

= ψ P r
f f μ′, μ′
� �� �

− α f μ′, μ′
� �

dθ f 2μ′, f μ′
� �

:
ð23Þ

It implies that

dθ μ′, f μ′
� �

= dθ f 2μ′, f μ′
� �

≤ α f μ′, μ′
� �

dθ f μ′, μ′
� �

:

ð24Þ

AsψðtÞ < t, so

ψ P r
f f μ′, μ′
� �� �

<P r
f f μ′, μ′
� �

,

P r
f f μ′, μ′
� �

=

"
λ1d

r
θ f μ′, μ′
� �

+ λ2d
r
θ μ′, f μ′
� �

+ λ3d
r
θ f μ′, f 2μ′
� �

+ λ4
dθ μ′, f μ′
� �

1 + dθ f μ′, f 2μ′
� �� �

1 + dθ μ′, f μ′
� �

0
@

1
A

r

+ λ5
dθ f μ′, f μ′
� �

1 + dθ μ′, f 2μ′
� �� �

1 + dθ μ′, f μ′
� �

0
@

1
A

r3
5
1/r

=

"
λ1d

r
θ f μ′, μ′
� �

+ λ2d
r
θ μ′, f μ′
� �

+ λ3d
r
θ f μ′, μ′
� �

+ λ4
dθ μ′, f μ′
� �

1 + dθ f μ′, μ′
� �� �

1 + dθ μ′, fμ′
� �

0
@

1
A

r

+ λ5
dθ f μ′, f μ′
� �

1 + dθ μ′, μ′
� �� �

1 + dθ μ′, fμ′
� �

0
@

1
A

r3
5
1/r

≤ λ1 + λ2 + λ3 + λ4ð Þdθ μ′, f μ′
� �h i1/r

= λ1 + λ2 + λ3 + λ4ð Þ½ �1/rdrθ μ′, f μ′
� �

≤ dθ μ′, fμ′
� �

,

ð25Þ

which leads to a contradiction. Thus, f μ′ = μ′.

Case 2. Consider r = 0. Let μ = μn−1 and ν = μn. One writes

P r
f μn−1, μnð Þ = dλ1θ μn−1, μnð Þ · dλ2θ μn−1, f μn−1ð Þ · dλ3θ μn, f μnð Þ

· dθ μn, f μnð Þ 1 + dθ μn−1, f μn−1ð Þð Þ
1 + dθ μn−1, μnð Þ

� �λ4

· dθ μn−1, f μnð Þ + dθ μn, f μn−1ð Þ
2θ μn−1, f μnð Þ

� �λ5

= dλ1θ μn−1, μnð Þ · dλ2θ μn−1, μnð Þ · dλ3θ μn, μn+1ð Þ

· dθ μn, μn+1ð Þ 1 + dθ μn−1, μnð Þð Þ
1 + dθ μn−1, μnð Þ

� �λ4

· dθ μn−1, μn+1ð Þ + dθ μn, μnð Þ
2θ μn−1, μn+1ð Þ

� �λ5

= dλ1θ μn−1, μnð Þ · dλ2θ μn−1, μnð Þ · dλ3θ μn, μn+1ð Þ

· dλ4θ μn, μn+1ð Þ · dθ μn−1, μn+1ð Þ
2θ μn−1, μn+1ð Þ
� �λ5

:

ð26Þ

Using triangular inequality, we obtain

P r
f μn−1, μnð Þ ≤ dλ1θ μn−1, μnð Þ · dλ2θ μn−1, μnð Þ

· dλ3θ μn, μn+1ð Þ · dλ4θ μn, μn+1ð Þ

· θ μn−1, μn+1ð Þ dθ μn−1, μnð Þ + dθ μn, μn+1ð Þ½ �
2θ μn−1, μn+1ð Þ

� �λ5

≤ dλ1θ μn−1, μnð Þ · dλ2θ μn−1, μnð Þ · dλ3θ μn, μn+1ð Þ

· dλ4θ μn, μn+1ð Þ · dθ μn−1, μnð Þ + dθ μn, μn+1ð Þ
2

� �λ5

:

ð27Þ

By using the following inequality, one gets

x + y
2

� �c
≤
xc + yc

2 ,∀x, y, c > 0: ð28Þ

So, we have

P r
f μn−1, μnð Þ ≤ dλ1θ μn−1, μnð Þ · dλ2θ μn−1, μnð Þ · dλ3θ μn, μn+1ð Þ

· dλ4θ μn, μn+1ð Þ · dθ μn−1, μnð Þλ5 + dθ μn, μn+1ð Þλ5
2 ,

ð29Þ

and by equation (7),

0 ≤ ζ α μn−1, μnð Þdθ f μn−1, f μnð Þ, ψ P r
f μn−1, μnð Þ

� �� �
< ψ P r

f μn−1, μnð Þ − α μn−1, μnð Þdθ f μn−1, f μnð Þ
� �

,
ð30Þ
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which gives,

dθ μn, μn+1ð Þ ≤ α μn−1, μnð Þdθ fμn−1, f μnð Þ ≤ ψ P r
f μn−1, μnð Þ

� �
:

ð31Þ

Suppose that dθðμn−1, μnÞ ≤ dθðμn, μn+1Þ. As ψ is an
increasing function, so

dθ μn, μn+1ð Þ ≤ dλ1+λ2+λ3+λ4+λ5θ μn, μn+1ð Þ = dθ μn, μn+1ð Þ,
dθ μn, μn+1ð Þ ≤ dθ μn, μn+1ð Þ,

ð32Þ

so, we have two cases here that dθðμn, μn+1Þ = dθðμn, μn+1Þ or
dθðμn, μn+1Þ < dθðμn, μn+1Þ which is a contradiction. Thus,
we obtain

dθ μn, μn+1ð Þ ≤ ψ P r
f μn−1, μnð Þ

� �
< ψndθ μ0, μ1ð Þ: ð33Þ

Utilizing the same arguments as of Case 1, we obtain that
ðμnÞn∈ℕ is a Cauchy sequence in an extended b-metric space.
Therefore, it is convergent, so there exists μ′ ∈ℕ such that

lim
n⟶∞

μn = μ′: ð34Þ

Now, further we claim that μ′ is a fixed point of f . By
condition (iii), if f is continuous, then

dθ μ′, f μ′
� �

= lim
n⟶∞

dθ μn, f μnð Þ = lim
n⟶∞

dθ μn, μn+1ð Þ = 0:

ð35Þ

Thus,

μ′ = f μ′: ð36Þ

Hence, μ′ is a fixed point of f . Now, consider f 2 is contin-
uous. It follows that f 2μ′ = μ′. Now, we shall validate that f
μ′ = μ′. Contrarily, suppose that f μ′ ≠ μ′, then

0 ≤ ζ α f μ′, μ′
� �

dθ f 2μ′, f μ′
� �

, ψ P r
f f 2μ′, f μ′
� �� �� �

= ψ P r
f f 2μ′, f μ′
� �� �

− α f μ′, μ′
� �

dθ f 2μ′, f μ′
� �

:

ð37Þ

It implies that

dθ μ′, f μ′
� �

= dθ f 2μ′, f μ′
� �

≤ α f μ′, μ′
� �

dθ f 2μ′, f μ′
� �

≤ ψ P r
f f 2μ′, f μ′
� �� �

= ψ P r
f μ′, f μ′
� �� �

,

ð38Þ

where

P r
f μ′, f μ′
� �

= dλ1+λ2+λ3θ μ′, f μ′
� �

·
dθ μ′, f μ′
� �

1 + dθ μ′, f μ′
� �� �

1 + dθ μ′, f μ′
� �

0
@

1
A

λ4

·
dθ μ′, f 2μ′
� �

+ dθ f μ′, f μ′
� �

2θ μ′, f μ′
� �

0
@

1
A

λ5

= dλ1+λ2+λ3+λ4θ μ′, f μ′
� �

< dθ μ′, f μ′
� �

:

ð39Þ

Therefore, we have

dθ μ′, f μ′
� �

≤ ψ P r
f μ′, fμ′
� �� �

< ψ dθ μ′, f μ′
� �� �

< dθ μ′, f μ′
� �

,

ð40Þ

which is a contradiction. So, f μ′ = μ′.

Theorem 11. Assume that all the postulates of Theorem 10
hold. Additionally, suppose that αðμ′, ν′Þ ≥ 1, for any μ′, ν′
∈ Fixf ðXÞ. Then, f has a unique fixed point.

Proof. Assume that the fixed point of the mapping f is not
unique. Let ν′ ∈X be another fixed point of f , where μ′ ≠
ν′. For case r > 0, by equation (7), we get

0 ≤ ζ α μ′, ν′
� �

dθ f μ′, f ν′
� �

, ψ P r
f μ′, ν′
� �� �� �

< ψ P r
f μ′, ν′
� �� �

− α μ′, ν′
� �

dθ f μ′, f ν′
� �

:
ð41Þ

This yields that

dθ μ′, ν′
� �

≤ α μ′, ν′
� �

dθ fμ′, f ν′
� �

≤ ψ P r
f μ′, ν′
� �� �

<P r
f μ′, ν′
� �

=

"
λ1d

r
θ μ′, ν′
� �

+ λ2d
r
θ μ′, f μ′
� �

+ λ3d
r
θ ν′, f ν′
� �

+ λ4
dθ ν′, f ν′
� �

1 + dθ μ′, fμ′
� �� �

1 + dθ μ′, ν′
� �

0
@

1
A

r

+
dθ ν′, f μ′
� �

1 + dθ μ′, f ν′
� �� �

1 + dθ μ′, ν′
� �

0
@

1
A

r3
5
1/r

= λ1 + λ5ð Þ1/rdθ μ′, ν′
� �

< dθ μ′, ν′
� �

,

ð42Þ

which is a contradiction. Similarly, for case r = 0, we obtain
0 < dθðμ′, ν′Þ < 0, which also gives a contradiction. Thus,
μ′ = ν′; that is, f has a unique fixed point. ☐
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Example 1. Let X = ½0, 3� and d : X ×X ⟶ ½0,∞Þ be such
that dðμ, νÞ = jμ − νj2 and θðμ, νÞ = μ + ν + 2 for all μ, ν ∈
X . Consider the mapping f : X ⟶X defined by

f μð Þ =
1
3 , if μ ∈ 0, 1½ �,
μ

3 , if μ ∈ 1, 3ð �,

0
B@ ð43Þ

and

α μ, νð Þ =
3, if μ, ν ∈ 0, 1½ �,

1, if μ = 0, ν = 3, ψ : 0,∞½ Þ⟶ 0,∞½ Þdefined byψ tð Þ = t
3&ζ t, sð Þ = s

3 − t,

0, otherwise:

0
BBB@

ð44Þ

Note that

(i) ðX , dθÞ is an extended complete b-metric space with
θðμ, νÞ = μ + ν + 2

(ii) f is triangular α-orbital admissible mapping

(iii) For μ0 ∈ ½0, 1�, f μ0 = 1/3 ∈ ½0, 1�, and therefore, αðμ0
, f μ0Þ = 3 > 1

(iv) f is continuous

(v) f 2 is continuous, where f 2 = 1/3

Furthermore, for μ = 1/3 ∈ Fixf 2ðXÞ, we get αð1/3, f 1/3Þ
= 3 > 1

(vi) ζðαðμ, νÞdθð f μ, f νÞ, ψðP r
f ðμ, νÞÞÞ ≥ 0

Consider μ, ν ∈ ½0, 1�, then f μ = f ν = 1/3, and hence,
dθð f μ, f νÞ = 0. For all μ, ν ∈ ½0, 1�, we have

ζ α μ, νð Þdθ f μ, f νð Þ, ψ P r
f μ, νð Þ

� �� �
= ζ 0, ψ P r

f μ, νð Þ
� �� �

= 1
3ψ P r

f μ, νð Þ
� �

:

ð45Þ

Hence,

ζ α μ, νð Þdθ f μ, f νð Þ, ψ P r
f μ, νð Þ

� �� �
≥ 1∀μ, ν ∈ 0, 1½ �: ð46Þ

Now, consider μ = 0, ν = 3, r = 2, and λ1 = λ2 = λ3 = λ4
= λ5 = 1/5, we have

ζ α μ, νð Þdθ fμ, f νð Þ, ψ P r
f μ, νð Þ

� �� �
= ζ α 0, 3ð Þdθ f 0, f 3ð Þ, ψ P r

f 0, 3ð Þ
� �� �

= 1
3ψ P r

f 0, 3ð Þ
� �

− α 0, 3ð Þdθ f 0, f 3ð Þ

= 1
3 · 13

1
5 d

2
θ 0, 3ð Þ + 1

5 d
2
θ 0, f 0ð Þ + 1

5 d
2
θ 3, f 3ð Þ + 1

5

�

· dθ 3, f 3ð Þ 1 + dθ 0, f 0ð Þð Þ
1 + dθ 0, 3ð Þ

� �2
+ 1
5

dθ 3, f 0ð Þ 1 + dθ 0, f 3ð Þð Þ
1 + dθ 0, 3ð Þ

� �2
#1/2

− α 0, 3ð Þdθ
1
3 , 1
� �

= 1
9

1
5 81 + 1

81 + 16 + 16
81 + 64

225

� �� �1/2
−
4
9 ≥ 0:

ð47Þ

Hence,

ζ α 0, 3ð Þdθ f 0, f 3ð Þ, ψ P r
f 0, 3ð Þ

� �� �
≥ 0: ð48Þ

In all other cases, we have αðμ, νÞ = 0, so

ζ 0, ψ P r
f μ, νð Þ

� �� �
= 1
3ψ P r

f μ, νð Þ
� �

≥ 0: ð49Þ

Hence, we acquire that f is an admissible hybrid Z

-contraction. It follows all the hypothesis of Theorem 11,
and so, μ = 1/3 is the fixed point of f .

Let Φ be the collection of all auxiliary functions φ : ½0,
∞Þ⟶ ½0,∞Þ, which are continuous and φðυÞ = 0 if and
only if υ = 0.

Corollary 12. Let ðX , dθÞ be an extended b-metric space,
f : X ⟶X and α : X ×X ⟶ ½0,∞Þ. Suppose that there
exist two functions φ1, φ2 ∈Φ with φ1ðυÞ < υ < φ2ðυÞ, for all
υ > 0, such that

φ2 α μ, νð Þdθ f μ, f νð Þð Þ ≤ φ1 P r
f μ, νð Þ

� �
, ð50Þ

where ζ is defined as ζðt, sÞ = φ1ðsÞ − φ2ðtÞ. Additionally, sup-
pose that

(i) f is triangular α-orbital admissible

(ii) There exists μ0 ∈X such that αðμ0, f μ0Þ ≥ 1

(iii) Either f is continuous or

(iv) f 2 is continuous and αðμ, f μÞ ≥ 1 for anyμ ∈ Fixf 2ðXÞ
(v) If μ′, ν′ ∈ Fixf ðXÞ, then αðμ′, ν′Þ ≥ 1

Then, f has a unique fixed point.

Corollary 13. Let ðX , dθÞ be an extended b-metric space. Sup-
pose that there exists a function φ ∈Φ, where Φ : ½0,∞Þ⟶
½0,∞Þ such that all φ ∈Φ is continuous and φðυÞ = 0 if and
only if υ = 0, such that
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α μ, νð Þdθ f μ, f νð Þ ≤P r
f μ, νð Þ − φ P r

f μ, νð Þ
� �

, ð51Þ

where ζ is defined as ζðt, sÞ = s − φðsÞ − t. Furthermore, we
assume that

(i) f is triangular α-orbital admissible

(ii) There exists μ0 ∈X such that αðμ0, f μ0Þ ≥ 1

(iii) Either f is continuous or

(iv) f 2 is continuous and αðμ, f μÞ ≥ 1 for any μ ∈ Fi
xf 2ðXÞ

(v) If μ′, ν′ ∈ Fixf ðXÞ, then αðμ′, ν′Þ ≥ 1

Then, f has a unique fixed point.

Corollary 14. Let ðX , dθÞ be an extended b-metric space. Sup-
pose that there exist a function χ : ½0,∞Þ⟶ ½0,∞Þ such thatÐ P r

f ðμ,νÞ
0 χðpÞdp exists and

ÐP r
f ðμ,νÞ

0 χðpÞdp > ε, for every ε > 0,
with property that

α μ, νð Þdθ f μ, f νð Þ ≤
ðP r

f μ,νð Þ

0
χ pð Þdp, ð52Þ

where ζ is defined as ζðt, sÞ = s −
Ð t
0χðuÞdu. Moreover, we sup-

pose that

(i) f is triangular α-orbital admissible

(ii) There exists μ0 ∈X such that αðμ0, f μ0Þ ≥ 1

(iii) Either f is continuous or

(iv) f 2 is continuous mapping and αðμ, f μÞ ≥ 1 for
any μ ∈ Fixf 2ðXÞ

(v) If μ′, ν′ ∈ Fixf ðXÞ, then αðμ′, ν′Þ ≥ 1

Then, f has a unique fixed point.

4. Application

In this section, we explore Ulam-Hyers stability and well
posedness of the fixed point problem in the setup of an
extended b-metric space (see [36] and references therein).

Definition 15. Let f : X ⟶X be a self-mapping defined on
an extended b-metric space. Consider the fixed point
problem

μ = f μ: ð53Þ

The fixed point problem (53) is well-posed if

(i) Fixf ðXÞ = fμ′g
(ii) If ðμnÞn∈ℕ is a sequence such that dθðμn, f μnÞ⟶ 0,

as n⟶∞, then μn ⟶ μ′, as n⟶∞

Theorem 16. Let ðX , dθÞ be an extended b-metric space. Sup-
pose that all the assumptions of Theorem 11 hold, and r > 0.
Additionally, we assume that for any sequence ðμnÞn∈ℕ, dθð
μn, f μnÞ⟶ 0, as n⟶∞, we have αðμn, μ′Þ ≥ 1, for all n
∈ℕ, where μ′ ∈ Fixf ðXÞ. If λ1 + λ5 < 1/η2ðrÞ, where ηðrÞ =
max f1, 2r−1ðθðμ, νÞÞrg∀μ, ν ∈X , then the fixed point prob-
lem (53) is well-posed.

Proof. As μ′ = Fixf ðXÞ, by equation (7),

0 ≤ ζ α μn, μ′
� �

dθ f μn, f μ′
� �

, ψ P r
f μn, μ′
� �� �� �

< ψ P r
f μn, μ′
� �� �

− α μn, μ′
� �

dθ f μn, f μ′
� �

:
ð54Þ

Consider

dθ μn, μ′
� �

≤ θ μn, μ′
� �

dθ μn, fμnð Þ + dθ fμn, μ′
� �h i

= θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

dθ fμn, μ′
� �

≤ θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

α μn, μ′
� �

dθ

� fμn, f μ′
� �

≤ θ μn, μ′
� �

dθ μn, fμnð Þ
+ θ μn, μ′
� �

ψ P r
f μn, μ′
� �� �

< θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

P r
f μn, μ′
� �

≤ θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

�
"
λ1d

r
θ μn, μ′
� �

+ λ2d
r
θ μn, fμnð Þ + λ3d

r
θ μ′, f μ′
� �

+ λ4
dθ μ′, fμ′
� �

1 + dθ μn, fμnð Þð Þ
1 + dθ μn, μ′

� �
0
@

1
A

r

+ λ5
dθ μ′, fμn
� �

1 + dθ μn, fμ′
� �� �

1 + dθ μn, μ′
� �

0
@

1
A

r3
5
1/r

= θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

� λ1d
r
θ μn, μ′
� �

+ λ2d
r
θ μn, f μnð Þ + λ5d

r
θ μ′, f μn
� �h i1/r

≤ θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

� λ1d
r
θ μn, μ′
� �

+ λ2d
r
θ μn, f μnð Þ + θ μ′, fμn

� �� �r
λ5

h
� dθ μ′, μn

� �
+ dθ μn, fμnð Þ

� �ri1/r
≤ θ μn, μ′
� �

dθ μn, fμnð Þ + θ μn, μ′
� �

� λ1d
r
θ μn, μ′
� �

+ λ2d
r
θ μn, f μnð Þ + 2r−1

h
� θ μ′, fμn

� �� �r
λ5d

r
θ μ′, μn
� �

+ 2r−1

� θ μ′, fμn
� �� �r

λ5d
r
θ μn, f μnð Þ

i1/r
:

ð55Þ
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In this way, we obtain

drθ μn, μ′
� �

≤ 2r−1 θ μn, μ′
� �� �r

drθ μn, f μnð Þ + 2r−1

� θ μn, μ′
� �� �r

λ1d
r
θ μn, μ′
� �

+ 2r−1

� θ μn, μ′
� �� �r

λ2d
r
θ μn, f μnð Þ + 22r−2

� θ μn, μ′
� �� �r

θ μ′, f μn
� �� �r

λ5d
r
θ μ′, μn
� �

+ 22r−2 θ μn, μ′
� �� �r

θ μn, f μnð Þð Þrλ5drθ μn, f μnð Þ,
ð56Þ

or we can write

1 − 2r−1 θ μn, μ′
� �� �r

λ1 − 22r−2 θ μn, μ′
� �� �r

θ μ′, f μn
� �� �r

λ5
h i

drθ μn, μ′
� �

≤ 2r−1 θ μn, μ′
� �� �r

1 + λ2 + 2r−1 θ μn, f μnð Þð Þrλ5
� 	

drθ μn, f μnð Þ:

ð57Þ

From here, we get

drθ μn, μ′
� �

≤
2r−1 θ μn, μ′

� �� �r
1 + λ2 + 2r−1 θ μn, f μnð Þð Þrλ5
� 	

1 − 2r−1 θ μn, μ′
� �� �r

λ1 − 22r−2 θ μn, μ′
� �� �r

θ μ′, f μn
� �� �r

λ5
h i drθ μn, fμnð Þ,

ð58Þ

drθ μn, μ′
� �

≤
η rð Þ 1 + λ2 + η rð Þλ5½ �
1 − η rð Þλ1 − η2 rð Þλ5½ � d

r
θ μn, f μnð Þ: ð59Þ

As n⟶∞, we have that limn⟶∞drθðμn, f μnÞ = 0. So,
limn⟶∞drθðμ′, μnÞ = 0.

Thus, the fixed point problem (53) is well-posed. ☐

Definition 17. The fixed point problem μ = f μ is called gener-
alized Ulam-Hyers stable if and only if there exists ω : ½0,∞
Þ⟶ ½0,∞Þ which is increasing, continuous at 0 with ωð0Þ
= 0, such that for every ξ > 0 and for each ν′ ∈X ,

dθ ν, f νð Þ ≤ ξ, ð60Þ

there exists a solution μ′ of the fixed point problem such that
dθðν′, μ′Þ ≤ ωðξÞ.

If there exists x > 0 such that ωðaÞ≔ x:a, for each a ∈ℝ+,
then the fixed point problem is referred to be Ulam-Hyers
stable.

Theorem 18. Let ðX , dθÞ be an extended b-metric space. Sup-
pose that all the assumptions of Theorem 11 hold and r > 0.

Furthermore, we assume that αðν′, μ′Þ ≥ 1, for all ν′ ∈X
satisfying (60), where μ′ ∈ Fixf ðXÞ. If λ1 + λ5 < 1/η2ðrÞ,
where ηðrÞ =max f1, 2r−1ðθðμ, νÞÞrg∀μ, ν ∈X , then the fixed
point problem μ = f μ is Ulam-Hyers stable.

Proof. By (7),

0 ≤ ζ α ν′, μ′
� �

dθ f ν′, f μ′
� �

, ψ P r
f ν′, μ′
� �� �� �

< ψ P r
f ν′, μ′
� �� �

− α ν′, μ′
� �

dθ f ν′, f μ′
� �

:
ð61Þ

Consider

dθ ν′, μ′
� �

= dθ ν′, fμ′
� �

≤ θ ν′, μ′
� �

� dθ ν′, fμ′
� �

+ dθ f ν′, f μ′
� �h i

= θ ν′, μ′
� �

dθ ν′, f μ′
� �

+ θ ν′, μ′
� �

dθ f ν′, f μ′
� �

≤ θ ν′, μ′
� �

dθ ν′, f ν′
� �

+ θ ν′, μ′
� �

α ν′, μ′
� �

dθ

� f ν′, f μ′
� �

≤ θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

ψ P r
f ν′, μ′
� �� �

< θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

P r
f ν′, μ′
� �

≤ θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

�
"
λ1d

r
θ ν′, μ′
� �

+ λ2d
r
θ ν′, f ν′
� �

+ λ3d
r
θ μ′, fμ′
� �

+ λ4
dθ μ′, fμ′
� �

1 + dθ ν′, f ν′
� �� �

1 + dθ ν′, μ′
� �

0
@

1
A

r

+ λ5
dθ μ′, f ν′
� �

1 + dθ ν′, f μ′
� �� �

1 + dθ ν′, μ′
� �

0
@

1
A

r3
5
1/r

= θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

� λ1d
r
θ ν′, μ′
� �

+ λ2ξ
r + λ5d

r
θ μ′, f ν′
� �h i1/r

≤ θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

λ1d
r
θ ν′, μ′
� �

+ λ2ξ
r

h
+ θ μ′, f ν′

� �� �r
λ5 dθ μ′, ν′

� �
+ dθ ν′, fμ′

� �� �ri1/r
≤ θ ν′, μ′
� �

ξ + θ ν′, μ′
� �

λ1d
r
θ ν′, μ′
� �

+ λ2ξ
r + 2r−1

h
� θ μ′, f ν′

� �� �r
λ5d

r
θ μ′, ν′
� �

+ 2r−1 θ μ′, f ν′
� �� �r

λ5d
r
θ

� ν′, f ν′
� �i1/r

:

ð62Þ

Thus, we get

drθ ν′, μ′
� �

≤ 2r−1 θ ν′, μ′
� �� �r

ξr + 2r−1 θ ν′, μ′
� �� �r

λ1d
r
θ

� ν′, μ′
� �

+ 2r−1 θ ν′, μ′
� �� �r

λ2ξ
r + 22r−2

� θ ν′, μ′
� �� �r

θ μ′, f ν′
� �� �r

λ5d
r
θ μ′, ν′
� �

+ 22r−2 θ ν′, μ′
� �� �r

θ ν′, f ν′
� �� �r

λ5ξ
r ,

ð63Þ
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or we can write

1 − 2r−1 θ ν′, μ′
� �� �r

λ1 − 22r−2 θ ν′, μ′
� �� �r

θ μ′, f ν′
� �� �r

λ5
h i

drθ

� μ′, ν′
� �

≤ 2r−1 θ ν′, μ′
� �� �r

1 + λ2 + 2r−1 θ ν′, f ν′
� �� �r

λ5
h i

ξr:

ð64Þ

Therefore, we obtain

drθ μ′, ν′
� �

≤
2r−1 θ ν′, μ′

� �� �r
1 + λ2 + 2r−1 θ ν′, f ν′

� �� �r
λ5

h i
1 − 2r−1 θ ν′, μ′

� �� �r
λ1 − 22r−2 θ ν′, μ′

� �� �r
θ μ′, f ν′
� �� �r

λ5
h i ξr:

ð65Þ

Thus, we get

drθ μ′, ν′
� �

≤
η rð Þ 1 + λ2 + η rð Þλ5½ �
1 − η rð Þλ1 − η2 rð Þλ5½ � ξ

r: ð66Þ

Hence,

dθ μ′, ν′
� �

≤ xξr , ð67Þ

where x = ðηðrÞ½1 + λ2 + ηðrÞλ5�Þ/ð½1 − ηðrÞλ1 − η2ðrÞλ5�Þ for
all r > 0 and λ1, λ5 ∈ ½0, 1Þ. ☐

5. Conclusion

In this research paper, we consolidated and refined several
existing results in literature by bringing up the notation of
admissible hybrid Z-contractions in the setup of an
extended b-metric space. Accordingly, all the exhibited
results are authentic in context of complete b-metric spaces
by letting θðμ, νÞ = δ, where δ ≥ 1, and in context of complete
metric spaces by letting δ = 1. Furthermore, the paper gener-
alizes the results of [36, 45, 46, 51]. Numerous fixed point
results can be concluded in standard b-metric spaces via a
partial order or a cyclic contraction. Moreover, one can
derive results in extended b-metric spaces using [52–55].
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