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In this study, the planar kinematics has been studied in a generalized complex plane which is a geometric representation of the
generalized complex number system. Firstly, the planar kinematic formulas with one parameter for homothetic motions in the
generalized complex plane have been mentioned briefly. Then, the Steiner area formula given areas of the trajectories drawn by
the points taken in a generalized complex plane have been obtained during the one-parameter planar homothetic motion.
Finally, the Holditch theorem, which gives the relationship between these areas of trajectories, has been expressed for
homothetic motions in a generalized complex plane. So, this theorem obtained in this study is the most general form of all
Holditch theorems obtained so far.

1. Introduction

The first scientists which introduced the complex numbers,
which are expressed as x + iy where the imaginer unit is i
ði2 = −1Þ, are thought to be Italian mathematicians Cardan
(1501-1576) and Bombelli (1526-1572). In 1545, Cardan
published a study called “The Great Art” and defined an alge-
braic formula for solving cubic and quartic equations in that
study. But Cardan did not consider complex numbers in
detail. On the other hand, Bombelli introduced (complex)
numbers with Cardan’s formula 30 years after Cardan’s
study. Then, it has been observed that alternative number
systems can be created with the help of complex numbers.
The English geometrician Clifford (1845-1879) introduced
hyperbolic numbers using i2 = +1 [1–4]. The application to
mechanics of hyperbolic numbers given by Clifford has been
supported by applications to non-Euclidean geometries.
Moreover, the German geometrician study introduced
another number system called “dual numbers” by adding
another unit to complex numbers [4–6].

Cayley-Klein geometry, which contains Euclidean, Gali-
lean, and Minkowskian geometries, was introduced for the
first time by Klein and Cayley [7, 8]. Then, Yaglom consid-

ered these studies given by Klein and Cayley and divided
these geometries into three (parabolic, elliptic, and hyper-
bolic) according to the length measure between two points
on a line and the angle measure between two lines [9]. This
distinction has showed nine paths by measures of angle and
length. These nine plane geometries are given in Table 1.

The generalized complex number system was introduced
by Yaglom [4]. The generalized complex numbers also play a
role in Cayley-Klein geometry as ordinary complex numbers
play a role in Euclidean geometry [4, 9]. Then, Harkin and
Harkin studied the generalized complex number system tak-
ing these studies into account [10].

As a subbranch of physics, mechanics examines the
motion of systems, their effects that cause motion, and the
equilibrium states of systems. Mechanics divide into three
parts as statics, kinematics, and dynamics. Statics, kinemat-
ics, and dynamics examine, respectively, the equilibrium
states of systems, the motion of systems without adding force,
and the factors that change motion. The main elements con-
sidered in kinematics are also length and time. In dynamics,
there are three basic elements that are important: length,
time, and mass. Thus, kinematics can be called a science
between geometry and dynamics. Briefly, kinematics
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examines how the geometric properties of systems change
over time. The treatment of kinematics as an independent
science dates back to Ampére’s (1775-1836) time, who first
defined this branch of science and named it. According to
Ampére, “Kinematics includes in everything that can be said
about the motions of systems, regardless of the forces that
move the systems. It examines all the designs of the force
independent motion, taking into account many calculations
such as the area formed during the motion, the time required
to create this area and the various connections that can be
found between this area and this time” [11]. In kinematics,
the one-parameter planar motion has been studied by many
scientists in different spaces. Müller introduced the one-
parameter planar motion in both Euclidean and complex
planes [12]. The one-parameter planar motion in the Lorent-
zian plane was also studied by Ergin [13] and Görmez [14].
Then, Yüce and Kuruoğlu introduced the one-parameter pla-
nar motion in the hyperbolic plane [15]. Moreover, Akar and
Yüce studied in the Galilean plane [16]. Holditch theorem
first expressed by Holditch [17] is one of the important the-
orems of kinematics. The most important point of that clas-
sical Holditch theorem is that the area is independent of the
selected curve. Therefore, due to the Holditch theorem being
open to technical application and its independence from the
curve, it has gained a lot of attention with the choices of the
plane that carries the curve and has been generalized by
many scientists with different methods. Steiner gave the area
formula bounded by the trajectory curve drawn by any point
under a one-parameter closed planar motion [18, 19]. Since
the above-mentioned studies received great interest during
the one-parameter closed planar motion, many of the scien-
tists working on kinematics have generalized the Holditch
theorem with various studies. The most important of these
studies are [12, 20–25]. Many studies about the Holditch the-
orem have been also made for homothetic motions. Tutar
and Kuruoğlu obtained the Steiner area formula and Hol-
ditch theorem for the one-parameter planar homothetic
motions in the Euclidean plane [26]. In addition, Kuruoğlu
and Yüce generalized the area formulas for planar motions
and gave the corresponding formulas for homothetic
motions [27–30]. This study is the most general form of all
study about Holditch theorems obtained so far.

In [31], a new analytical geometry method that is symme-
tries in the Euclidean plane was developed to calculate the
trajectories of mechatronic systems and CAD/CAM. In addi-
tion, some examples of the design of kinematic mechanisms
were presented [31]. Then, in [32], a new alternative calcula-
tion method of high accuracy calculation of robot trajectory
for the complex curves was proposed. On the other hand,
the similarity method has found a place in science for several

centuries. The basis of the study in [33] is closely linked to
mathematical linguistics. This approach has led to new
results in analytical geometry used in different applications
in information technology. Moreover, in [33], an architec-
tural calculation tool was proposed and the existence of sym-
metry in natural languages was briefly demonstrated. The
Renishaw Ballbar QC20-W is designed for the diagnosis of
CNC machine tools but is also used in conjunction with
industrial robots. In the standard measurement situation,
not all robot joints move when the measurement plane is par-
allel to the robot base. In this regard, in [34], the hypothesis
of motion of all robot joints has been valuated when the
desired circular path was placed on an inclined plane. There-
fore, the hypothesis established in the first part of the exper-
iments was confirmed by spatial analysis on a simulation
model of the robot. Then, practical measurements were made
evaluating the effect of individual robot joints to deform the
circular path, which is shown as a pole plot [34].

The generalized complex number system was expressed
as

Cp = x + iy : x, y ∈ R, i2 = p ∈ R
� �

, ð1Þ

by Yaglom and Harkin [4, 9, 10]. This system involves com-
plex ðp = −1Þ, dual ðp = 0Þ, and hyperbolic ðp = +1Þ number
systems and also different planes for other values of p ∈ R.
Considering the aforementioned studies, some kinematic
studies have been carried out in the generalized complex
plane obtained from this number system. Erişir et al.
obtained the Steiner area formula, the polar moment of iner-
tia, and Holditch-type theorem in Cp [35, 36]. In addition to
that, Erişir and Güngör gave the Holditch-type theorem for
nonlinear points in a generalized complex plane Cp, [37,
38]. Moreover, Gürses et al. gave the one-parameter planar
homothetic motion in Cj = fx + Jy : x, y ∈ R, J2 = p, p ∈ f−1
, 0, 1gg ⊂ Cp [39].

This study is on kinematics for one parameter planar
homothetic motion in a generalized complex plane which is
a geometric representation of the generalized complex num-
ber system Cp = fx + iy : x, y ∈ R, i2 = p ∈ Rg. The Steiner for-
mula and Holditch theorem for these homothetic motions in
Cp have been obtained. So, this study is the most general ver-
sion of all the studies about the Holditch theorem done so far.

2. Preliminaries

The generalized complex number system consists of ordered
pairs Z = ðx, yÞ or Z = x + iy, and this number system specif-
ically includes ordinary, dual, and double numbers where i2

Table 1: Nine Cayley-Klein geometries in the plane.

Measure of length
Elliptic Parabolic Hyperbolic

Measure of angles

Elliptic Elliptic geometry Euclidean geometry Hyperbolic geometry

Parabolic (Euclidean) Co-Euclidean geometry Galilean geometry Co-Minkowskian geometry

Hyperbolic Cohyperbolic geometry Minkowskian geometry Doubly hyperbolic geometry
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is also written as i2 = ðq, pÞ, ði2 = iq + pÞ, and x, y, q, p ∈ R. So,
in cases where p + q2/4 is negative, zero, and positive, gener-
alized complex numbers are isomorphic to ordinary, dual,
and double numbers, respectively [4, 9, 10]. In this paper,
especially, q = 0, −∞ < p <∞, and i2 = p ∈ R are considered.
So, the generalized complex number system is reduced

Cp = x + iy : x, y ∈ R, i2 = p ∈ R
� �

: ð2Þ

Now, the two generalized complex numbers are consid-
ered Z1 = x1 + iy1 and Z2 = x2 + iy2 ∈ Cp. So, it can be written
as

Z1 ± Z2 = x1 + iy1ð Þ ± x2 + iy2ð Þ = x1 ± x2ð Þ + i y1 ± y2ð Þ:
ð3Þ

Moreover, the product in this system is

Mp Z1, Z2ð Þ = x1x2 + py1y2ð Þ + i x1y2 + x2y1ð Þ ð4Þ

[4, 10, 40].
On the other hand, if two generalized complex vectors

which are position vectors of the generalized complex num-
bers Z1, Z2 are considered z1 = x1 + iy1 and z2 = x2 + iy2 ∈
Cp, the scalar product of these vectors is

z1, z2h ip = Re Mp z1, �z2ð Þð Þ = Re Mp �z1, z2ð Þð Þ = x1y1 − px2y2

ð5Þ

[10]. Moreover, the p-magnitude of the generalized complex
number Z = x + iy ∈ Cp is

Zj jp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mp Z, �Z
� ��� ��q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − py2j j

p
, ð6Þ

where “−” denotes the ordinary complex conjugation [10].
Moreover, the unit circle in Cp is characterized by the form
of jZjp = 1. Thus, the unit circle in the plane Cp can be given
as Figure 1 for the special cases of p.

If the special case p < 0 is chosen, the unit ellipses formed
by x2 + jpjy2 = 1 are obtained. Moreover, the generalized
complex number system Cpðp < 0Þ equals to the elliptical
complex number system. In particular, if p = −1 then, the
unit circle in Cp corresponds to Euclidean unit circle x2 +
y2 = 1 [10]. If the situation p = 0 is considered, x2 = 1 and
the unit circles are formed as x = ±1. Moreover, the system
C0 is equal to the parabolic number system and the plane
in this situation corresponds to the Galilean plane [10].
Finally, considering the special situation p > 0, the hyperbolas
are obtained by jx2 − py2j = 1 which have asymptote y = ±x/ffiffiffi
p

p
. So, the number system Cp is equal to the hyperbolic

complex number system. Particularly, when p = 1, the gener-
alized complex plane is the Lorentzian plane [10].

Considering the above-mentioned description of circle
for cases of p, the circle in Cp can be defined as follows.

Definition 1. Let the circle which has the center Mða, bÞ and
the radius r be considered. Thus, the equation of this circle is

x − að Þ2 − p y − bð Þ2�� �� = r2 ð7Þ

[10].

Let a number in Cp be Z = x + iy which symbolize OT
�!

and Figure 2 be as follows.
So, the angle θp formed by inverse tangent functions can

be defined as

θp =

1ffiffiffiffiffi
pj jp tan−1 σ

ffiffiffiffiffi
pj j

p	 

, p < 0,

σ, p = 0,
1ffiffiffi
p

p tan−1 σ
ffiffiffi
p

pð Þ, p > 0 branch I, IIIð Þ,

8>>>>>><
>>>>>>:

ð8Þ

where σ ≡ y/x. Let the pointN be the intersection point ofOT
with unit circle in Cp. Moreover, the orthogonal projection
on the OM of the point N is the point L and the line QM is
also the tangent at the point M of the unit circle (see
Figure 3). Thus, p-trigonometric functions (the p-cosine
(cos p), p-sine (sin p), and p-tangent (tan p)) can be obtained
by

cos pθp =
cos θp

ffiffiffiffiffi
pj j

p	 

, p < 0,

1, p = 0 branch Ið Þ,
cos h θp

ffiffiffi
p

p� �
, p > 0 branch Ið Þ,

8>>><
>>>:

sin pθp =

1ffiffiffiffiffi
pj jp sin θp

ffiffiffiffiffi
pj j

p	 

, p < 0,

θp, p = 0 branch Ið Þ,
1ffiffiffi
p

p sin h θp
ffiffiffi
p

p� �
, p > 0 branch Ið Þ,

8>>>>>><
>>>>>>:

ð9Þ

and the ratio QM/OM =NL/OL gives

tan pθp =
sin pθp
cos pθp

: ð10Þ

Thus, the Maclaurin expansions of the p-trigonometric
functions on the branch I are

cos pθp = 〠
∞

n=0

pn

2nð Þ! θ
2n
p ,

sin pθp = 〠
∞

n=0

pn

2n + 1ð Þ! θ
2n+1
p :

ð11Þ

By the help of the Maclaurin series, the generalized Euler
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formula in Cp is

eiθp = cos pθp + i sin pθp, ð12Þ

where i2 = p: On the other hand, the exponential forms of Z
in Cp are

Z = rp cos pθp + i sin pθp
� �

= rpe
iθp , ð13Þ

where rp = jZjp [10]. Moreover, the p-rotation matrix given
by the help of equation (12) is

A θp
� �

=
cos pθp p sin pθp

sin pθp cos pθp

" #
ð14Þ

[10].
The one parameter homothetic motions in the p-complex

plane

CJ = x + Jy : x, y ∈ R, J2 = p, p ∈ −1, 0, 1f g� �
, ð15Þ

which is the subset of the generalized complex plane Cp was
studied by Gürses et al. [39]. Similar to that study, the one-
parameter homothetic motions in the generalized complex
plane Cp have been given as follows briefly.

Let Kp, K′p be the moving and fixed planes in Cp, respec-

tively, and x = x1 + ix2 and x′ = x′1 + ix′2 be the position vec-

tors of a point X, andOO′
��!

= u. So, the equation of the one-

parameter planar homothetic motion in the generalized
complex plane Cp is written by

x′ = hx − uð Þeiθp , ð16Þ

where θp is the p-rotation angle of the motion Kp/K′p, u′ =
−ueiθp , and h is the homothetic scale in Cp. So, the relative
and absolute velocity vectors of X in Kp ⊂ Cp are

Vr ′ =Vre
iθp = hxeiθp , ð17Þ

Va ′ =Vae
iθp = _h + i _θph

	 

xeiθp − u + i _θpu

	 

eiθp + hxeiθp ,

ð18Þ
respectively. Using equations (17) and (18) the guide velocity
vector is

Vf ′ =Vf e
iθp = _h + i _θph

	 

xeiθp + u′: ð19Þ

Theorem 2. Let Kp/K′p be the one parameter planar homo-
thetic motion in Cp. So, the relationship between velocity vec-
tors is given by

Va =Vf +Vr: ð20Þ

There are some points that remain fixed in both the fixed
plane K′p and the moving plane Kp in Cp. These points are
called pole points. Thus, let the pole points of the one-

I
II

II

IV

p = 0p < 0 p > 0

I
III

–1 +1

Figure 1: The unit circle in Cp:

p < 0

O O O

N
N N

𝜃p 𝜃p 𝜃pM(1,0) M(1,0) M(1,0)

p > 0p = 0

T(x,y) T(x,y)T(x,y)

Figure 2: Elliptic, parabolic, and hyperbolic angles.
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parameter planar homothetic motions Kp/K′p be Q = ðq1, q2
Þ ∈ Cp. So, the components of pole points Q = ðq1, q2Þ are

q1 =
dh du1 + pu2dθp
� �

− ph du2 + u1dθp
� �

dθp
dh2 − ph2dθp

2 ,

q2 =
dh du2 + u1dθp
� �

− h du1 + pu2dθp
� �

dθp
dh2 − ph2dθp

2 ,
ð21Þ

where V f = 0. In addition to that, the guide velocity vector of
the fixed point X with respect to Kp can be written in terms of
the pole points as

dx ′ = dh + ihdθp
� �

x − qð Þeiθp , ð22Þ

where q is the position vector of the pole point Q.
On the other hand, the following proposition, which can

be proved easily, for the homothetic motions in Cp can be
given.

Proposition 3. Let two arbitrary generalized complex vectors
be a = ða1, a2Þ and b = ðb1, b2Þ in Cp. Thus, the following
equations are satisfied:

ið Þ aeiθp , beiθp
h i

= a, b½ �,

iið Þ a, dh + ihdθp
� �

b
� �

= a, b½ �dh + 1
2
ab + ab½ �hdθp,

ð23Þ

where h is the homothetic scale and

a, b½ � =
a1 a2

b1 b2

�����
����� = a1b2 − a2b1: ð24Þ

In this paper, the open motions restricted to time interval
½t1, t2� on branch I of Cp are considered.

3. Main Theorems and Proofs

Let K′p, Kp ⊂ Cp be the fixed and moving generalized com-
plex planes, respectively, and any fixed point in Kp be X = ð

x1, x2Þ. Moreover, FX is considered the area of trajectory
drawn by the point X. So, this area is given by

FX = 1
2

ðt2
t1

x′, dx′
h i

, ð25Þ

where the determinant product is ½,� [41]. Now, considering
equations (16), (22), and (23), equation (25) is equal to

FX = 1
2 x�x

ðt2
t1

h2dθp −
1
4 x
ðt2
t1

h2�qdθp −
1
4 �x
ðt2
t1

h2qdθp

+ 1
2

ðt2
t1

u1q2 − u2q1 − hx1q2 + hx2q1 + x1u2 − x2u1ð Þdh

+ 1
2

ðt2
t1

u1q1 − pu2q2 − u1x1 + px2u2ð Þhdθp,

ð26Þ

where the position vector of the pole point Q = ðq1, q2Þ is q
and “−” is the ordinary complex conjugate. We should note
here that X is any fixed point in Kp. Particularly, if X is con-
sidered as the origin point of Kp, then, for the point X = 0,
equation (26) is obtained that

F0 =
1
2

ðt2
t1

u1q2 − u2q1ð Þdh +
ðt2
t1

u1q1 − pu2q2ð Þhdθp
" #

,

ð27Þ

where _θp ≠ 0 and _θp is a continuous function. So, _θp can be
_θp < 0 or _θp > 0. In here, _θp has the same sign everywhere in
the interval ½t1, t2�. Now, let the mean value theorem of inte-
gral calculus for the interval ½t1, t2� be considered. So, there
exists at least one point t0 ∈ ½t1, t2� so that

ðt2
t1

h2dθp =
ðt2
t1

h2 tð Þ _θp tð Þdt = h2 t0ð Þδp, ð28Þ

where δp = θpðt2Þ − θpðt1Þ is the total rotation angle.
On the other hand, the Steiner point which is the center

of gravity of the moving pole curve was first expressed by
Steiner [18]. So, let the Steiner point in this study be

O

Q

M

N

O

QN

M

N

O M

Q

L L L

𝜃p 𝜃p 𝜃p

p < 0 p > 0p = 0

Figure 3: θp for the special cases of p.

5Advances in Mathematical Physics



represented by S = ðs1, s2Þ. If this point is adapted to the gen-
eralized complex plane for homothetic motions, the follow-
ing equations are obtained:

S = s1 + is2 =
1

2ph2 t0ð Þδp
2p
ðt2
t1

h2qdθp − i
ðt2
t1

hdu

 !
,

2h2 t0ð Þδps1 = 2
ðt2
t1

h2q1dθp −
ðt2
t1

hdu2,

2ph2 t0ð Þδps2 = 2p
ðt2
t1

h2q2dθp −
ðt2
t1

hdu1,

ð29Þ

where h is the homothetic scale in Cp: In here, it is known
that for p = −1 homothetic motion in the complex plane, in
the hyperbolic plane for p = +1, and in the dual plane for p
= 0 are mentioned. If p = 0, this situation differs from other
cases ðp ≠ 0Þ; instead of a Steiner point, a Steiner line forms
as s2 = s2ðγðtÞÞ. After all these calculations, equation (26) is
obtained that

FX = F0 +
1
2 h

2 t0ð Þδp x1
2 − px2

2 − 2x1s1 + 2px2s2
� �

+ 1
2 x1
ðt2
t1

−2hq2 + u2ð Þdh + 1
2 x2
ðt2
t1

2hq1 − u1ð Þdh:

ð30Þ

So, if the equations ζ1 = 1/2Ð t2t1ð−2hq2 + u2Þdh and ζ2 =
1/2
Ð t2
t1
ð2hq1 − u1Þdh are considered, the following theorem

can be given.

Theorem 4. For the homothetic motion Kp/K′p in Cp, the Stei-
ner area formula giving the area of the trajectory formed by
the fixed point X is

FX = F0 +
1
2
h2 t0ð Þδp x�x − x�s − �xsð Þ + ζ1x1 + ζ2x2, ð31Þ

where S = ðs1, s2Þ is the Steiner point of homothetic motion
and h is the homothetic scale in Cp:

Particularly, if h = 1 is considered, equation (31) is
obtained

FX = F0 +
1
2 δp x�x − x�s − �xsð Þ ð32Þ

in [35].

Let FX , the area of the trajectory drawn by the point X
= ðx1, x2Þ, be constant. So, from equation (31), the equation

x1
2 − px2

2 − 2 s1 −
ζ1

h2 t0ð Þδp

 !
x1 + 2 ps2 −

ζ2
h2 t0ð Þδp

 !
x2 +

2 F0 − FXð Þ
h2 t0ð Þδp

= 0

ð33Þ

can be written. So, the following corollaries can be obtained.

Corollary 5. The geometric location of the points X with the
same area FX is a circle in Cp with center

M = s1 −
ζ1

h2 t0ð Þδp
, s2 +

ζ2
ph2 t0ð Þδp

 !
ð34Þ

for the one-parameter planar homothetic motion in Cp.

Corollary 6. If h = 1, the geometric location of the points X
with the same area FX is a circle in Cp with center Steiner
point S = ðs1, s2Þ in Cp [35].

Now, let the Steiner area formula in equation (31) be gen-
eralized using three linear points for homothetic motions in
Cp. For this, let three points X, Y , and Z in the moving plane
Kp be considered that X and Y are two points and the other

point Z is on XY . Moreover, let three vectors O′X
�!

= x′,O′Y
��!

= y′, andO′Z
�!

= z′ be position vectors of these points accord-
ing to K′p. So, the relationship between these vectors is

z′ = αx′ + βy′, α + β = 1, α, β ∈ R, ð35Þ

where α and β are barycentric coordinates of z′. Thus, con-
sidering equation (25), the area of the trajectory drawn by
Z is written by FZ = 1/2Ð t2t1 ½z′, dz′� and the area

FZ =
1
2 α

2
ðt2
t1

x′, dx′
h i

+ 1
2 αβ

ðt2
t1

x′, dy′
h i

+ y′, dx′
h i	 


+ 1
2β

2
ðt2
t1

y′, dy′
h i

ð36Þ

is obtained where

FX = 1
2

ðt2
t1

x′, dx′
h i

,

FY = 1
2

ðt2
t1

y′, dy′
h i

,

FXY = 1
4

ðt2
t1

x′, dy′
h i

+ y′, dx′
h i	 


:

ð37Þ
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So, equation (35) is written by

FZ = α2FX + 2αβFXY + β2FY , ð38Þ

where

FXY = FO + 1
4 h

2 t0ð Þδp xy + xy − x + yð Þs − x + yð Þsð Þ

+ 1
2 ζ1 x1 + y1ð Þ + 1

2 ζ2 x1 + y1ð Þ
ð39Þ

or

FXY = F0 +
1
2 h

2 t0ð Þδp x1y1 − px2y2 − x1 + y1ð Þs1 + p x2 + y2ð Þs2ð Þ

+ 1
2 ζ1 x1 + y1ð Þ + 1

2 ζ2 x1 + y1ð Þ,
ð40Þ

where ζ1 = 1/2
Ð t2
t1
ð−2hq2 + u2Þdh and ζ2 = 1/2

Ð t2
t1
ð2hq1 − u1Þ

dh.
Let X = Y be considered in equation (40). So, the equa-

tion

FX = F0 +
1
2 h

2 t0ð Þδp x�x − x�s − �xsð Þ + ζ1x1 + ζ2x2 ð41Þ

is obtained. As can be seen from here, equation (41) is the
same as the Steiner area formula in equation (31) for the
homothetic motions in Cp. Thus, equation (40) is a more
general form of the formula in equation (31). In addition,
considering some calculations, the equation

FX − 2FXY + FY = 1
2 h

2 t0ð Þδp x1
2 − px2

2 − 2x1y1 + 2px2y2 + y1
2 − py2

2� �
ð42Þ

is obtained. Now, let the distance between the points X and Y
be d. So, using the definition of distance (6) in Cp, the dis-
tance is

d2 = x1 − y1ð Þ2 − p x2 − y2ð Þ2 ð43Þ

for branch I of Cp. So, equation (41) can be written as

FXY = 1
2 FX + FYð Þ − 1

4 h
2 t0ð Þδpd2: ð44Þ

Thus, for the area of the trajectory drawn by Z, the fol-
lowing theorem can be given.

Theorem 7. During the homothetic motions in Cp, the area of
the trajectory drawn by Z is

FZ = αFX + βFY −
1
2
αβh2 t0ð Þδpd2, ð45Þ

where h is the homothetic scale, α + β = 1, and FX and FY are
the areas formed by the points X and Y , respectively, in Cp:

During the one-parameter homothetic motions in Cp, if
FX = FY , equation (44) can be obtained that

FX − FZ =
1
2 αβh

2 t0ð Þδpd2, ð46Þ

where α + β = 1. So,

FX − FZ =
1
2 h

2 t0ð Þδp XZj j YZj j, ð47Þ

where jXZj = βd and jYZj = αd. Thus, the following main
theorem can be given with the above proof.

Theorem 8. (Main Theorem). Let two points X and Y in Kp

⊂ Cp be fixed and the point Z be on the line XY during the
homothetic motions. Moreover, when the endpoints of XY
draw the same curve, the point Z on XY draws a different
curve. So, the relationship between areas formed by these
curves depends on the p -distances of Z to X and Y , the p -rota-
tion angle of the homothetic motion, and homothetic scale h in
Cp.

This theorem is called Holditch theorem for the one-
parameter homothetic motions in Cp: So, this theorem is
the most general form of all Holditch theorems obtained so
far.

4. Conclusion

Curves are very important in kinematic mechanisms. The
trajectory drawn by a point or set of points (rigid body; such
as a robot) along the motion creates a curve. This curve can
be special curves such as a circle, ellipse, hyperbola, or a ran-
dom curve formed by trajectory drawn by any point. It is
important to characterize the motion to make calculations
such as the area and moment of the trajectory (curve) drawn
along the motion. The Holditch theorem is a theorem that
expresses the area of the trajectory drawn during the motion.
To be more specific, the Holditch theorem in plane geometry
emphasizes that if a fixed-length chord is allowed to rotate in
a convex closed curve, the position of a point on the chord x
units from one end and y units from the other end, the curve
drawn by this point is less than the area of the original curve
πxy. This theorem was first given in 1858 by the English
mathematician Hamnet Holditch. Although not emphasized
by Holditch, the proof of the theorem requires the chord to
be short enough that the position of the point taken is a sim-
ple closed curve. The fact that the area of trajectories
expressed in the Holditch theorem is independent of the
curve (circle, ellipse, etc.) makes this theorem very interest-
ing. Thus, the Holditch theorem has been included as one
of Clifford A. Pickover’s 250 milestones in the history of
mathematics. It should be noted again that the most impor-
tant feature of the theorem is that the formula that gives
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the area πxy is independent of both the shape and size of the
original curve, and this formula gives the same formula as the
area of an ellipse with axes x and y. Until now, Holditch’s the-
orem has been generalized to many planes and spaces. But
since the generalized complex plane mentioned in this study
includes hyperbolic, dual, and complex planes, and planes in
other possible choices of p ∈ R, the study in this plane is a
very extended study. In addition, the fact that this study is
for homothetic motions adds another generalization to the
study. So, this study is the most general study covering all
the studies about the Holditch theorem in the plane. In future
studies, areas of the trajectories formed by the curves drawn
by nonlinear points in the generalized complex plane can
be calculated and moment calculations can be made in this
plane to contribute to engineering studies. In addition to that,
this study may have presented a geometric method for calcu-
lating the areas of complex trajectories of mechatronic sys-
tems. Theoretical and practical researches are required
additionally.
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