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In this article, we study the generalized (2 + 1)-dimensional variable-coefficients Boiti-Leon-Pempinelli (vc¢BLP) equation. Using
Lie’s invariance infinitesimal criterion, equivalence transformations and differential invariants are derived. Applying differential
invariants to construct an explicit transformation that makes vcBLP transform to the constant coefficient form, then transform
to the well-known Burgers equation. The infinitesimal generators of vcBLP are obtained using the Lie group method; then, the
optimal system of one-dimensional subalgebras is determined. According to the optimal system, the (1 + 1)-dimensional
reduced partial differential equations (PDEs) are obtained by similarity reductions. Through (G'/G)-expansion method leads to
exact solutions of v¢BLP and plots the corresponding 3-dimensional figures. Subsequently, the conservation laws of vcBLP are

determined using the multiplier method.

1. Introduction

Nonlinear issues are widespread in some natural disciplines,
and many difficult problems in some disciplines can be
reduced to solving a certain PDE or investigating some prop-
erties of a PDE [1, 2]. With the rapid development of research
fields like hydrodynamics and quantum physics, it has
become increasingly important to investigate the exact solu-
tions and certain properties of nonlinear evolution equations
[3-5]. Compared with the PDEs with constant coeflicients,
the PDEs with variable coefficients can describe richer natu-
ral phenomena and construct more detailed and complex
physical models [6-8].

In this paper, we focus on the generalized (2 + 1)-dimen-
sional Boiti-Leon-Pempinelli equation with time-part variable
coefficients as

Fi=u,+ a(t)uxuy + a(t)uuxy + b(t)uxxy +(t)Vyey = 0,
Fy=v,+d(t)v,, +e(t)(uv), =0,

(1)

where a(t), b(t), c(t), d(t), and e(t) are any functions with

respect to time . It represents the development of the compo-
nents in the horizontal velocity in the x and y directions when
the water wave propagates in a channel of unchanging depth
and infinitely small width [9]. The vc¢BLP is conditionally inte-
grable, and the necessary conditions for it to be Painlevé inte-
grable are d'(t)e(t)=d(t)e'(t) and a'(t)b(t)=a(t)b'(t).
Some exact solutions of vcBLP were obtained in [10] by
extended tanh-function method. We can find some periodic
solutions and soliton solutions of vcBLP obtained with the
homogeneous balance method in [11], and the conservation
laws for the constant coeflicients BLP were discussed in [9].
By reviewing the relevant literatures, no one has studied vcBLP
using the Lie group method.

The outline of this article is as follows. In Section 2, we
construct the equivalence transformations and differential
invariants of vcBLP. Based on these, we give an explicit
transformation to its constant coefficient form. In Section
3, the infinitesimal generators of vcBLP are obtained using
the Lie group method, and then, the optimal system for
the one-dimensional subalgebras is constructed. In Section
4, we obtain six sets of (1 + 1)-dimensional reduced PDEs
by similarity reductions to v¢BLP. In Section 5, some exact

solutions of vcBLP are shown using the (G'/G)-expansion
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method on the basis of the reduced PDEs in above section.
In Section 6, we use the multiplier method to calculate the
conservation laws of vcBLP. We can find the conclusions
of this paper in Section 7.

2. Equivalence Transformations and
Differential Invariants of vcBLP

In this part, we construct the equivalence transformations
[12] of Equation (1). The equivalence transformation of
Equation (1) is a nondegenerate point transformation which
from (x, y,t,u,v) to (X, , t, , v) [13]. It has the same differ-
ential structure but different coefficient functions (%), b()
,&(7),d(%), é(f) than the original equation. First, we assume
that the auxiliary conditions are

with the one-parameter group of equivalence transforma-
tions is determined on the basis of

x=x+e-{(x,y,t,uv,a,bc,de)+o 82),

(
)~/=y+8-11(x,y,t,u,v,a,b,c,d,e)+o(sz),
f:t+s-T(x,y,t,u,v,a,b,c,d,e)+0(82)

u=u+e ¢ (%ytuv,abrcde)+o

d A%y, tu, v, a,b, ¢, dy e) +0(€),

II
—

=e+e-Ag(x%y, L u,v,a,b,6,d,€) +0(€),

and ¢ is the group parameter. The vector field or generators
of Equation (1) which corresponds to transformations (3) as

0 0
Ta+¢la+¢2$+A1$+A2%
0 0

0
A3a +A4ﬁ +A5$'

Y—Ea+ a+

(4)

Since Equation (1) is invariant under the above transfor-
mations (3) and there exists the 3rd derivatives, we have to
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use the 3rd prolongation Y®). We define that

(fLL2L 5 ) = (a(t), b(t), (1), d(2), e(t))
(6, x%2%) = (1), (v 07) = (), (W v2 ) = (G D),

ayi aZ i

V= 550V = g (bk=1,2,3,i=1,2).

(5)

On the basis of the above Equation (5) and Y, the 3rd
prolongation Y can be written as

0 ;0 0

i ~r
+ (jjo a)’j'ja_ + ;i F) fo

+

YO =y+{ ’“W
Jjo

Ja t
(6)
@’ —r, (r=1,2,-5),

‘ afyf

where

(; = Dj¢j _)’iDjl//k’ (;a = Da(i‘ - J’j‘kDuV/k’ (;ja = Dccj'j _)’;jkDaWk>
5; = Dy(8,) - fuDy (v*) - £,D4()).
(7)

with

o ;0 ;0 ~ 0 o - 0 0

D]:@"'y]aiy; +yjkay1’D] ax] +ijTﬂ,Dj ay] fylaf

(8)

Under transformations (3), the invariance of Equation
(1) requires that to satisfy the conditions

YO(F) =0, YO (F,)=0,YY(a,) =
b =Y b,) =0, YV,
®d,)=v(d,)=0,Y
We can obtain a determining equation by bringing

Equation (6), Equation (7), and Equation (8) into Equation
(9). Subsequently, solving this determining equation, we get

§=Cix+Cyn=p(y), 7= (1), ¢ = C3u,
$,=9(), 41 =a(C, = C5 = B,), 4, =b(2C, - B)),
Ay = _C<Py +g+p,-3C — Cs)’A4 =d(2C, - B,), As=¢(C, - C5 = By),

(10)

where S=(t),p=p(y), and g =g(y) are arbitrary smooth
functions. The corresponding infinite dimensional
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equivalence group is generated by the following operators:

Y—a+a+2ba+3a+2da+a
LYo T TP T8 T % T e

v.. 2
27 ox’
Y:ui— a+ci—e3
3 ou da oc de’
Y:ﬁﬁ—aﬁi—bﬁ_—cﬁ_—dﬁ_—eﬁ_
B~ 5¢ tda t9b  toc tad  Ttoe’

Y = J -C J
p=P oy Prac
0 0

Y =gv— —cg—.

9795, "9
(11)
In the following, our task is to derive the zero-order dif-
ferential invariants and the first-order differential invariants.

We assume that the form of the zero-order differential
invariant is

J=J(x,p,t,a,b,c,d,e). (12)

Applying the invariant test Y(J)=
(11), we can obtain

0 to the operators

Yi(J)=0,(k=1,2,3,B,p. 9), (13)
and the above equations can be reduced to
) 0] ) 0]
2 =0,-2=0, 2> =0, —
ox oy oc ot

o] o] . o] 9]
b%+da—0,aa+e$—0,

-0,
(14)

solving this system, we get that the zero-order differential
invariants are

d
W=p = (15)

with invariant equations are
a=0,b=0,d=0,e=0. (16)
Next, we derive the interesting first-order differential

invariants. Similar to the above case, we suppose that the
first-order differential invariant is the form

]:](x)y, t) a, b) [ d: e, a[) bt’ Ct’ dt’ et). (17)

In order to get the first-order differential invariants, we
need to make the first prolongation of the operators Y}, (k

=1,2,3,,p,g) using YV =Y + @;(9/0f";), and Equation

3
(11) can be rewritten as
M_9 09 050 3.9 040 .0
Y, —xax +aaa +2bab +3Cac +2dad +eae
+aa+2ba+3ca+2da+ea
‘Da, ‘30, ‘3¢, tod, " %3¢,
m_0
Y2 = ox’
Y(l)—ua —aa +ca —ea -a 0 +c J —e J
3 TM5u T "%a T %% "5a, "%, “ae
W_p9 59 g0 5% 450 50
Yﬁ _ﬁat aﬁtaa bﬁtab Cﬁta dﬁtad eﬁtae
0
= (aBy + zatﬁt) = (bB, +2b,p, )
8 0
= (cPy +2c,) a_C, - (dB, +24,p,) W = (efy +2e,8,) a_et’
W= p —ep = — i
Yo pay Prac Py ac,’
v = vg— 7cg3 -c gi.
9 ov oc Yo,
(18)
The invariance test associated with Equation (18) is
1
v (1)=0,(k=1,2,3,B,p.9), (19)
solving this system yields
u _ blac,—ac) ) _ad, - b(ae, - ae)
]1 = — > ]2 > ]3 - >
c(ab, — a,b) ab, —a,b b a(ab, - a,b)
(20)
with invariant equations are
ab,—a,b=0,ac,—a,c=0,ad, - a,d=0,ae, —a,e=0. (21)

Based on the above facts, we use differential invariants to
give the transformation of vcBLP to its constant coefficient
form. We take the constant coefficient form of Equation
(1) as

uyt+muu +myuu

y (Ul + Myu

xxy T M3V = 0,

(22)
v+ myv, +mg(uv), =0,

where m,, (i=1,---,5) are arbitrary nonzero constants. To
obtain the transformation from Equation (1) to Equation
(22), we need a necessary condition that the coefficient func-
tions of Equation (1) must satisfy the following equations

y—a,b=0,ac,—a,c=0,ad, —a,d=0,ae, —a,e=0.

(23)

Under this condition, the more general form of the



coefficient functions are
a(t) = " (1), b(t) = T2 c(0), d(1) = ye(t), e(t) = ye(),
msg my

(24)
therefore, Equation (1) becomes

+ b c(t)uu, + %c(t)uux + %c(t)uxxy + () Vi = 0,

y y
ms ms my

Vet PaC(t) Ve +y3¢(t) (uv), =0,

uyt

(25)
and there exists transformation

Ms Y1Va~/- -3 T Nm (= 3
u=—2.22220(x%,9,t),v=8 (»)v(x, 9, t),
my MR v (x7:t)

2 2
my Vs 7 V1V4J
S 20(y), t= 222 | e(t)dt + y.,
myms  y; ») my () Vs

(26)

where y;, (i=1,---,5) are arbitrary constants and 8(y) is an
arbitrary function. It is easy to verify that the above transfor-
mation maps Equation (1) into

u"’i + mlﬁ& 5’ + mlljlljlﬁ, + mzuﬁ}; + m:;f’k)'zi = 0, (27)

Vi + myVz; + ms(Uv); =0, (28)

so the constant coefficient form in other literature [9] is a
special case of Equation (1), and it is easy to find that Equa-
tion (24) satisfies the conditions for integrability.

We take ¥ =1, y =X, then the above Equation (27) and
Equation (28) become
=0, (29)

~ ~2 ~ o~ ~
Uy + My UG + my Uiy, + (M, + m3) Uz

Ul; + 2mg il + myily; =0, (30)

subsequently, we integrate Equation (29) once with respect
to x yields

@) [ () (1) + B (it + €' (O] + () (9htty + @ + @yt $y10 ) + By, + (1)l =0,
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therefore, when m, =2ms, m, = m, + m,, the above Equa-
tion (27) and Equation (28) can be converted into the
well-known constant coefficient Burgers equation.

3. Lie Classical Symmetry Analysis of vcBLP

Lie group method is an effective way to find invariant solu-
tions and to explore certain properties by reducing the
dimensionality of the equations [14]. It has been described
in sufficient detail in many literatures [15-18]. To begin
with, we suppose that the one-parameter (¢) Lie group in
Equation (1) is

X" =x+e-&(xytuv)+o
Y =y+e-nxythuv)+ 0(32)
t* =t+e-1(x,y t,u,v) +0(e), (32)
u =u+e- ¢ (% tuv)+o(e
Vi=vae gy (X ), b, v) +o(e
and Equation (1) remains invariant under transformations
(32).

The vector field or infinitesimal generator of Equation
(1) which corresponds to transformations (32) is

V=E£xy, t,u,v)% +1(% 5 t, u,v)% +7(x, 5, u,v)%

0 0
e R ) S gyl by 1
(33)

its 3rd prolongation is written as Prl® V. Equation (1)

remains invariant under transformations (32), which
requires that
PréV(F)|  =0,PPV(E,)| =0. (34)
F,=0 F,=0

Expanding Equation (34), the invariant conditions are
redefined as

9r 4 T[d (vt (D)), ] +e(t) (17, + Gic + @iy + 92u) + d(1)gl, =0,

where

(P)lz = Dy((/)l) - Dy@)”x - Dy(”)“y - Dy(T)ut’ (Ptz
=Dy(¢,) —~D,(§)v, - Dt(rl)vy —Dy(7)v>
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q)glcx = Dx((Pplc) - Dx(g)”xx - Dx(rl)uxy - Dx(T)uxt’ (Pozcx

)ny - Dx(T)th’

Il
O
)
=N
~

|
O
~—
e
=
g

|
O
—~
=

(Palcy = Dy ((Palc) - Dx(E)uxy - Dx(rl)uyy - Dx(T)uyt’ q’;r
=D, (}) = Dy (&) = Dy )ity = D, (1)t

Dx(”])”xyy - DX(T)uxyt’ q))zcxx
= Dx ((P)Zcx> - Dx(g)vxxx - Dx(r])vxxy - Dx(T)vxxt’
(36)

with D,, Dy, and D, are the total differentiation of x, y, and t,

respectively.
Solving Equation (35) yields the following results as

E=Cix+C,,n=Cy+Cs ¢, =-Ciu,
_ G 26
b(t)  b(1)

where C;(i=1,2,3,4) are any constants. Furthermore, the
coefficient functions a(t), b(t), c(t), d(¢), and e(t) in Equa-
tion (1), which depend on time ¢ and have to satisfy the con-
ditions

. Jb(t)dt, ¢, =-Cv, (7)

a (t)t+a(t)r,—2Ca(t) =0,

b'(t)T+b(t)T, - 2C,b(t) = 0,

¢ ()T +c(t)T, = 2Cyc(t) =0, (38)
d' ()T +d(t)r, - 2C,d(t) =0,

e' ()T +e(t)r, —2C,e(t) =0

Thus, the infinitesimal generators of Equation (1) are
expanded by the below vector field

0 V.= 0 V.= 1 0
a) z_a_y) 3_WE)

0 0 2 0 0 0
X +ya—y+mjb(t)dta—ua—va.

V.=

V=
(39)

Depending on the V(i =1, 2, 3, 4), we have the following
four groups
G :(ptiu,v) — (x+&p,t,u,v),

Gy (G tu,v) — (Y +& LU, V),

Gs: (% tu,v)— (x,y,t+ %,H,V),

2
Gy (oytu,v)— (xee,yes,t+ Wj)Jb(t)dt, ue ¢, ve":),

(40)

where G;(i=1,2,3,4) are one-parameter Lie point symme-
try groups. It is not difficult to find that G, and G, are space
translations and G, is a dependent variable translation. For
G, it is a time translation when b(¢) is an arbitrary constant.
For the combination of G, and G, can be understood as a
translation along a certain direction, the group invariant
solutions are the traveling wave solutions. The most impor-
tant application of the traveling wave solutions is to con-
struct soliton solutions of the PDE. The soliton reflects a
rather common nonlinear phenomenon in nature, which is
mainly characterized by its superstability, ie., the wave
shape remains stable after the collision of two solitary waves
with different velocities. We can also understand solitons as
local traveling wave solutions of nonlinear development
equations. Also, symmetry has a great connection with con-
servation laws in physics; for example, space translation cor-
responds to momentum conservation, and time translation
corresponds to energy conservation.

Generally speaking, it is possible to construct it group-
invariant solutions for arbitrary subgroup or subalgebra.
However, the Lie group has infinitely many subgroups with
the same dimension, and it is impossible to compute the
group-invariant solutions of all subgroups [19]. We have to
sort them into some mutual equivalence, which requires
the optimal system of one-dimensional subalgebras to be
computed.

To get the optimal system, we start by constructing the
commutator table as Table 1 with the help of Lie algebra |
vV, Vi|=V,V;=V,V, [15, 20].

With reference to Table 1, the adjoint relationship table
can be acquired as Table 2, where

82
Ad(exp (V) V= V= e[V V] + = [Vis [V V] ] =

(41)
with ¢ is an infinitesimal real number.

Through Tables 1 and 2, it is quite simple to obtain the
optimal system for the one-dimensional subalgebras of
Equation (1), which is given by the following forms

(HVi+a,Vy+a, Vs,
2)Vy+ a3V,
(3)Va
DV,

(42)

4. Similarity Reductions of vcBLP

In the first step, we reduce Equation (1) to the (1+1
)-dimensional PDEs based on the above optimal system
using the similarly reductions. The similarity variables and
the (1 + 1)-dimensional reduced PDEs can be found in
Table 3, and the expressions for the coeflicient functions
depending on time ¢ can be found in Table 4. We only show
the process of calculation with the example of case V| + «
V, + a,V5; the results of other cases are in Tables 3 and 4.



TaBLE 1: Commutator table.

Vi V]] Vi Vs Vs V,
v, 0 0 0 Vi
v, 0 0 0 v,
Vs 0 0 0 2V,
v, -V, -V, —2V, 0

TaBLE 2: Adjoint representation table.

Ad v, Vv, Vs, v,
v, v, V, v, V, -V,
v, v, v, v, V,—€V,
Vs v, V, v, V,—2eV,
v, Ve V,e V,e* v,

For this Lie vector, its corresponding characteristic equa-
tion is

—_— = == — = —, (43)

solving this equation to obtain the relative similarity vari-
ables are

(1 IO N LR A -
P E R ECL AR )

(44)

Through Equation (44), Equation (1) is reduced to the
following forms:

a(8)(PPy )+ b + 0)Ques = s P~ s Pry =0
e(t)(PQ)x +d(t)Qyx — o a‘;(t) Qy - « l‘r(t) Qx=0
(45)

here to ensure that there are only two independent variables
X and Y in Equation (45), and the coefficient functions sat-
isfy conditions (38), so the expressions for the coefficient
functions are

_k _k _ ks _ K _ ks
T ) ) ) ()
a(t) G b(t) ] o(f) ) d(t) G e(t) 0
(46)
where k;(i=1,--,5) are arbitrary constants. Substituting
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Equation (46) to Equation (45) yields the reduced PDEs as

ayk; (PPy)y + ayky Pyxy + 0k3Qyxx — @1 Pyy — Pxy =0,

ayks(QP)y + ok Qxy — 2, Qy — Qx =0.
(47)

5. Exact Solutions of vcBLP

In this section, the exact solutions of corresponding reduced

PDE:s are found for some cases in Table 3 using the (G'/G)
-expansion method [21, 22]. For computational simplicity,
we let k;=1(i=1,---,5) for Tables 3 and 4.

Case 1. (IHV, +a, V,
First, we assume that the traveling wave variables are
[23].

P(X,Y)=P(c),Q(X, Y) =Q(c),c=X - VY, (48

where V is the traveling wave speed to be determined.

Next, using Equation (48), the (1 + 1)-dimensional
reduced PDEs are transformed into ordinary differential
equations (ODEs)

~a,VPP'"' —a,VP"' + VP"' —a, VP'" + a,Q""" = 0,
,PQ" - Q" +a,Q"" + a,QP' = 0,
(49)
where (') represents the derivative of ¢. Through homoge-

neous balance, we assume that the solutions of the ODEs
(49) can be expressed as

!
G
P(¢)=a, (G) +ay, a, #0,

!

G
Q(s)=b, (E) + by, by #0,

(50)

where a,, a,, by, b, are coeflicients to be determined and G
= G(¢) satisfies

G+ AG' +uG=0, (51)

with A and y are arbitrary constants.

Substituting Equation (50) and Equation (51) into Equa-
tion (49), then collecting the coeflicients of the same order of
(G'/G) and making them equal to zero yields

uby + 0y (Apb, — pagb, — pa, by) =0,

20(by —a,b)) =0,

b, + a,(3Ab, —2Aa,b, —ayb, —a,by) =0,

Ab, + &,y (A*by + 2ub; — Aagb, — Aa,by — 2ua, by) = 0.

(52)
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TaBLE 3: Similarity reductions.
Case Similarity variables Reduced PDEs
DV, +a,V, X=y-ax Y=t Pyy —aya(t)(PPy)y + aib(1)Pyyx — a3 c(£)Qyxx = 0s
a; #0 u=P(X,Y), v=Q(X Y). Qy — aye(t)(PQ)y + afd(t)Qxx =0.
(IHV, +a,V, X=x~-1la, [(1/r(t))dt, Y =y, o,k (PPy) y + ayky Pyxy + 6,k3Qxxx — Pxy =0,
a,#0 u=P(X,Y), V:Q(X Y). ks (PQ)y + ayk,Qyx — Qx = 0.
IV, +a,V,+a, Vs X=x-1Ua, [(1/z(t))dt,Y =y —a/a, [(1/z(t))dt,  ayki(PPy)y + ks Pyxy + ayk;Qyyx — & Pyy — Py =0,
a, #0,0, #0 u=P(X,Y),v=Q(X,Y). ks(PQ), + &k, Qyx — 4, Qy — Qy = 0.
(IV)V, + a3V X=x,Y=y-las [(1/7(t))dt, a3k (PPy)y + a3k, Pxyy + a3k3Qyxx — Pyy =0,
a; #0 =P(X,Y),v=Q(X,Y). ks(PQ)y + a3k, Qyx — Qy = 0.
V)V X=xY=y a(t)(PPy)x + b(t)Pxxy + ¢(t)Qyxx =0,
’ u=P(X, Y) =Q(X, Y) d(t)Qyx + e(t)PQy + e(t)QPy = 0.
VOV X =g O LY =ye “Jor ~XPyy +k;Pxxy + k3 Quxx = YPyy = 2Py =0,
= P(X, Y)el T, - x, Y)ef ey kiQux ~XQx = YQy - Q=0
Solving Equation (52), we get When A* - 4u =0,
1 l
——A+—,a1—1b0——V/\b (53) l 1
2 oy 2 P = 2 + —
3((;) j >
Lh+he o 57
with V, A, 4, &, are any constants. 1 LV (57)
By applying Equation (53), Equation (50) can be rewrit- Q;(5) 57 i Ie
11T h

ten as
(54)

where ¢ =X — VY. Substituting the solutions of the Equation

(51) into Equation (54), we obtain that the three types of
exact solutions of reduced PDEs are as follows [24]:

When A% —4u > 0,

1 I sinh (1/2)\/A* — 4uc + I, cosh (1/2)\/A* — 4ug

P(¢)==1/A2 —4u| L —

1) 2 M(ll cosh (1/2)y/A% — 4pg + 1, sinh (1/2)1/A* — 4ug 0‘2

0(6)= lev\/ﬂcl sinh (1/2)/A% — 4ug + I, cosh 21/2)

A% —dug
# I; cosh (1/2)\/A? — 4ug + I, sinh (1/2)y/A* — 4ug
(55)

where ¢=X - VY, [}, and ], are any constants.
When A - 44 <0,

1 —1, sin (1/2)\/4u — A% + 1, cos (1/2)+/4u — A% 1
Pz(C):E /4[47/\2( 1 (172)\/4p 2 (172)v/4u b

1 cos (1/2)y/4p = A% +1, sin (12)\/4u— g | %

1 —1, sin (1/2)\/4u — A2 + 1, cos (1/2)/4u — A%g
00-1v rhﬂ(l (1/2)V/4u , cos (112)y/4u= X6\

I; cos (1/2)\/4p— A% +1, sin (1/2)\/4u - A%
(56)

where ¢=X - VY, [}, and ], are any constants.

where ¢=X - VY, [, and ], are any constants.

By substituting the corresponding similarity variables in
Table 3 into the above solutions, the exact solutions of
vcBLP are obtained as follows:

When A* - 4u > 0,

u ()=

\/ﬂ I, sinh (1/2)/A% — 4pg + 1, cosh (1/2)\/A* — 4ug L1

I, cosh (1/2)\/A2 =4y + 1, sinh (1/2)/A2 — a’

() = 1 V\/ﬂ I, sinh (1/2)\/A* = 4pg + I, cosh (1/2)y/A* — 4ug

' 4 # I, cosh (1/2)1/A? = 4ug + L, sinh (1/2)/A* = 4pg '
(58)

where ¢=x - (1/a,)- [(1/7(t))dt = Vy, I}, and [, are any
constants.

When A% - 4u <0,

s 6) = \/ﬂ =1, sin (1/2)/4u — A% + 1, cos (1/2)
I, cos (1/2)y/4p — A% + 1, sin (1/2)

1 —1, sin (1/2)\/4u — A* ¢ +1, cos (1/2
Vz(c):ZV /4!47/\2 1 (1/2)\/4u - 2. (172)
I} cos (1/2)\/4u— A" + 1, sin (1/2)

4u-2A2 1
poAe) L
4u—A% o

du—MAg
au-1c )

(59)

where ¢=x~—(1/a,) - [(1/2(t))dt - Vy, I}, and [, are any
constants.
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TaBLE 4: The expressions of the coefficient functions.

Case

The expressions of the coefficient functions

MV, +a,V,

a(t), b(t), c(t), d(t), and e(t) are any functions that depend on ¢.

a, #0
v, +a,V
. 19&02 ’ a(t) =k, /t(t), b(t) = ky/t(t), c(t) = ks/t(t), d(t) = k,/7(t), e(t) = ks/T(t).
R)
v, +e,Vy +a,V
MV r eV ety a(t) = ky/7(8), b(t) = kyl2(t), c(t) = ky/(t), d(t) = ky/(t), e(t) = ks/z(t).
a, #0,a, #0
V)V, + a3V
) :&03 ’ a(t) = ky/x(t), b(t) = ky /7 (t), c(t) = ky (1), d(t) = ky/T(2), e(t) = ksl ().
&3
V)V a(t), b(t), c(t), d(t), and e(t) are any functions that depend on .
_ Kk farma _ ks fara _ ko fanar
VDV, a(t) =e(t) =0, b()—ﬁe ’C(t)—me ’d(t)—me
When A — 44 =0
: 1y(c) = lv\/4——,12 —1y sin (1/2)\/4p — Mg + 1, cos (1/2)\/4p - A*g
1 1 297y H I, cos (1/2)y/4p — A%¢ + 1, sin (1/2)\/4p - A%g ’
—_ 2 _
(€)= I, +1 ’ %) ’ (60) oy
1 LV
v5(¢) = IR where ¢=x-1/a, [(1/7(t))dt - (y — a;/a, [(1/7(t))dt) -V

where ¢=x - (1/ay)- [(1/7(t))dt = Vy, I, and I, are any
constants.

For the other cases, we also obtained three types of exact
solutions of the reduced PDEs by the method of (G'/G)
-expansion, and we will not repeat the calculation process,
just list the results of the calculation.

Case 2. (IIHV, + o, V, + a, V5.
When A — 44 > 0,

: b sinh (172) /02— dpis + 1 cosh (112) /P~ i) 1=V
=\ /Ar -4 2 v
e 2\/—<l cosh (1/2)y/A> = 4yg + 1, sinh (1/2)/A% - 4ug * a,
(61)
i )

(o) = vy (L UL o () V1 i
4 1, cosh (1/2) /A% = 4ug +1, sinh ( \/——WC
(62)

where ¢=x—1/a, [(1/7(t))dt - (y — aj/a, [(1/2(t))dt) -V

I;, 1), and V are any constants. We choose parameters A =

3, u=2, =1L a,=1,1,=2,1,=1, V=2, and 7(¢t) =t; the

images of (61) and (62) are, respectively, in Figures 1 and 2.
When A - 44 <0,

© =1\ a2 =1, sin (1/2)y/4p— A%g +1, cos (1/2)\/4p— A%g Ll-av
Uy (s - >
: ;4 1, cos (1/2)\/4p = As +1, 51n(1/2)\/4/4—)t2c o

(63)

I}, I,, and V are any constants. We choose parameters A =
4, u=5a, =2, a,=1,1,=3.51,=3, V=1, and 7(t) = t%
the images of (63) and (64) are, respectively, in Figures 3
and 4.

When A> - 4u =0,
L 1 «a
= — ===V, 65
us(c) L+lbhs o a (65)
1 LV
- i 66
0= 3 e (€6)

where ¢=x-1/a, [(1/7(t))dt - (y — a;/a, [(1/2(t))dt) - V

I, I,, and V are any constants. We choose parameters o, =
2, 0,=1,1,=3,1,=2, V=1, and 7(t) =¢t; the images of
(65) and (66) are, respectively, in Figures 5 and 6.

Case 3. (IV)V, + a, V5.
When A* - 4u > 0,

1 1, sinh (1/2)4/A? = 4ug + 1, cosh (1/2)y/A* — 4 1
u1<<>=5\/12*4#<'5m( ) s +1; cosh (172) “‘>+ao——k>

1, cosh (1/2) /A% = 4y + 1, sinh (1/2) /A% - 4ug 2

1 1 I, sinh (1/2)y/A? — 4pg + 1, cosh (1/2) \//\2 4pg
vl(g):<7a3)t—zoc3a(,)\//\2—4 (1 (112) il g

8 # I, cosh (1/2)y/A% = 4ug + 1, sinh (1/2)/A? - 4ug '
(67)
where ¢ = x — (1/2)a3(A - 2ay) - (y — Vas [(1/(t))dt), 1, L,

and g, are any constants.
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FiGURE 1: Evolution of Equation (61) at (a) t=107!, (b) £ = 102, and (c) ¢ = 10°. (d) Contour plot.

When A* - 44 <0,

>

1 —1, sin (1/2)\/4u — A2g + 1, cos (1/2)+/4u— Ag 1
uz(c)jﬁ[kﬂ(l (112)/4u , cos (1/2)y/4u o

1, cos (1/2)\/4u — A% + 1, sin (1/2)\/4u — 2% 2

1 1 —1, sin (1/2)\/4u — A3 +1 1/2)\/4u - A?
(c)<A> rmw,lz( | sin (1/2) /4= X6 + 1y cos (112)/4u <>)

8 4 1, cos (1/2)y/4p — A% + 1, sin (1/2)/4u - A%

(68)

where ¢ = x — (1/2)a3(A - 2ay) - (y - Vas [(1/2(t))dt), 1, L,
and g, are any constants.
When A* - 4u =0,

A L,
Us (C) =dag— E + ll n lzc (69)
_ 1has(A-2a,)
(6)=3 L+lhe
9

)

% (A - (uy +a(t)ugu, +a(t)usy, + b(E) ey, + c(t)Vypy) + Ay - (v, +d(t)v, +e(t) (uv),)] =0,

where ¢ = x — (1/2)as(A - 2ay) - (y — Vas [(1/2(t))dt), 1, L,
and q, are any constants.

We can easily find that all the above solutions are travel-
ing wave solutions when 7(¢) takes any constant, and all the
above solutions are group-invariant solutions when 7(¢) is
an arbitrary function of t.

6. Conservation Laws of vcBLP

The conservation law is extremely valuable for studying the
integrability and exploring the exact solutions of PDE
[25-27]. We can use it to explain many physical phenomena
described by PDE [28-30]. In this section, we use the multi-
plier method [31-33] to calculate the conservation laws of
vcBLP. The first order multipliers A; = A, (x, y, t, u, v, u,,
Uy Uy, Vs Vo V) AN Ay = Ag (56,9, £ U, ¥, Uy Uy Uy, Vi V), V)
of v¢BLP can be obtained by the following equations with

(70)

5 [Ay - (uy, +a(t)ugu, +a(t)usty, + b(t) e, + c(t)Vypy ) + Ay (v, +d(t)v +e(t) (uv),)] =0,
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FiGURE 2: Evolution of Equation (62) at (a) £=107", (b) t=10%, and (c) ¢ = 10°. (d) Contour plot.
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FiGuRre 3: Evolution of Equation (63) at (a) t =0.293, (b) £ =0.2938, and (c) ¢ = 0.2942.
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FIGURE 4: Evolution of Equation (64) at (a) t =0.479, (b) t =0.48, and (c) ¢ = 0.4815.

FIGURE 5:

Evolution of Equation (65) at (a) t =0.4, (b) t=0.45, and (c) t=0.5.
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_ -10
y 0 0o x

()

FIGURE 6: Evolution of Equation (66) at (a) t =16, (b) t =18, and (c) t = 20.

where 8/6u and 6/0v are Euler operators.

By expanding Equation (70) and decomposing them
according to the derivatives of u, v, we can obtain a system
and solve this system can obtain

Ay =Cx* + CxX*H(t) + G(y), A, = R(y), (71)
where C, and C, are arbitrary constants, R(y) and G(y) are
arbitrary functions about y, and H(#) is an arbitrary function
about ¢.

Therefore, we can obtain the following low-order con-

servation laws and the corresponding multipliers. The
details are discussed as below.

Case 1. A, =G(y), A, =R(p).

=G(y)u, + R(y)v,
€= G)a(tyus, + G)B(iy + CO)(ee (1
+R(y)d(t)v, + R(y)e(t)uv,
¢ =0.
Case 2. A, =x*+G(y), A, =R(y).
= G(y)u, +x’u, + R(y)v,
R(y)e(t)uv + G(y)a(t)uu, + G(y)c(t)v.,
( )XV = 26(t) v, + 2(t)v (73)
G()b(t)uy, + R(y)d(t)v,e
C = a(t)x’uu, + b()x*u,,
Case 3. A, =x*H(t) + G(y), A, = R(y).
=G(y)u, + R(y)v,
C* = G(y)a(t)uu, + G()b(t)uyy, + G(y)e(t)v,
+ H(t)e(t) v, — 2H(t)e(t)xv, (74)

+2H(t)c(t)v + R(y)d(t)v, + R(y)e(t)uv,
C’ = H(t)xu, + H(t)a(t)x*uu, + H(t)b(t)x*u,,.

Case 4. A, =x* + G(y) + x*H(t), A, =R(y).

C'= xzuy + G(y)uy +R(y)v,

C¥ = c(t)x* v,y — 2¢(t)xv, + 2c(t)v + G(y Ja(t)uu,

+G(y)b(t)u, ot G(y)c(t) vy, + H(t)c(t)x2

- 2H(t)c(t)xv, + 2H(t)c(t)v + R(y)d(t)v,
+R(y)e(t)uv,

C = a(t)xPuu, + b(t)x’u,, + H(t)x u,

(75)
+ H(t)a(t)x*uu, + H(t)b(t)x u,,.
The results obtained above have been verified using
Maple software to ensure that (0/0t)C" + (0/0x)C* + (0/0y)
C” =0 holds.

7. Conclusions of This Article

In this paper, the zero-order and first-order differential
invariants were determined by using the equivalence group
of v¢BLP. With the help of these, the explicit transformation
to its constant coefficient form was given. Subsequently, we
have successfully performed the Lie symmetry analysis of
vcBLP, obtained some exact solutions, and plotted the corre-
sponding 3-dimensional figures to describe the evolution of
the solutions. Moreover, the four conservation laws of vcBLP
were obtained using the multiplier method.
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