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In this article, Box-Cox and Yeo-Johnson transformation models are applied to two time series datasets of monthly temperature
averages to improve the forecast ability. An application algorithm was proposed to transform the positive original responses
using the first model and the stationary responses using the second model to improve the nonparametric estimation of the
functional time series. The Box-Cox model contributed to improving the results of the nonparametric estimation of the original
data, but the results become somewhat confusing after attempting to make the transformed response variable stationary in the
mean, while the functional time series predictions were more accurate using the transformed stationary datasets using the Yeo-
Johnson model.

1. Introduction

Forecasting the future is the main function of time series
analysis. Proceeding from this idea, researchers have devel-
oped several techniques that are concerned with the
improvement of accuracy of forecasts by treating the time
series as a stochastic process. A functional data analytic
approach or so-called a stochastic forecast [1] allows dealing
with the observations as a function [2] freely outside of the
conditions of parametric and fully nonparametric modeling.
This handling of observations in time series data makes it
sequential and can be separated into successive time periods
[3]. Thus, the dimensions of the time series are reduced with
a limited loss of information [4] and represent the data in a
linear combination of a few functions (carefully selected)
instead of treating the data in its original form as a single vec-
tor of values [2], that is, processing and transforming the
structure of time series data in line with the structure of
regression models. Shang in 2019 showed that with the time
dependence of observations in some datasets, the principal

component method may lead to erroneous estimates. There-
fore, the two authors believe that this problem may be exac-
erbated in some time series data, especially those that are
characterized by the presence of seasonal changes. However,
it has become known in practical applications of time series
that they are rarely stationary and that seasonal changes,
trend, and dependence on external factors have become the
rules, not the exception [5]. For this reason, it can be said that
the data transformation has become a part of the traditional
parametric and nonparametric analysis of complex time
series.

In this article, the two authors have used the Yeo-Johnson
transformations to improve the nonparametric estimation of
the functional time series. The use of both approaches, trans-
formation, and functional analysis without considering the
modeling conditions is an attempt to focus the analyzing goal
and the efficiency criterion in the context of forecast ability.

The rest of the article is organized as follows. The Box-
Cox and Yeo-Johnson transformations are presented in the
next section. The third section contains the formulation of
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the problem and the proposed application methodology. The
practical examples are included in the fourth section, while
the fifth section contained some conclusions.

2. Box-Cox and Yeo-Johnson Transformations

Box and Cox [6] suggested the Box-Cox transformation
(BCT) methodology in regression models to reduce anoma-
lies in data, reduce nonlinearity, and achieve normality ran-
dom errors. The methodology assumes, for any response
variable Z > 0 and λ ∈ R, the transformed variable ΨðZÞ =
ðZλ − 1Þ/λ when λ ≠ 0 and ΨðZÞ = LnZ when λ = 0. And
when λ is equal to 1, the data is analyzed in its original
scale, whereas the case λ = 0 corresponds to the natural loga-
rithmic transformation of the data. BCT is based on the
assumption of the transformed response normality and then
defining the probability density function of the original
response as a “backward transformed” of change of variables
technique.

Yeo and Johnson [7] generalized the BCT to include neg-
ative and positive values in datasets [7]. They used a smooth-
ness condition to combine the transformations for positive
and negative observations, thus obtaining a one-parameter
transformation family [8]. For Z ∈ R, the YJT is given by

ψ Zð Þ =

Z + 1ð Þλ − 1
λ

, λ ≠ 0 andZ ≥ 0,

Ln Z + 1ð Þ, λ = 0 andZ ≥ 0,

− −Z + 1ð Þ2−λ − 1
� �

2 − λ
, λ ≠ 2 andZ < 0,

Ln −Z + 1ð Þ, λ = 2 andZ < 0:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

This transformation is appropriate for correcting both
left and right skew when λ > 1 and λ < 1, respectively, while
the linear relationship is achieved when λ = 1 [9]. Also,
Yeo-Johnson transformations (YJT) can hold the properties
of the log-mean standardization after the inverse transforma-
tion since ΨðZÞ is invertible [10].

In 1970, Box and Jenkins recommended for the first time
the use of power transformation in ARIMA models [11].
After that date, many authors took up this topic and made
numerous proposals in many mathematical and applied
aspects of the time series. Also, some of them indicated some
failures in practical cases, for example, the success limitation
of the normality assumption of the transformed data, and
that it could lead to noticeable improvements in the simplic-
ity of the data models and the accuracy of the estimate [12]
especially in the models with skewness for variables [10].
Cook and Olive, [13] and Atkinson [8] also point out that
the estimation of the transformation parameter can be partic-
ularly sensitive to outliers. And in some practical cases of
time series, the BCTmay not lead to an improvement in fore-
casting performance [11], or as Chen and Lee [14] say, it does
not consistently produce superior forecasts.

Some problems in practical applications occur for two
reasons: the first is the difficulty in obtaining an optimum

value of the transformation parameter, so that at the same
time, the conditions of the fitting of assumed distribution of
the transformed data are met, and the model errors are min-
imal, while the second is that the transformations lead to a
change in the nature of the relationships between the vari-
ables of the model, which may lead to a lack of balance
between the efficiency of statistical inference and the ability
to interpret the sizes of the variables’ influence [15].

3. Formulation of the Problem

Let us consider a univariate time series {Zt , t ∈ Rg, by redivid-
ing the time series sample into (p − 1) statistical samples of
size ðn =N − s − p + 1Þ. This division allows the time series
to be redefined as functional data fðXi, YiÞgi=1,::,n in such
the variation trends between times of the series are diagnosed
through the functional analysis tools [1]. Thus, the relation-
ship can be described as a standard regression model.

Y =m Xð Þ + ε, ð2Þ

where mðXÞ is the smooth functional data, ε is a sequence of
independent identically distributed function white noise
sequence in such Eðε/XÞ = 0. X1,X2,⋯,Xn are identically
distributed as the functional random variable Xi = ðZi−p+1,
⋯, ZiÞ and Yi = Zi+s, i = p,⋯,N − s as a scalar response. In
order to characterize the relationship, the response Y , given
the functional variable X, assumes that N = nτ for some n ϵ
N and some τ > 0. And then, we get a statistical sample of
curves Xi = fZðtÞ, ði − 1Þτ < t ≤ iτg of size ðn − 1Þ and the
response Yi = Zðiτ + sÞ, i = 1,⋯, n − 1 [16, 17]. The usual
nonparametric estimation of the functional relation has sev-
eral advantages and can be very well adapted to local features
of time series data [18] and robustness to functional form
misspecification [19]. The kernel regression estimator is eval-
uated at a given function mðXÞ by

m̂ Xð Þ = ∑n
i=1YiK h−1 d X,Xið Þ� �

∑n
i=1K h−1 d X,Xið Þ� � , ð3Þ

where K is a kernel function, h (depending on n) is a positive
real bandwidth, and d ðX,XiÞ denotes any semimetric (index
of proximity) between the observed curves. The authors
suggest several ways to find equation (3) including kernel
regression estimator, functional conditional quantiles, and
conditional mode.

A number of useful explanatory methods can be used
to measure the closeness (proximities) between the curves
of the functional variables in a reduced dimensional
space. Ferraty and Vieu [16] refer to at least three fami-
lies of semimetrics to measure d ðX,XiÞ, for example, the
functional principal component analysis (FPCA) in which
the proximity is measured by the square root of the
quantity

Ð ðXiðtÞ −X jðtÞÞ2dt. Also, there is another mea-
sure which is based on the second derivative, where the
proximity is measured by the square root of the quantityÐ ðXð2Þ

i ðtÞ −Xð2Þ
j ðtÞÞ2dt (Dauxois et al. (1982), Castre et al.
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(1986), Ferraty and Vieu [16], and Febrero-Bande and
Oviedo de la Fuente (2012)).

Regarding the kernel estimator (3), Wand et al. [20] indi-
cated that it is not working well when the data are asymmet-
ric, as for the standard PCA which may not be the suitable
technique to apply when the data distribution is skewed or
there are outliers [21]. Therefore, power transformation is
considered one of the important alternatives to improve the
efficiency of nonparametric estimation of functional data
(for more details, see [12, 22, 23]).

Most transformation approaches have a common analyt-
ical path, which is the choice of the power transformation
model, and propose an algorithm for estimating the power
parameters in parallel with the mechanisms of estimating
the traditional parameters of the model. Also, there are two
common directions of the power parameter’s estimation;
the first is the parametric direction in which the power
parameters are estimated under the statistical modeling
assumptions. The most important methodology of this direc-
tion is the Box-Cox transformation (BCT) to improve the
efficiency of the multiple linear regression model under the
normality assumption of transformed response [6]. Also,
Wand et al. [20] used the same methodology of Box-Cox to
improve the efficiency of density estimation under the
assumption of some distributions of the transformed variable
[20] (see also [24, 25, 26]).

The second direction is the nonparametric estimation of
power parameters without any assumptions about the
response and error distributions or what might be called
the model-independent approach [27] (see also [28, 29]). In
this direction, the power parameters can estimate according
to some decision rules such as minimizing or maximizing
some indicators of model efficiency.

4. Application Methodology

It is known that the power transformations are important for
making the time series stationary in the variance, while the
differencing is useful for making the time series stationary
in the mean. Generally, none of these approaches can be a
substitute for the other. However, sometimes power transfor-
mations can make the time series stationary. And because the
BCT is used to transform the positive responses, it becomes
important to use it to transform the original data as a first
stage and then calculate the differences to achieve the station-
ary of the time series. And as a result, the variance stabilizing
obtained from the power transformation will be affected by
the differencing process. In this regard, Dittmann and
Granger [30] indicate that for every nonstationary process,
the polynomial transformations are also nonstationary and
have a stochastic trend in mean and invariance. To overcome
these problems, the authors believe that the use of YJT will be
appropriate to improve forecastability, because it can be used
to stabilize the variance in stationary time series. Also, the
estimation of the power parameter according to a certain
decision rule that we have referred to would be appropriate
as long as the issue is related to the nonparametric functional
analysis.

The application methodology includes estimating the
smooth functional data mðXÞ in the regression equation (2)
according to the kernel estimator equation (3) after trans-
forming the time series dataset. The BCT was applied to the
original time series dataset, while the YJT was applied to
the stationary time series dataset. So, the statistical sample
of curves was redefined by the expression

Ψλ Xið Þ = Ψλ Z tð Þð Þ, i − 1ð Þτ < t ≤ iτf g, ð4Þ

and the response by the expression

Ψλ Yið Þ =Ψλ Z iτ + sð Þð Þ, ð5Þ

where i = 1,⋯, n − 1 and Ψλ represents a data transfor-
mation function by the power parameter λ.

For each transformation model, the decision rule adopted
for selecting the optimal estimate of power parameter λ is
that which corresponds to the lowest estimates of the mean
squares of the forecasting errors of the last curve of functional
variable according to the equation MSEðXnÞ = ð1/sÞ∑s

j=1
ðZ∧

j − ZjÞ2, where Z∧
j and Zj are the j-th estimated and real

values in the last curve. As for Z∧
j values, they are computed

from the inversions of BCT and YJT, or what we might call
the retransformation from the transformed data metric to
the original metric.

So, the application algorithm of BCT and YJT models
and nonparametric estimation of the transformed functional
time series were as follows:

(1) Fix τ to define expressions (4) and (5)

(2) Remove the seasonality patterns by taking the differ-
ences to make the time series stationary

(3) Fix λ ϵ Λ, where Λ = f−3, 3g
(4) For each λ ϵ Λ, BCT is used to transform the original

time series ZðtÞ and YJT is used to transform the
stationary time series of k differences ΔkZðtÞ to get
the two explanatory functional matrices ΨλðXÞ =
½ΨλðZÞ�nxτ and ΨλðXÞ = ½ΨλðΔkZÞ�nxτ, (for more
details about the matrices fille organizing in R pro-
gram, see [16, 31]).

(5) Evaluate the explanatory function estimation of the
relationship ΨλðYiÞ =mðΨλðXÞÞ + ε according to
the following kernel estimator:

m̂ Ψλ Xð Þð Þ = ∑n
i=1Ψλ Yið ÞK h−1 d Ψλ Xð Þ,Ψλ Xið Þð Þ� �

∑n
i=1K h−1 d Ψλ Xð Þ,Ψλ Xið Þð Þ� : ð6Þ

The optimal value λ∗ of the power parameter λ is the one
that minimizes the MSEðXnÞ of the last functional variable.
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Figure 1: Plots of the monthly temperature averages series: (a) Nineveh City in Iraq for the period 1976 to 2000; (b) Tunisia (TSN) for the
period 1991 to 2015.
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Figure 2: The ACF plots of the two time series: (a) TSN; (b) TST.

Table 1: Optimal parameters of the BCT model and MSE estimates of the last curve of functional variable for the two time series datasets.

Time series TSN TST
Power parameters λ = 1 λ∗ = 2:1 λ = 1 λ∗ = 1:7
MSE Xnð Þ of the original and transferred time series 2.0365 1.5620 0.5214 0.3402

MSE Xnð Þ after making the original and transferred time series stationary 1.7616 1.7494 0.4303 0.5118

Table 2: Optimal parameters of the two transformation models andMSE estimates of the last curve of functional variable Xn for the two time
series datasets.

Time series TSN TST
Transformation models BCT YJT BCT YJT

Power parameters
λ λ∗ λ λ∗ λ λ∗ λ λ∗

1 2:1 1 −1:9 1 1:7 1 0:3
MSE Xnð Þ 1.7616 1.7494 1.7616 0.8955 0.4303 0.5118 0.4303 0.1706

TSN (YJT).λ⁎ = –1.9: MSE = 0.8955
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Figure 3: The plots of the original (blue) and predicted values (red) for the latest curve (25th year) of the inverse of the data transformed by
the YJT model for the two time series: (a) TSN; (b) TST.
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5. Applications

The two transformation models, BCT and YJT, were applied
to two time series examples of monthly temperature aver-
ages, and an R program was used to analyze the data. The
first time series has a size of 200 observations of Nineveh
City in Iraq (TSN) for the eight rainy months in every year.
We take the monthly average of the meteorological station
of Nineveh for the period 1976 to 2000 (Figure 1(a)). The
second has a size of 300 observations of Tunisia (TST)
for all months of the period 1991 to 2015. The data can
be found at https://climateknowledgeportal.worldbank.org
(Figure 1(b)).

It was found that the two time series are not stationary,
and this is clearly demonstrated by the values of the autocor-
relation functions (ACF) outside the confidence levels in
Figure 2.

By applying BCT model to the two time series according
to the five-step algorithm suggested in Section 4, we obtained
the results shown in Table 1.

As expected, it is evident from the results shown in
Table 1 that the estimate of MSE has decreased when using
BCT compared to its value resulting from the analysis of
the original data when λ = 1: These confusing results were
overcome when the YJT model was used according to the
same five-step algorithm.

As for the attempt to make the original and trans-
formed time series stationary by the first-order differences,
the MSE estimation increased in the two transformed
series and decreased in the original series. By applying
the YJT model according to the same five-step algorithm,
more accurate predictions of fewer errors were obtained
compared to the error estimates obtained by using the
BCT model (Table 2). Figure 3 shows the plots of the
original and predicted values for the latest curve (25th
year) after smoothing the data using the YJT model for
the two time series.

6. Conclusions

It is important to note that the optimum power parameters
λ∗ for both transformation models are significantly different
even though YJT represents the extended version of the BCT
model. The authors believe that this difference and the
amount of displacement in the original data generated by
both models were due to the use of a nonparametric estima-
tion method to choose the optimal power parameter as an
alternative to the parametric method for the hypothesis of
normality of transformed response, in addition to the differ-
ences in the level of homogeneity between stationary and
nonstationary time series datasets.

The application methodology in this article demonstrates
that YGT could be a successful alternative to BCT to improve
the nonparametric estimation of the functional time series.
Also, the nonparametric estimation of the power parameters
not restricted by the conditions of the probability distribu-
tion provides the researcher with wide options to ensure
the accuracy of the prediction.

Data Availability

The datasets supporting the conclusions of this article are
included in the article.
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