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Let E be a separable symmetric space on ð0,∞Þ and EðMÞ the corresponding noncommutative space. In this paper, we introduce a
kind of quasimartingale spaces which is like but bigger than EðMÞ and obtain the following interpolation result: let ÊðMÞ be the
space of all bounded EðMÞ-quasimartingales and 1 < p < pE < qE < q <∞. Then, there exists a symmetric space F on ð0,∞Þ
with nontrivial Boyd indices such that ÊðMÞ = ðL̂pðMÞ, L̂qðMÞF,K .

1. Introduction

Let E be a symmetric space on ð0,∞Þ with the Fatou prop-
erty and 1 < p < pE < qE < q <∞. Kalton and Montgomery-
Smith [1] proved that there exists a symmetric space F with
nontrivial Boyd indices such that E = ðLpðð0,∞ÞÞ, Lq
ðð0,∞ÞÞF,K . As is now well-known, the preceding interpola-
tion result can automatically lift to the noncommutative set-
ting (see [[2], Theorem 3.4]): let E be a symmetric space on
ð0,∞Þ with the Fatou property and ðM, τÞ a semifinite von
Neumann algebra. Then, the following are equivalent:

(i) 1 < p < pE < qE < q <∞:

(ii) There exists a symmetric space F on ð0,∞Þ with
nontrivial Boyd indices such that

E Mð Þ = Lp Mð Þ, Lq Mð Þ� �
F,K : ð1Þ

In this paper, we replace the space EðMÞ in (2) with a big-
ger and more complex space ÊðMÞ (see Definition 3) and
obtain a generalized interpolation result. Our main result
can be stated as follows (see Section 2 for the unexplained
notations).

Theorem 1. Let E be a separable symmetric space on ð0,∞Þ
with 1 < p < pE < qE < q <∞. Then, there exists a symmetric
Banach function space F on ð0,∞Þ SSS with nontrivial Boyd
indices such that

Ê Mð Þ = L̂p Mð Þ, L̂q Mð ÞF,K
�

: ð2Þ

2. Preliminaries

2.1. Noncommutative Spaces. LetM be a semifinite von Neu-
mann algebra equipped with a faithful normal semifinite
trace τ. We denote by L0ðMÞ the family of all τ-measurable
operators. Note that χðλ,∞ÞðjxjÞ is the spectral projection
of x ∈ L0ðMÞ associated with the interval ðλ,∞Þ. For x ∈ L0
ðMÞ, define its generalized singular number by

μt xð Þ = inf λ > 0 : τ χ λ,∞ð Þ xj jð Þ
� �

≤ t
n o

, t > 0: ð3Þ

Note that the function t↦ μtðxÞ from ð0,∞Þ into ½0,∞Þ
is right continuous and nonincreasing. For the case thatM is
the abelian von Neumann algebra Lð0,∞Þ with the trace
given by integration with respect to the Lebesgue measure,
L0ðMÞ is the space of all measurable functions, and μð f Þ is
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the decreasing rearrangement of the measurable function f
(see [3, 4]).

Recall that a Banach function space ðE, k⋅kEÞ on ð0,∞Þ is
called symmetric if for any g ∈ E and any measurable func-
tion f with μð f Þ ≤ μðgÞ, we have f ∈ E and k f kE ≤ kgkE.
The Köthe dual of E is the function space defined by setting

E× = f ∈ L0 0,∞ð Þ:
ð∞
0

f tð Þg tð Þj jdt<∞ : ∀g ∈ E
� �

: ð4Þ

When equipped with the norm k f kE× ≔ sup fÐ∞0 j f ðtÞ
gðtÞjdt : kgkE ≤ 1g, E× is a symmetric Banach function
space. For any s > 0, we define the dilation operator Ds on
E by

Dsfð Þ tð Þ = f t/sð Þ, t > 0, f ∈ E: ð5Þ

Define the lower and upper Boyd indices of E by

pE ≔ lim
s→∞

log s
log Dsk k and qE ≔ lim

s→0+
log s

log Dsk k , ð6Þ

respectively. It is well-known that 1 ≤ pE ≤ qE ≤∞, and we
shall say that E has nontrivial Boyd indices, whenever 1 <
pE ≤ qE <∞. We refer to [1, 5] for unexplained terminology
from function space theory.

For a given symmetric Banach function space ðE, k⋅kEÞ
on ð0,∞Þ, we define the corresponding noncommutative
space by setting

E M, τð Þ = x ∈ L0 Mð Þ: µt xð Þ ∈ Ef g, ð7Þ

equipped with the norm

xk kE M,τð Þ ≔ µt xð Þk kE: ð8Þ

It is well-known that EðM, τÞ is a Banach space and
is referred to as the noncommutative symmetric space
associated with ðM, τÞ corresponding to the function
space ðE, k⋅kEÞ. Note that if 1 ≤ p <∞ and E = Lpð0,∞Þ, then
EðM, τÞ = LpðM, τÞ is the usual noncommutative Lp-space
associated with ðM, τÞ.

Recall that l∞ is a von Neumann algebra equipped with
the trace: γðaÞ =∑an, a = ðanÞ ∈ l+∞ (see [6]). Now, let N =
M �⊗ l∞ be the von Neumann algebra tensor product and ν
= τ ⊗ γ the tensor trace. This gives rise to noncommutative
spaces EðM �⊗ l∞Þ. Note that LpðM �⊗ l∞Þ coincides with the
space lpðLpðMÞÞ.
2.2. Noncommutative Martingales. A noncommutative prob-
ability space is a couple ðM, τÞ, whereM is a finite von Neu-
mann algebra and τ is a normal faithful trace with τð1Þ = 1.
Let ðMnÞn≥1 be an increasing sequence of von Neumann sub-
algebras ofM such that the union of theMn ′s is weak∗dense
in M. Let εn be the conditional expectation with respect to
Mn.

Definition 2. A sequence x = ðxnÞn≥1 in L1ðMÞ is called a
sequence of martingale differences if xn ∈ EðMnÞ for n ≥ 1
and if εnðxn+1Þ = 0 for all n ≥ 0.

In this paper, we always consider noncommutative mar-
tingales associated with a noncommutative probability space
unless explicit explanation.

2.3. Interpolation. Let ðX0, X1Þ be a compatible couple of
quasi-Banach space. Its K-functional is defined by

Kt x ; X0, X1ð Þ
= inf x0k kXO

+ t x1k kx1 : x = x0 + x1, x0 ∈ X0,x1 ∈ X1
n o

,

ð9Þ

for x ∈ X0 + X1 and t > 0. Let E be a symmetric Banach space
on ð0,∞Þ. Set

xk k X0,X1ð ÞE,K =
Kt x ; X0, X1ð Þ

t

���� ����
E

: ð10Þ

Then, the interpolation space ðX0,X1ÞE,K is defined as

ðX0,X1ÞE,K = fx ∈ X0 + X1 : kxkðX0,X1ÞE,K<∞g equipped with

the norm k⋅kðX0,X1ÞE,K .

3. Main Result

The main result in this section is Theorem 1, which extends
the result of Kalton and Montgomery-Smith [1] to a EðMÞ
-quasimartingale spaces. We first introduce the quasimartin-
gale spaces.

Definition 3. Let E be a symmetric Banach function space on
ð0,∞Þ. A sequence x = ðxnÞn≥1 is called a EðMÞ-quasimar-
tingale with respect to ðMnÞn≥1 if xn ∈ EðMnÞ for n ≥ 1 and
(with ε0 = 0, x0 = 0)

〠
∞

n=1
εn−1 dxnð Þ ⊗ en

�����
�����E M �⊗ l∞ð Þ <∞: ð11Þ

We set

xk kÊ Mð Þ ≔ sup
n

ynk kE Mð Þ + 〠
∞

n=1
εn−1 dxnð Þ ⊗ en

�����
�����E M �⊗ l∞ð Þ,

ð12Þ

where γn =∑n
k=1ðdxk − εk−1ðdxkÞÞ and ðenÞn ≥ 1 denote the

standard basic sequence of l∞.

If kxkÊðMÞ <∞, x is called a bounded EðMÞ-quasimar-

tingale. The quasimartingale space ÊðMÞ is defined as the
space of all bounded ÊðMÞ -quasimartingales, equipped with
the norm k⋅kÊðMÞ.
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Remark 4.

(i) In the case E = Lp for 1 ≤ p <∞, we have that ÊðMÞ
=cLp ðMÞ and

xk kbLp Mð Þ ≔ sup
n

ynk kLp Mð Þ + 〠
∞

n=1
εn−1 dxnð Þk kpLp Mð Þ

 !1/p

ð13Þ

(ii) Let x = ðxnÞn≥1 be a bounded EðMÞ-quasimartingale.
Set zn =∑n

k=1ðEk−1ðdxkÞÞ and yn = xn − znðn ≥ 1Þ.
Then, z = ðznÞn≥1 is a predicable EðMÞ-quasimartin-
gale with z1 = 0, and y = ðynÞn≥1 is a bounded E ðMÞ
-martingale. Moreover, the decomposition,

x = y + z, ð14Þ

is unique (see Lemma 2.5, [7]).

The following lemma is the key ingredient of our proof of
Theorem 7.

Lemma 5. Let E be a separable symmetric space on ð0,∞Þ
with 1 < pE ≤ qE <∞. Then,

E∧ Mð Þð Þ∗ = E∧× Mð Þ, ð15Þ

with equivalent norms.

Proof. Let μ = ðμnÞn≥1 ∈ E∧×ðMÞ and x = ðxnÞn≥1 ∈ ÊðMÞ.
Let μn = νn + ωn and xn = yn + znðn≥1Þ be the decomposi-
tion of μ and x as in (14). Then, y = ðynÞn≥1 is a bounded
EðMÞ-martingale and ν = ðνnÞn≥1 is a bounded ÊðMÞ
-martingale. Thus, there exist y∞ ∈ EðMÞ and ν∞ ∈ E×ðMÞ
such that

yn 	!E Mð Þ
y∞,νn 		!E× Mð Þ

ν∞: ð16Þ

Now, we define a linear functional on ÊðMÞ by

lμ xð Þ = τ ν∞y∞ð Þ + 〠
∞

n=1
τ dωndznð Þ: ð17Þ

Then, by Hölder’s inequality,

lμ xð Þ

 

 ≤ ν∞k kE× Mð Þ y∞k kE Mð Þ

+ τ ⊗ γ 〠
∞

n=1
dωn ⊗ en 〠

∞

n=1
dzn ⊗ en

 !
≤ ν∞k kE× Mð Þ y∞k kE Mð Þ

+ 〠
∞

n=1
dωn ⊗ en E M�⊗l∞ð Þ

��� ���〠∞
n=1

dzn ⊗ en

�����
�����E× M �⊗ l∞ð Þ

≤ μk kE∧× Mð Þ xk kÊ Mð Þ:

ð18Þ

Thus, lμðxÞ is continuous on ÊðMÞ and klμk ≤ kμkE∧×ðMÞ.
We pass to the converse inclusion. Let l ∈ ðE∧ðMÞÞ∗. Let

l1 be the restriction of l on EðMÞ. Noting that ðEðMÞÞ∗ =
E×ðMÞ, there exists an operator ν ∈ E×ðMÞ and kνkE×ðMÞ ≤
klk such that

l1 að Þ = τ aνð Þ, a ∈ E Mð Þ: ð19Þ

On the other hand, let FEðMÞ be the space of all
sequences db = ðdbnÞn≥1 such that b = ðbnÞn≥1 is a predictable
EðMÞ -quasimartingale with b1 = 0 equipped with the norm
kdbkFEðMÞ = k∑∞

n=1dbn ⊗ enkEðM �⊗ l∞Þ. Define a functional
on FEðMÞ by

l2 dbð Þ = l bð Þ, db = dbnð Þn≥1 ∈ FE Mð Þ: ð20Þ

Then, by the inequality

l2 dbð Þj j ≤ lk k bk kÊ Mð Þ = lk k dbk kFE Mð Þ, ð21Þ

we have l2 is a continuous linear functional on FEðMÞ and
kl2k ≤ klk. Note that FEðMÞ is isometric to the subspace
of EðM �⊗ l∞Þ. By the Hahn-Banach theorem, l2 extends
to a functional on EðM �⊗ l∞Þ. Since ðEðM �⊗ l∞ÞÞ ∗ = E ×
ðM �⊗ l∞Þ, the representation theorem allows us to find a
sequence ðWn′Þn≥1 ∈ E×ðM �⊗ l∞Þ such that

l2 sð Þ = 〠
∞

n=1
v wn′ ⊗ en
� �

sn ⊗ enð Þ
� �

= 〠
∞

n=1
τ wn′sn
� �

, snð Þn≥1 ∈ E M �⊗ l∞ð Þ,
ð22Þ

and

〠
∞

n=1
wn′ ⊗ en

�����
�����
E× M�⊗l∞ð Þ

≤ l2k k: ð23Þ

Set ω1 = 0 and wn =∑n
k=1εk−1ðwk

′Þðn ≥ 2Þ. For any db =
ðdbnÞn≥1 ∈ FEðMÞ, noting that db = ðdbnÞn≥1 is predicable, it
follows from (22) that
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l2 dbð Þ = 〠
∞

n=1
τ εn−1 wn′dbn

� �� �
= 〠

∞

n=1
τ dbnεn−1 wn′

� �� �
= 〠

∞

n=1
τ dwndbnð Þ:

ð24Þ

It is easy to see that ω = ðωnÞn≥1 is predictable with ω1 = 0
and

〠
∞

n=1
dwn ⊗ en

�����
�����
E× M�⊗l∞ð Þ

= 〠
∞

n=1
εn−1 wn′

� �
⊗ en

�����
�����
E× M�⊗l∞ð Þ

≤ 〠
∞

n=1
wn′ ⊗ en

�����
�����
E× M�⊗l∞ð Þ

≤ l2k k:

ð25Þ

Set μn = νn + ωnðn ≥ 1Þ, where νn = ℇnðνÞðn ≥ 1Þ. Then,
μ = ðμnÞn≥1 ∈ E∧×ðMÞ and

μk kE∧× Mð Þ = vk kE× Mð Þ + 〠
∞

n=1
dwn ⊗ en

�����
�����
E× M�⊗l∞ð Þ

≤ 2 lk k:

ð26Þ

For any x = ðxnÞn≥1 ∈ ÊðMÞ, let xn = yn + znðn ≥ 1Þ be its
decomposition as in (14).

Noting that y = ðynÞn≥1 is a bounded E(M) martingale
and dz = ðdznÞn≥1 ∈ FEðMÞ, it follows from (19) and (24) that

l xð Þ = l yð Þ + l zð Þ = τ y∞v∞ð Þ + 〠
∞

n=1
τ dwndznð Þ: ð27Þ

The proof is completed.
The following lemma is about the duality theorem of

interpolation spaces.

Lemma 6 (see [2]). Let E be separable and ðX1, X2Þ be a cou-
ple of Banach spaces such that X1 ∩ X2 is dense in both X1 and
X2. Then,

X1, X2ð Þ∗E,K = X∗
2 , X∗

1ð ÞE×,K : ð28Þ

Proof of Theorem 7. Let x ∈ ðL̂pðMÞ, L̂qðMÞÞ
F,K and x = x0

+ x1 be a decomposition of x, where x0 ∈ LpðMÞ, x1 ∈ LqðMÞ:
Let xkn = ykn + zknðn ≥ 1Þ be the decomposition of xk ðk = 0, 1Þ
as in (14). Then, y0 is a bounded LpðMÞ-martingale, and y1 is
a bounded LqðMÞ-martingale. Thus, there exist y0∞ ∈ LpðMÞ
and y1∞ ∈ LqðMÞ such that

y0n
Lp Mð Þ→y0∞, y1n

Lp Mð Þ→y1∞,
y0∞
�� ��

Lp Mð Þ = sup
n

y0n
�� ��

Lp Mð Þ, y1∞
�� ��

Lp Mð Þ

= sup
n

y1n
�� ��

Lp Mð Þ:

ð29Þ

Using Definition 3, we get that

x0
�� ��

L̂p Mð Þ = y0∞
�� ��

Lp Mð Þ + dz0
�� ��

Lp M�⊗l∞ð Þ, x1
�� ��

L̂p Mð Þ

= y1∞
�� ��

Lq Mð Þ + dz1
�� ��

Lq M�⊗l∞ð Þ:
ð30Þ

Set y = y0∞ + y1∞, z = z0 + z1.Then, by the definition of K
-functionals and (30),

Kt y ; Lp Mð Þ, Lq Mð Þ� �
+ Kt dz ; Lp M �⊗ l∞ð Þ, Lq M �⊗ l∞ð Þ� �

≤ y0∞
�� ��

Lp Mð Þ + t y1∞
�� ��

Lq Mð Þ + dz0
�� ��

Lp M�⊗l∞ð Þ

+ t dz1
�� ��

Lq M�⊗l∞ð Þ = x0
�� ��

L̂p Mð Þ + t x1
�� ��

L̂q Mð Þ:

ð31Þ

Thus, taking infimumover all decomposition of x, we obtain

Kt y ; Lp Mð Þ, Lq Mð Þ� �
+ Kt dz ; Lp M �⊗ l∞ð Þ, Lq M �⊗ l∞ð Þ� �

≤ Kt x ; L̂p Mð Þ, L̂q Mð Þ� �
:

ð32Þ

Therefore, using the equality kxkðX0,X1ÞF,K =
kKtðx ; X0, X1Þ/tkF, we have

yk k Lp Mð Þ,Lq Mð Þð ÞF,K + dzk kLp M �⊗l∞ð Þ,Lq M �⊗l∞ð ÞÞF,K
≤ 2 xk k L̂p Mð Þ,L̂q Mð Þð ÞF,K :

ð33Þ

It follows from the equality EðMÞ = ðLpðMÞ, LqðMÞÞ
F,K

that

xk kÊ Mð Þ = yk kE Mð Þ + dzk kE M �⊗l∞ð Þ ≤ 2 xk k L̂p Mð Þ,L̂q Mð Þð ÞF,K :
ð34Þ

For any x ∈ ðL̂pðMÞ, L̂qðMÞÞF,K, we obtain x ∈ ÊðMÞ which
implies that

Ê Mð Þ ⊃ L̂p Mð Þ, L̂q Mð Þ� �
F,K : ð35Þ

Similarly, we have

E∧× Mð Þ ⊃ L̂q′ Mð Þ, L̂p′ Mð Þ
� �

F×,K
, ð36Þ

where p′ and q′ denote the conjugate index of p and q. By
Lemma 5 and Lemma 6, we obtain that
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Ê Mð Þ = E∧× Mð Þð Þ∗ ⊂ L̂q′ Mð Þ, L̂p′ Mð Þ
� �∗

F×,K

= L̂p Mð Þ, L̂q Mð Þ� �
F,K :

ð37Þ

Thus,

Ê Mð Þ = L̂p Mð Þ, L̂q Mð Þ� �
F,K : ð38Þ

The proof is completed.
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