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In this paper, we consider the KP-MEW(3,2) equation by the bifurcation theory of dynamical systems when integral constant is
considered. The corresponding traveling wave system is a singular planar dynamical system with one singular straight line. The
phase portrait for c < 0, 0 < c < 1, and c > 1 is drawn. Exact parametric representations of periodic peakon solutions and smooth
periodic solution are presented.

1. Introduction

In 2012, Saha [1] considered KP-MEW equation:

qt ± qmð Þx ± qnð Þxxt
� �

x
− qyy = 0: ð1Þ

It is constructed by combining the MEW equation with
the sense of the KP equation. He obtained the smooth and
nonsmooth traveling wave solutions of KP-MEW Eq. (1) by
using bifurcation theory of dynamical system. In his paper,
he neglected integral constants when transferred (1) to an
ordinary differential equation. However, if integral constant
does not equal to zero, what is the traveling wave solution?
For the arised question, we investigate the following KP-
MEW(3,2) equation:

qt + q3
� �

x
+ q2
� �

xxt

� �
x
− qyy = 0, ð2Þ

by using bifurcation theory of dynamical systems [2–10],
when integral constant is considered.

About the topic, Wei et al. [11] constructed the single
peak solitary wave solutions of generalized KP-MEW (2,2)
equation with boundary condition by using the differential
equation qualitative theory. Li and Song [12] found the
kink-type wave and compaction-type wave solutions of gen-
eralized KP-MEW (2,2) equation by using bifurcation
method and a numerical simulation approach of dynamical

systems. Zhong et al. [13] obtained the cuspons, peakons,
compacton, smooth, and loop soliton solutions of generalized
KP-MEW equation by applying the bifurcation theory tech-
nique. In [14], lie symmetry analysis was performed on gener-
alized KP-MEW equation. The authors derived symmetries
and adjoint representations for KP-MEW equation. Seadawy
et al. [15] investigated the solitary wave solutions of general-
ized KP-MEW-Burgers equation by applying modification
form of extended auxiliary equation mapping method.

For finding the traveling wave solutions of nonlinear par-
tial differential equations, there are more plentiful methods
to be adopted, such as mapping method and the extended
mapping method [16], tanh-coth expansion method [17,
18], Darboux transformation [19], first integral method [20],
and exp-expansion method [21]. Practically, there is no uni-
fied technique that can be employed to handle all types of
nonlinear differential equations. It is important to discuss the
dynamical behavior of a nonlinear traveling system. Therefore,
in our paper, we try to find some new traveling wave solutions
for Eq. (2) by bifurcation theory of dynamical system.

2. Phase Portraits

Making the transformations qðx, tÞ = qðx − ctÞ = uðξÞ, inte-
grating it twice, (2) arrives to

1 − cð Þu + u3 − c u2
� �′′ = g, ð3Þ
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Figure 1: Phase portraits of system (4) when c > 1.
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where c is the wave speed, g is the integral constant, and ′ is
the derivative with respect to ξ.

Equation (3) is equivalent to the planar dynamical system

du
dξ

= y,

dy
dξ

= −g + 1 − cð Þu + u3 − 2cy2
2cu :

8>>><
>>>:

ð4Þ

Using the transformation dξ = 2cudτ, (4) changes to

du
dτ

= 2cuy,

dy
dτ

= −g + 1 − cð Þu + u3 − 2cy2,

8>><
>>: ð5Þ

with the first integral

H u, yð Þ = cu2y2 + g
2 u

2 −
1 − c
3 u3 −

1
5 u

5
� �

= h, ð6Þ

where h is an integral constant. Consequently, systems (4)
and (5) have the same topological phase portraits except for
the straight line u = 0.

Setting f ðuÞ = −g + ð1 − cÞu + u3,Δ = g2/4 + ð1 − cÞ3/27.
Denote that u1 = ðg/2 + ffiffiffiffi

Δ
p Þ1/3 + ðg/2 − ffiffiffiffi

Δ
p Þ1/3, u2 = ρ

ðg/2 + ffiffiffiffi
Δ

p Þ1/3 + ρ2ðg/2 − ffiffiffiffi
Δ

p Þ1/3, and u3 = ρ2ðg/2 + ffiffiffiffi
Δ

p Þ1/3
+ ρðg/2 − ffiffiffiffi

Δ
p Þ1/3, where ρ = −1 +

ffiffiffi
3

p
i/2 is an imaginary

number. Based on the formula of finding roots for cubic
equations, we have the following conclusions: (i) if Δ > 0,
f ðuÞ has unique equilibrium point E1ðu1, 0Þ; (ii) if Δ = 0,
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Figure 2: Phase portraits of system (4) when 0 < c < 1.
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f ðuÞ has two equilibrium points E1ðu1, 0Þ and E2ðu2, 0Þ; (iii)
if Δ < 0,f ðuÞ has three equilibrium points E1ðu1, 0Þ, E2ðu2,
0Þ, and E3ðu3, 0Þ. Especially, on the straight line u = 0, there
are two equilibrium points S±ð0,±

ffiffiffiffiffiffiffiffiffi
g/2cp Þ for gc > 0.

Let Mðue, yeÞ be the coefficient matrix of the linearized
system of (5) at an equilibrium point ðue, yeÞ and Jðue, yeÞ
= detMðue, yeÞ. Hence, it holds

J ue, yeð Þ = −8c2y2e − 2cue 1 − c + 3u2e
� �

: ð7Þ

It has the following proposition.

Proposition 1. For an equilibrium point of a planar integra-
ble system, if J < 0, then the equilibrium point is a saddle

point; if J > 0, then it is a center point; if J = 0 and the
Poincare index of the equilibrium point is zero, then it is
cusped.

For convenience, if c > 1, noted that g1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ð1 − cÞ3/27

q
and g2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−80ð1 − cÞ3/243

q
: We will discuss the phase por-

trait for c > 1, 0 < c < 1, and c < 0 (see on Figures 1–3).

3. Some Exact Parametric Representations of
Solutions for System (4)

In this section, some traveling wave solutions of system (4)
are given, with the exact parametric representations of its
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Figure 3: Phase portraits of system (4) when c < 0.
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solutions presented. With the aid of [22], we will obtain the
exact traveling wave solutions of KP-MEW (3,2) equation.

3.1. Periodic Peakon Solutions

(i) In this subsection, the periodic peakon solution of
system (4) is discussed; for the cases c > 1,−g2 < g <
0, the phase portrait is shown as Figure 1(b); for h =
0, there are two arch orbits connecting S±ð0,±

ffiffiffiffiffiffiffiffiffi
g/2cp Þ

on both sides of the straight line u = 0. At the same
time,

y2 = 1
5c u3 + 5 1 + cð Þ

3 u −
5
2 g

� �
= 1
5c u − u1ð Þ u − u2ð Þ u − u3ð Þ,

ð8Þ

with u1 < u2 < u3. Consequently, from the first equation of
(6), the parametric representations are as follows:

u ξð Þ = u1 + u2 − u1ð Þsn2 ω0ξ, k0ð Þ, ð9Þ

where snðω0ξ, k0Þ is the Jacobin elliptic function with the
modulo k0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1/u3 − u1

p
, ω0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5c/4ðu3 − u1Þ

p
. The

profile of periodic peakon solution (9) is shown in
Figure 4(a).

(ii) For the cases c > 1, g ≤ g1, the phase portrait is shown
as Figure 1(a); for h = 0, there is an arch orbit con-
necting S±ð0,±

ffiffiffiffiffiffiffiffiffi
g/2cp Þ on the left side of the straight

line u = 0. (6) can be reduced to
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Figure 4: Periodic peakon solutions of (2).
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y2 = 1
5c u − u4ð Þ u − z1ð Þ u − z2ð Þ = 1

5c u − u4ð Þ u − b1ð Þ2 + a21
� �

,

ð10Þ

where u4 < u, z1, and z2 are conjugate complex numbers.
Thus, we can obtain the parametric representations of the
periodic peakon solution (see Figure 4(b)).

u ξð Þ = u4 −
Acn ω1ξ, k1ð Þ − A
1 + cn ω1ξ, k1ð Þ , ð11Þ

where cnðx, kÞ is the Jacobin elliptic function, A2 =
ðb1 − u4Þ2 + a21, ω1 =

ffiffiffiffiffiffiffiffiffi
A/5c

p
, k21 = ðA + b1 − u4Þ/2A:

(iii) For the cases 0 < c < 1, g < 0, the phase portrait is
shown as Figure 2(a); for h = 0, there is an arch orbit
connecting S±ð0,±

ffiffiffiffiffiffiffiffiffi
g/2cp Þ on the left side of the

straight line u = 0. From (6), we have

y2 = 1
5c u − u5ð Þ u − z3ð Þ u − z4ð Þ, ð12Þ

where u5 < u, z3, and z4 are conjugate complex numbers, so it
has the parametric representations of periodic peakon solu-
tion as (11).

(iv) For the cases c < 0, g < 0, the phase portrait is shown
as Figure 3(c); for h = 0, there is an arch orbit
connecting S±ð0,±

ffiffiffiffiffiffiffiffiffi
g/2cp Þ on the right side of the

straight line u = 0. It holds

y2 = 1
−5c u6 − uð Þ u − z5ð Þ u − z6ð Þ = 1

−5c u6 − uð Þ u − b2ð Þ2 + a22
� �

,

ð13Þ

where u < u6, z5, and z6 are conjugate complex numbers, so it
has the parametric representations of periodic peakon
solution:

u ξð Þ = u6 +
A − Acn ω2ξ, k2ð Þ
1 + cn ω2ξ, k2ð Þ , ð14Þ

where cnðx, kÞ is the Jacobin elliptic function, A2 =
ðb2 − u6Þ2 + a22, ω2 =

ffiffiffiffiffiffiffiffiffiffiffiffi
A/−5c

p
, k22 = ðA − b2 + u6Þ/2A: The

profile of periodic peakon solution (14) is shown in
Figure 4(c).

3.2. Smooth Periodic Solution. The smooth periodic solution
of system (4) is discussed; for the cases c > 1, g = 0, the phase
portrait is shown as Figure 1(c); for h = 0, there is a homocli-
nic orbit enclosing the equilibrium point E1ðu1, 0Þ and
connecting the straight line u = 0. At the same time,

y2 = 1
5c u3 + 5 1 + cð Þ

3 u −
5
2g

� �
= 1
5c u u2 − u27
� �

, ð15Þ

with 0 < u7 < u. Consequently, from the first equation of (6),
the parametric representations are as follows:

u ξð Þ = −u7 + u7sn
2

ffiffiffiffiffiffiffi
u7
10c

r
ξ,

ffiffiffi
1
2

r !
, ð16Þ

where snðx, kÞ is the Jacobin elliptic function. The profile of
smooth periodic solution (16) is shown in Figure 5.

Remark 2. All the phase portrait bifurcations and the travel-
ing wave solutions obtained of KP-MEW (3,2) equation in
presented paper were not mentioned in [1].

4. Conclusion

In present paper, the method of bifurcation theory of dynam-
ical systems is used to investigate KP-MEW (3,2) equation.
We obtain the parametric representations of periodic peakon
and smooth periodic wave solutions. The phase portrait
bifurcation of the traveling wave system corresponding to
the equation is shown.
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