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A generalization of the LambertW function called the logarithmic Lambert function is introduced and is found to be a solution to
the thermostatistics of the three-parameter entropy of classical ideal gas in adiabatic ensembles. The derivative, integral, Taylor
series, approximation formula, and branches of the function are obtained. The heat functions and specific heats are computed
using the “unphysical” temperature and expressed in terms of the logarithmic Lambert function.

1. Introduction

The first law of thermodynamics [1] states that the total
energy of a system remains constant, even if it is converted
from one form to another. For example, kinetic energy—the
energy that an object possesses when it moves—is converted
to heat energy when a driver presses the brakes on the car to
slow it down. The first law of thermodynamics relates the
various forms of kinetic and potential energy in a system to
the work, which a system can perform, and to the transfer
of heat. This law is sometimes taken as the definition of inter-
nal energy and also introduces an additional state variable,
enthalpy. The first law of thermodynamics allows for many
possible states of a system to exist. However, experience indi-
cates that only certain states occur. This eventually leads to
the second law of thermodynamics and the definition of
another state variable called entropy.

Entropy is a measure of the number of specific ways in
which a thermodynamic system may be arranged, commonly
understood as a measure of disorder. According to the sec-
ond law of thermodynamics, the entropy of an isolated sys-
tem never decreases; such a system will spontaneously

proceed towards thermodynamic equilibrium, the configura-
tion with maximum entropy [2].

A system in thermodynamic equilibrium with its sur-
roundings can be described using three macroscopic vari-
ables corresponding to the thermal, mechanical, and
chemical equilibrium. For each fixed value of these macro-
scopic variables (macrostates), there are many possible
microscopic configurations (microstates). A collection of sys-
tems existing in the various possible microstates, but charac-
terized by the same macroscopic variables, is called an
ensemble. The adiabatic class has the heat function as its
thermal equilibrium variable. The specific form of each of
the four adiabatic ensembles and its heat function and corre-
sponding entropy are listed in Table 1 (see [3]).

It is known that some physical systems cannot be
described by Boltzmann-Gibbs (BG) statistical mechanics
[4, 5]. Among these physical systems are diffusion [6], turbu-
lence [7], transverse momentum distribution of hadron jets
in e+e− collisions [8], thermalization of heavy quarks in a col-
lisional process [9], astrophysics [10], and solar neutrinos
[11]. To overcome some difficulties in dealing with these sys-
tems, Tsallis [12] introduced a generalized entropic form, the
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q-entropy:

Sq = k〠
ω

i=1
pi lnq

1
pi
, ð1Þ

where k is a positive constant and ω is the total number of
microscopic states.

For q > 0, lnqx called the q-logarithm is defined as

lnqx =
x1−q − 1
1 − q

,  ln1x = ln x: ð2Þ

The inverse function of the q-logarithm is called q
-exponential and is given by

expqx = 1 + 1 − qð Þx½ �1/ 1−qð Þ,  exp1x = exp x: ð3Þ

In the case of equiprobability, BG is recovered in the limit
q⟶ 1.

A two-parameter entropy Sq,q′ that recovered the q
-entropy Sq in the limit q′ ⟶ 1 was defined in [13] as

Sq,q′x ≡ 〠
ω

i=1
pi lnq,q′

1
pi

= 1
1 − q′

〠
ω

i=1
pi exp 1 − q′

1 − q
pq−1i − 1
� � !

− 1
" #

:

ð4Þ

Applications of Sq to a class of energy-based ensembles

were done in [14] while applications of Sq,q′ to adiabatic
ensembles were done in [3]. Results in the applications of
Sq,q′ involved the well-known Lambert W function.

A three-parameter entropy Sq,q′ ,r that recovers Sq,q′ in the
limit r⟶ 1 was defined in [15] as

Sq,q′ ,r ≡ k 〠
ω

i=1
pi lnq,q′ ,r

1
pi
, ð5Þ

where k is a positive constant and

lnq,q′ ,rx ≡
1

1 − r
exp 1 − r

1 − q′
e 1−q′ð Þ lnqx − 1
� �

− 1
� �� �

: ð6Þ

This three-parameter entropy was shown to be nonexten-
sive (see [15]).

One of the interesting properties of entropy is the Lesche
stability [16]. The Lesche stability of the κ-entropy was
shown in [17].

It was shown in [15] that the three-parameter logarithm
lnq,q′ ,rx is differentiable. Hence, the function

f xð Þ = x lnq,q′ ,r
1
x
,  x ≠ 0 ð7Þ

is also differentiable. Since differentiability implies continu-
ity, for every ϵ > 0, there exists δi > 0 such that if jρi − λij <

δi, then j f ðρiÞ − f ðλiÞj < ϵjlnq,q′ ,rωj/ω. Now, given

ρ ≡ ρi : i = 1, 2,⋯,ωf g,
λ ≡ λi : i = 1, 2,⋯,ωf g,

ρ − λk k1 = 〠
ω

i=1
ρi − λij j < 〠

ω

i=1

δi
ω

≤ δ,
ð8Þ

where δ =min fδ1, δ2,⋯,δωg. This implies that

Sq,q′,r ρð Þ − Sq,q′,r λð Þ
��� ��� = k〠

ω

i=1
ρi lnq,q′ ,r

1
ρi

− k〠
ω

i=1
λi lnq,q′,r

1
λi

�����
�����

≤ k〠
ω

i=1
ρi lnq,q′ ,r

1
ρi

− λi lnq,q′ ,r
1
λi

����
����

< k〠
ω

i=1

ϵ lnq,q′,rω
��� ���

ω
= kϵ lnq,q′ ,rω

��� ���:
ð9Þ

Note that the maximum value of Sq,q′ ,rðρÞ corresponding
to the uniform distribution ρ ≡ fρi = 1/ω : i = 1, 2,⋯,ωg is
given by (see [15])

Smax
q,q′ ,r = k lnq,q′ ,rω: ð10Þ

Thus, we have

Sq,q′ ,r ρð Þ − Sq,q′ ,r λð Þ
Smax
q,q′ ,r

�����
����� < ϵ: ð11Þ

Therefore, the three-parameter entropy is Lesche-stable.
Moreover, it was also shown that the three-parameter
entropy is concave and convex in specified ranges of the
parameters (see [15]).

The goal of this paper is to introduce a generalized Lam-
bert W function and derive its applications to the adiabatic
thermostatistics of the three-parameter entropy of classical
ideal gas. This generalized LambertW function will be called
the logarithmic Lambert function. As the logarithmic Lam-
bert function is new, it is imperative that we study its analytic
properties, namely, the derivative, integral, Taylor series,
approximation, and branches of the function. These calcula-
tions are motivated by the hope to obtain results which are
similar to those obtained for the quadratic Lambert function
[18] which have applications to resolving the Einstein-
Maxwell field equation with plane symmetry.

The properties of the logarithmic Lambert function have
implications in the applications to the adiabatic thermostatis-
tics of the three-parameter entropy of classical ideal gas. In
particular, the derivative is useful to determine the branches
of the function and the specific heat functions in the applica-
tions. In the computation of the heat functions and the spe-
cific heats, we used the inverse of the Lagrange multiplier
for the temperature T which is referred to in [19] as the
“unphysical” temperature.
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The integral is being derived because when the derivative
exists, the natural property that should be considered is the
integral of the function. Taylor series and approximation for-
mulas are useful in the computations when a parameter
involved becomes large.

The analytic properties of the logarithmic Lambert func-
tion are presented in Section 2. Its applications to the adia-
batic thermostatistics of the three-parameter entropy of
classical ideal gas are derived in Section 3. Relationships
among the specific heats are derived in Section 4 with some
important remarks given. Finally, a conclusion is presented
in Section 5.

2. Logarithmic Generalization of the Lambert
W Function

A generalization of the LambertW function will be called the
logarithmic Lambert function denoted byWLðxÞ. Its formal
definition is given below, and fundamental properties of this
function are proven.

Definition 1. For any real number x and constant B, the log-
arithmic Lambert function WLðxÞ is defined to be the solu-
tion to the equation

y ln Byð Þey = x: ð12Þ

Observe that y cannot be zero. Moreover, Bymust be pos-
itive. By Definition 1, y =WLðxÞ. The derivatives of WLðxÞ
with respect to x can be readily determined as the following
theorem shows.

Theorem 2. The derivative of the logarithmic Lambert func-
tion is given by

dWL xð Þ
dx

= e−WL xð Þ

WL xð Þ + 1½ � ln BWL xð Þ + 1
: ð13Þ

Proof. Taking the derivative of both sides of (12) gives

ln Byð Þyey dy
dx

+ ln Byð Þ + 1ð Þey dy
dx

= 1, ð14Þ

from which

dy
dx

= 1
y ln Byð Þ + ln Byð Þ + 1½ �ey : ð15Þ

With y =WLðxÞ, (15) reduces to (13).
The integral of the logarithmic Lambert function is given

in the next theorem.

Theorem 3. The integral of WLðxÞ is
ð
WL xð Þ dx = eWL xð Þ 1 + W2

L xð Þ −WL xð Þ + 1
� �

ln WL xð Þð Þ	 

− 2Ei WL xð Þð Þ + C,

ð16Þ

where EiðxÞ is the exponential integral given by

Ei xð Þ =
ð
ex

x
dx: ð17Þ

Proof. From (12),

dx = y ln Byð Þ + ln Byð Þ + 1ð Þeydy: ð18Þ

Thus,

ð
ydx =

ð
y y ln Byð Þ + ln Byð Þ + 1ð Þeydy

=
ð
y2ey ln Byð Þdy+

ð
yey ln Byð Þdy+

ð
yeydy:

ð19Þ

These integrals can be computed using integration by
parts to obtain

ð
yeydy = y − 1ð Þey + C1, ð20Þ

ð
yey ln Byð Þdy = ey y − 1ð Þ ln Byð Þ − 1ð Þ + Ei yð Þ + C2,

ð21Þ
ð
y2ey ln Byð Þdy = ey y2 − 2y + 2

� �
ln Byð Þ − y + 3

	 

− 2Ei yð Þ + C3,

ð22Þ

where C1, C2, C3 are constants. Substitution of (20), (22), and
(21) to (19) with C = C1 + C2 + C3 and writing WLðxÞ for y
will give (16).

The next theorem contains the Taylor series expansion
ofWLðxÞ.

Theorem 4. Few terms of the Taylor series ofWLðxÞ about 0
are given below:

WL xð Þ = 1
B
+ e− 1/Bð Þ x + 2 + B

2!
e− 2/Bð Þ x2 + 4B2 + 9B + 9

� �
3!

e− B/3ð Þ x3+⋯:

ð23Þ

Proof. Being the inverse of the function defined by x = y ln ð
ByÞey , the Lagrange inversion theorem is the key to obtain
the Taylor series of the function WLðxÞ.

Let f ðyÞ = y ln ðByÞey . The function f is analytic for By
> 0: Moreover, f ′ðyÞ = ½ðy + 1Þ ln ðByÞ + 1�ey , f ′ð1/BÞ = e1/B

≠ 0, and for finite B, f ð1/BÞ = 0. By the Lagrange inversion
theorem (taking a = 1/B),

WL xð Þ = 1
B
+ 〠

∞

n=1
gn

xn

n!
, ð24Þ
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where

gn = lim
y⟶1

B

dn−1

dyn−1
y − 1/B
f yð Þ

� �n

: ð25Þ

The values of gn for n = 1, 2, 3 are

g1 = e− 1/Bð Þ,
g2 = 2 + Bð Þe− 2/Bð Þ,

g3 = 4B2 + 9B + 9
� �

e− 3/Bð Þ:

ð26Þ

Substituting these values to (24) will yield (23).
An approximation formula for WLðxÞ expressed in

terms of the classical Lambert W function is proven in the
next theorem.

Theorem 5. For large x,

WL xð Þ ∼W xð Þ − ln ln BW xð Þð Þð Þ, ð27Þ

where WðxÞ denotes the Lambert W function.

Proof. From (12), y =WLðxÞ satisfies

x = y ln Byð Þey ∼ yey: ð28Þ

Then,

y =W xð Þ + u xð Þ, ð29Þ

where uðxÞ is a function to be determined. Substituting (29)
to (12) yields

W xð Þ 1 + u xð Þ
W xð Þ

� �
ln BW xð Þ 1 + u xð Þ

W xð Þ
� �� �

eW xð Þ · eu xð Þ = x:

ð30Þ

With uðxÞ < <WðxÞ, (30) becomes

W xð ÞeW xð Þ ln BW xð Þð Þeu xð Þ = x: ð31Þ

By definition of WðxÞ, WðxÞeWðxÞ = x. Hence, (31) gives

ln BW xð Þð Þeu xð Þ = 1, ð32Þ

from which

u xð Þ = − ln ln BW xð Þð Þð Þ: ð33Þ

Thus,

WL xð Þ ∼W xð Þ − ln ln BW xð Þð Þð Þ: ð34Þ

Table 2 illustrates the accuracy of the approximation for-
mula in (27).

The next theorem describes the branches of the logarith-
mic Lambert function.

Theorem 6. Let x = f ðyÞ = y ln ðByÞey. Then, the branches of
the logarithmic Lambert function y =WLðxÞ can be described
as follows:

(1) When B > 0, the branches are as follows:

(i) W0
LðxÞ: ð f ðδÞ,+∞Þ⟶ ½δ,+∞Þ is strictly

increasing

(ii) W1
LðxÞ: ð f ðδÞ, 0Þ⟶ ½0, δÞ is strictly decreasing

where δ is the unique solution to

y + 1ð Þ ln Byð Þ = −1: ð35Þ

(2) When B < 0, the branches are as follows:

(i) W0
L ,<ðxÞ: ½0, f ðδ2Þ�⟶ ½δ2,+∞Þ is strictly

decreasing

(ii) W1
L ,<ðxÞ: ½ f ðδ1Þ, f ðδ2Þ�⟶ ½δ1, δ2� is strictly

increasing

(iii) W2
L ,<ðxÞ: ½ f ðδ1Þ, 0�⟶ ð−∞,δ1Þ is strictly

decreasing

where δ1 and δ2 are the two solutions to (35) with δ1 < 1/B
< δ2 < 0.

Proof. Consider the case when B > 0: Let x = f ðyÞ = y ln ðByÞ
ey. From equation (13), the derivative of y =WLðxÞ is not
defined when y satisfies (35). The solution y = δ (35) can be
viewed as the intersection of the functions:

g yð Þ = −1,
h yð Þ = y + 1ð Þ ln Byð Þ:

ð36Þ

Clearly, the solution is unique. Thus, the derivative dWL

ðxÞ/dx is not defined for x = f ðδÞ = δ ln ðB δÞeδ. The value of
f ðδÞ can then be used to determine the branches of WLðxÞ.
To explicitly identify the said branches, the following informa-
tion is important:

(1) The value of y must always be positive; otherwise, ln
ðByÞ is undefined

(2) The function y =WLðxÞ has only one y-intercept,
i.e., y = 1/B

(3) If y < δ, ðy + 1Þ ln ðByÞ + 1 < 0 which gives dy/dx < 0
(4) If y > δ, ðy + 1Þ ln ðByÞ + 1 > 0 which gives dy/dx > 0
(5) If y = δ, ðy + 1Þ ln ðByÞ + 1 = 0 and dy/dx does not

exist
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These imply that

(1) when y > δ, the function y =WLðxÞ is increasing in
the domain ð f ðδÞ, +∞Þ with range ½δ, +∞Þ and the
function crosses the y-axis only at y = 1/B

(2) when y < δ, the function y =WLðxÞ is decreasing, the
domain is ð f ðδÞ, 0Þ, and the range is ½δ, 0Þ because
this part of the graph does not cross the x-axis and
y-axis

(3) when y = δ, the line tangent to the curve at the point
ð f ðδÞ, δÞ is a vertical line

These proved the case when B > 0: For the case B < 0, the
solution to (35) can be viewed as the intersection of the func-
tions:

g yð Þ = −
1

y + 1 ,

h yð Þ = ln Byð Þ:
ð37Þ

These graphs intersect at two points δ1 and δ2. Thus, the
derivative dWLðxÞ/dx is not defined for

x1 = f δ1ð Þ = δ1 ln Bδ1ð Þeδ1 ,
x2 = f δ2ð Þ = δ2 ln Bδ2ð Þeδ2 :

ð38Þ

Note that

(1) the value of y must always be negative; otherwise, ln
ðByÞ is undefined

(2) the function y =WLðxÞ has only one y-intercept, i.e.,
y = 1/B

(3) gðyÞ is not defined at y = −1

The desired branches are completely determined as
follows:

(1) If δ2 < y < 0, then ðy + 1Þ ln By + 1 < 0. This gives dy
/dx < 0. Thus, the function y =WLðxÞ is a decreasing
function with domain ½0, f ðδ2Þ� and range ½δ2, 0�

(2) If δ1 ≤ y ≤ δ2, then ðy + 1Þ ln By + 1 > 0. This gives d
y/dx > 0. Thus, the function y =WLðxÞ is an increas-
ing function with domain ½ f ðδ1Þ, f ðδ2Þ� and range ½
δ1, δ2�

(3) If −∞<y < δ1, then ðy + 1Þ ln By + 1 < 0. This gives
dy/dx < 0. Thus, y =WLðxÞ is a decreasing function
with domain ½ f ðδ1Þ, 0� and range ð−∞, δ1�

These complete the proof of the theorem.
Figure 1 depicts the graphs of the logarithmic Lambert

function (red color) when B = 1 and B = −1. The y-coordi-
nates of the points of intersection of the blue- and gray-
colored graphs correspond to the value of δ, δ1, δ2.

3. Applications to Classical Ideal Gas

As discussed in [3], the microstate of a system of N particles
can be represented by a single point in the 2DN-dimensional
phase space. Corresponding to a particular value of the heat
function which is a macrostate is a huge number of micro-
states. The total number of microstates has to be computed
as it is a measure of entropy S. The points denoting the
microstates of the system lie so close to each other that the
surface area of the constant heat function curve in the phase
space is regarded as a measure of the total number of
microstates.

In an adiabatic ensemble, theoretically the density of
states in the region E and E + ΔE should be calculated, where
ΔE is very small. But it is not possible to calculate the number
of states in this region. So the volume density of the states is
calculated. Since the number of particles is very large, most of
the volume of the region enclosed by a constant energy curve
lies in its surface which is the surface density of states. So the
volume density of states is equal to the surface density of
states. Hence, in the calculation, the volume density of states
is used.

In this section, applications of the logarithmic Lambert
function to classical ideal gas in the four adiabatic ensembles

Table 1: Adiabatic ensembles.

Ensemble Heat function Entropy

Microcanonical N , V , Eð Þ Internal energy E S N , V , Eð Þ
Isoenthalpic-isobaric N , P,Hð Þ Enthalpy H = E + PV S N , P,Hð Þ
Third adiabatic ensemble μ,V , Lð Þ Hill energy L = E − μN S μ, V , Lð Þ
Fourth adiabatic ensemble μ, P, Rð Þ Ray energy R = E + PV − μN S μ, P, Rð Þ

Table 2

x WL xð Þ Approximate value Relative error

302.7564 4 3.8914 2:71438 × 10−2

1194.3088 5 4.8766 2:46807 × 10−2

4337.0842 6 5.8756 2:07321 × 10−2

14937.6471 7 6.8792 1:72518 × 10−2

49589.8229 8 7.8844 1:44500 × 10−2

160238.6564 9 8.8899 1:22306 × 10−2

507178.1179 10 9.8953 1.04662× 10−2
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are derived. In what follows, m denotes the mass of the sys-
tem; P, pressure;V , volume; h, Planck’s constant (see [20],
p. 119); and μ, the chemical potential of the system (see [21]).

3.1. Microcanonical Ensemble ðN ,V , EÞ. The Hamiltonian of
a nonrelativistic classical ideal gas in D dimensions is

H =〠
i

P2
i

2m , Pi = pij j, ð39Þ

where Pi ðfor i = 1, 2,⋯,NÞ represent the D-dimensional
momentum of the gas molecules. This classical nonrelativis-
tic ideal gas is studied in the microcanonical ensemble. In
order to compute the entropy of the system, the phase space
volume enclosed by the constant energy curve is computed
and is given by (see [3])

〠 N , V , Eð Þ = VN

N!

MN

Γ DN/2ð Þ + 1ð ÞE
DN/2, ð40Þ

where

M = 2πm
h2

� �D/2
: ð41Þ

The three-parameter entropy of the system is

Sq,q′ ,r = k lnq,q′ ,r〠 N ,V , Eð Þ

= k
1 − r

exp 1 − r

1 − q′
exp 1 − q′

1 − q
〠 N , V , Eð Þ
� �1−q

− 1
� � !

− 1
 !

− 1
" #

:

ð42Þ

Computing the inner exponential,

exp 1 − q′
1 − q

〠 N , V , Eð Þ
� �1−q

− 1
� � !

= exp 1 − q′
1 − q

VNMNEDN/2

N!Γ DN/2ð Þ + 1ð Þ
� �1−q

− 1
 ! !

= exp 1 − q′
1 − q

ξ1−qmc · E DN/2ð Þ 1−qð Þ − 1
� � !

,

ð43Þ

where

ξmc =
VNMN

N!Γ DN/2ð Þ + 1ð Þ : ð44Þ

Let

u = 1 − q′
1 − q

ξ1−qmc E
DN/2ð Þ 1−qð Þ: ð45Þ

Then,

Sq,q′ ,r =
k

1 − r
exp 1 − r

1 − q′
euA

� �
e− 1−rð Þ/ 1−q′ð Þ − 1

� �
, ð46Þ

where

A = e
− 1−q ′ð Þ

1−q : ð47Þ

With

z = eu, ð48Þ

−10

−10
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10

0 −10

−10
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0 5
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10

10

Figure 1: Graphs of the logarithmic Lambert function with B = 1 and B = −1. The graphs with red, blue, and gray colors are the graphs of
x = f ðyÞ, x = gðyÞ, and x = hðyÞ, respectively.
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Sq,q′ ,r =
k

1 − r
e 1−rð Þ/ 1−q′ð Þð ÞzAe− 1−rð Þ/ 1−q′ð Þ − 1
h i

: ð49Þ

From the definition of temperature,

T =
∂Sq,q′ ,r
∂E

� �−1
: ð50Þ

Hence,

1
T

=
∂Sq,q′ ,r
∂E

= k
1 − r

e− 1−rð Þ/ 1−q′ð Þe 1−rð Þ/ 1−q′ð Þð ÞzA 1 − r

1 − q′

� �
A
dz
du

· du
dE

� �
,

ð51Þ

where

dz = eu = z,
du
dE

= 1 − q′
� �

ξ1−qmc
DN
2 E DN/2ð Þ 1−qð Þ−1:

ð52Þ

Thus,

1
T

= ke− 1−rð Þ/ 1−q′ð Þe 1−rð Þ/ 1−q′ð Þð ÞzAzAξ1−qmc
DN
2 E DN/2ð Þ 1−qð Þ−1:

ð53Þ

Substituting

β = 1
kT

, ð54Þ

the preceding equation becomes

βe 1−rð Þ/ 1−q′ð Þ
DN/2ð ÞA = e 1−rð Þ/ 1−q′ð Þð ÞeuAeuξ1−qmc E

DN/2ð Þ 1−qð Þ−1: ð55Þ

Let

y = 1 − r

1 − q′
Aeu: ð56Þ

Then,

1 − q

ξ1−qmc 1 − q′
� � ln

y 1 − q′
� �
1 − rð ÞA

0
@

1
A = E DN/2ð Þ 1−qð Þ: ð57Þ

For large N ,

DN
2 1 − qð Þ − 1 ≈ DN

2 1 − qð Þ: ð58Þ

Then, (55) is approximated by

2βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
1 − qð ÞDN = yey ln Byð Þ, ð59Þ

where

B = 1 − q′
1 − rð ÞA : ð60Þ

Let

x = 2βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
1 − qð ÞDN : ð61Þ

It follows from (59) that

y =WL xð Þ: ð62Þ

From (57),

E DN/2ð Þ 1−qð Þ = 1 − q

ξ1−qmc 1 − q′
� � ln BWL

2βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
1 − qð ÞDN

 ! !
,

ð63Þ

which gives

E = 1 − q

ξ1−qmc 1 − q′
� � ln BWL

2βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
1 − qð ÞDN

 ! !2
4

3
5
2/DN 1−qð Þ

:

ð64Þ

The specific heat at constant volume is

CV = ∂E
∂T

: ð65Þ

Let

a = 1 − q

1 − q′
� �

ξ1−q
′

mc

,

c = 2 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
1 − qð ÞDN :

ð66Þ

Then, (64) can be written

E = a ln BWL

c
kT

� �� �h i2/ 1−qð ÞDN
: ð67Þ

Taking the partial derivative of E with respect to T ,

CV = ∂E
∂T

= 2a2/DN 1−qð Þ ln BWL c/kTð Þ½ � 2/DN 1−qð Þð Þ−1

WL c/kTð Þ
d
dt

WL

c
kT

� �
,

ð68Þ

where

d
dT

WL

c
kT

� �
= − c/kT2� �

e−WL c/kTð Þ

WL c/kTð Þ + 1½ � ln BWL c/kTð Þ + 1 : ð69Þ
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Let us consider the following regions depending on the
values of the deformation parameters q, q′, and r. (i) When
r > 1 and q > 1, the argument of WL is positive. If q′ > 1,
then B > 0 and WL must be the principal branch W0

L . If q′
< 1, then B < 0. With the argument of WL being positive,
we shall take WL to be the branch W0

L ,<. (ii) If r < 1 and q
< 1, then the argument of WL is positive. If q′ < 1, then B
> 0 and we take WL to be the principal branch W0

L . If q′
> 1, then B < 0 and again we take WL to be the branch
W0

L ,<. (iii) If r < 1, q > 1, then the argument of WL is nega-

tive. If q′ < 1, thenB is positive and we take WL to be the
principal branch W0

L . If q′ > 1, then B is negative. Here, we
have two choices for WL , either W

1
L ,< or W2

L ,<. Since the
heat function must be a continuous function of the deforma-
tion parameters, we must in this case restrict WL to W1

L ,<.
The specific heat at constant pressure is either positive or

negative depending on the values of the deformation param-
eters q, q′ and r.

The molar heat capacity must be positive in a stable sys-
tem [22]. In order to find the molar heat capacity of a com-
pound or element, simply multiply the specific heat by the
molar mass [23]. For the molar mass to be positive, the spe-
cific heat must be positive. Thus, stability of the system
requires that specific heat is positive. Looking at (69), stability
is guaranteed if BWLðc/kTÞ > 1 with B andWLðc/kTÞ being
dependent on the deformation parameters. The analysis
above which is based on the deformation parameters will
help determine the stability of the system. On the other hand,
negative specific heat appears in astrophysical physics [24].

For some values of the parameters, the specific heat CV is
depicted in Figures 2(a) and 2(b).

In the applications to the three other adiabatic ensembles,
the definition ofM, A, z,β, y, and B will be the same as those
in (41), (47), (48), (54), (56), and (60), respectively. However,
since definition of u differs in every ensemble, z will have dif-
ferent values in every ensemble.

3.2. The Isoenthalpic-Isobaric Ensemble ðN , P,HÞ. A system
which exchanges energy and volume with its surroundings
in such a way that its enthalpy remains constant is described
by the isoenthalpic-isobaric ensemble. In order to calculate
the thermodynamic quantities, the phase space volume
enclosed by the constant enthalpy curve was computed in
[25] and was given by

〠 N , P,Hð Þ = MN

N!

1
Γ D +Nð Þ/2ð Þ + 1ð Þ〠V

VN H − PVð ÞDN/2:

ð70Þ

Since the volume states are very closely spread, the sum-
mation is replaced by an integration. But an integral over the
volume leads to overcounting of the eigenstates. To over-
come this, the shell particle method of counting volume
states was employed (see [2, 15]). In this method, only the
minimum volume needed to confine in a particular configu-
ration is taken into account. The minimum volume needed to

confine a particular configuration is found by imposing a
condition that requires at least one particle to lie on the
boundary of the system. All the equivalent ways of choosing
a minimum volume for a particular configuration are treated
as the volume eigenstate and are considered only once. Using
this shell particle technique to reject the redundant volume
states, the following expression for the phase space volume
was obtained (see [15]):

〠 N , P,Hð Þ =MN 1
P

� �N H DN/2ð Þ+N

Γ DN/2ð Þ +N + 1ð Þ : ð71Þ

The three-parameter entropy of the system is

Sq,q′ ,r = k lnq,q′ ,r〠 N , P,Hð Þ = k
1 − r

e 1−rð Þ/ 1−q′ð Þð ÞzAe− 1−rð Þ/ 1−q′ð Þð Þ − 1
h i

,

ð72Þ

where α = ðDN/2Þ +N ,

u = 1 − q′
1 − q

ξ1−qie Hα 1−qð Þ,

ξie =
MN 1/Pð ÞN

Γ DN/2ð Þ +N + 1ð Þ :
ð73Þ

From the definition of temperature,

1
T

=
∂Sq,q′ ,r
∂H

= k e− 1−rð Þ/ 1−q′ð Þð Þð Þe 1−rð Þ/ 1−q′ð Þð ÞzA · 1 − q′
� �

A
dz
du

du
dH

� �
,

ð74Þ

where

dz
du

= eu = z,

du
dH

= α 1 − q′
� �

ξ1−qie Hα 1−qð Þ−1:

ð75Þ

For large N , approximately

Hα 1−qð Þ−1 ≈Hα 1−qð Þ: ð76Þ

Then,

du
dH

≈ α 1 − q′
� �

ξ1−qie Hα 1−qð Þ, ð77Þ

1
T

= k e− 1−rð Þ/ 1−q′ð Þð Þe 1−rð Þ/ 1−qð Þ′ð ÞzAAz α ξ1−qie Hα 1−qð Þ
h i

:

ð78Þ
Substituting β = 1/kT , (78) becomes

βe 1−rð Þ/ 1−q′ð Þ
Aα ξ1−qie

= e 1−rð Þ/ 1−q′ð Þð ÞzAzHα 1−qð Þ, ð79Þ
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from which

Hα 1−qð Þ = 1 − q

ξ1−qie 1 − q′
� � ln

y 1 − q′
� �
1 − rð ÞA

0
@

1
A, ð80Þ

where y is defined in (56). Then, (79) can be written

βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
α 1 − qð Þ = yey ln Byð Þ: ð81Þ

It follows from (81) that

y =WL

βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
α 1 − qð Þ

 !
: ð82Þ

From (80),

H = 1 − q

ξ1−qie 1 − q′
� � ln 1 − q′

1 − rð ÞAWL

βe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
α 1 − qð Þ

 ! !2
4

3
5
1/α 1−qð Þ

:

ð83Þ

Let

a = 1 − q

ξ1−qie 1 − q′
� � ,

c = e 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
α 1 − qð Þ :

ð84Þ
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Figure 2: (a) Graph of CV when q′, r vary and q = 0:4, T = 2, V = 3, m = 2, and h =D =N = k = A = 1. (b) Graph of CV when q, q′ vary and
r = 0:6, T = 3, V = 4, m = 2, h = 1, D = 1, and N = k = A = 1.
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Then,

H = a ln BWL

c
kT

� �� �h i1/α 1−qð Þ
: ð85Þ

The specific heat at constant pressure is

CP =
∂H
∂T

: ð86Þ

Taking the partial derivative of (85),

∂H
∂T

= 1
α 1 − qð Þ a ln BWL

c
kT

� �� �h i 1/α 1−qð Þð Þ−1
· a d/dtð ÞWL c/kTð Þ

WL c/kTð Þð Þ :

ð87Þ

Using the derivative of WLðxÞ with respect to x given in
Section 2,

CP =
−c/α 1 − qð ÞkT2� �

a1/α 1−qð Þe−WL c/kTð Þ ln BWL c/kTð Þð Þ½ � 1/α 1−qð Þð Þ−1

WL c/kTð Þ WL c/kTð Þ + 1½ � ln BWL c/kTð Þ + 1f g :

ð88Þ

C
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−0.0010
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Figure 3: (a) Graph of CP when q′, r vary and q = 0:4, T = 2, P = 3, M = 2,D = 1, and N = k = A = 1. (b) Graph of CP when q, q′ vary and r
= 0:2, T = 3, P = 4,M = 1, D = 1, and N = k = A = 1.
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The specific heat at constant pressure is either positive or
negative depending on the values of the deformation param-
eters q, q′ and r. For some values of the parameters, the spe-
cific heat CP is depicted in Figures 3(a) and 3(b).

3.3. The ðμ, V , LÞ Ensemble. The Hill energy L is the heat
function corresponding to the ðμ, V , LÞ ensemble. For large
N , an approximate expression of the phase space volume
obtained in [3] is

〠 μ, V , Lð Þ = exp D
2
L
μ

� �
exp VμD/2eD/2M

D/2ð ÞD/2
 !

: ð89Þ

This is a first-order approximation of the exact value:

〠 μ, V , Lð Þ = 〠
∞

N=0

VN

N!

MN

Γ DN/2ð Þ + 1ð Þ L + μNð ÞDN/2: ð90Þ

The 3-parameter entropy of the classical ideal gas in this
adiabatic ensemble is

Sq,q′ ,r =
k

1 − r
exp 1 − r

1 − q′
zA

� �
e− 1−rð Þ/1−q′ð Þ − 1

� �
, ð91Þ

where z = eu,

ξhe = exp V μeð ÞD/2M
D/2ð ÞD/2

 !
,

u = 1 − q′
1 − q

ξ1−qhe e DL/2μð Þ 1−qð Þ:

ð92Þ

From the definition of temperature,

1
T

=
∂Sq,q′ ,r
∂H

= k e− 1−rð Þ/ 1−q′ð Þð Þe 1−rð Þ/ 1−q′ð Þð ÞzA · A

1 − q′
A
dz
du

du
dL

� �
,

ð93Þ

where

du
dL

=
1 − q′
� �

D

2μ ξ1−qhe e DL/2μð Þ 1−qð Þ: ð94Þ

Then, (93) becomes

2βμ exp 1 − rð Þ/ 1 − q′
� �� �

AD ξ1−qhe

= exp 1 − r

1 − q′
zA

� �
ze DL/2μð Þ 1−qð Þ,

ð95Þ

and further

1 − q

1 − q′
� �

ξ1−qie

ln
y 1 − q′
� �
1 − rð ÞA

0
@

1
A = e DL/2μð Þ 1−qð Þ, ð96Þ

from which

L = 2μ
D 1 − qð Þ ln 1 − q

1 − q′
� �

ξ1−qie

ln
y 1 − q′
� �
1 − rð ÞA

0
@

1
A

0
@

1
A: ð97Þ

To solve for y, rewrite (95) into

β 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D/2μð Þ 1 − qð Þ = yey ln

y 1 − q′
� �
1 − rð ÞA

0
@

1
A: ð98Þ

Thus,

y =WL

2βμe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
D 1 − qð Þ

 !
: ð99Þ

Therefore,

L = 2μ
D 1 − qð Þ ln 1 − q

1 − q′
� �

ξ1−qhe

ln BWL

2βμe 1−rð Þ/ 1−q′ð Þ 1 − rð Þ
D 1 − qð Þ

 ! !0
@

1
A:

ð100Þ

The specific heat at constant volume is

CV∗ =
∂L
∂T

: ð101Þ

Let

a = 1 − q

1 − q′
� �

ξ1−qie

,

c = 2μ 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D 1 − qð Þ :

ð102Þ

Then,

L = 2μ
D 1 − qð Þ ln a ln BWL cβð Þð Þð Þ,

∂L
∂T

= 2μ
D 1 − qð Þ ·

d/dtð Þ ln BWL cβð Þð Þ
ln BWL cβð Þð Þ ,

ð103Þ

where

d
dT

ln BWL cβð Þð Þ = −
c/kT2� �

e−WL c/kTð Þ

WL c/kTð Þ WL

c
kT

� �
+ 1

h i
ln BWL

c
kT

� �� �
+ 1

n o
:

ð104Þ

Thus,

CV∗ =
2μ

D 1 − qð Þ
− c/kT2� �� �

e−WL c/kTð Þ ln BWL c/kTð Þð Þ½ �−1
WL c/kTð Þ WL c/kTð Þ + 1½ � ln BWL c/kTð Þð Þ + 1ð Þ :

ð105Þ
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The specific heat at constant volume is either positive or
negative depending on the values of the deformation param-
eters q, q′ and r. For some values of the parameters, the spe-
cific heat CV∗ is depicted in Figures 4(a) and 4(b).

3.4. The ðμ, P, RÞ Ensemble. The adiabatic ensemble with
both the number and volume fluctuations is illustrated here
using the classical ideal gas.

In the largeN limit, the expression of the phase space vol-
ume [3] is

〠 μ, P, Rð Þ = exp DR
μ

� �
1 − M

P
μ

α

� �α
exp α

� �−1
, ð106Þ

where α = ðDN/2Þ +N .
The three-parameter entropy is

Sq,q′ ,r =
k

1 − r
e 1−rð Þ/ 1−q′ð Þð ÞzA · e− 1−rð Þ/ 1−q′ð Þð Þ − 1
h i

, ð107Þ

where z = eu,

ξre = 1 − M
P

μ

α

� �α
eα

� �−1
,

u = 1 − q′
1 − q

ξ1−qre e DR/μð Þ 1−qð Þ:

ð108Þ

From the definition of temperature,

1
T

=
∂Sq,q′ ,r
∂R

= k e− 1−rð Þ/ 1−q′ð Þð Þe 1−rð Þ/ 1−q′ð Þð ÞzA · A

1 − q′
· dz
du

· du
dR

� �
,

ð109Þ

where

du
dR

=
1 − q′
� �

D

μ
ξ1−qre e DR/μð Þ 1−qð Þ: ð110Þ

Then,

1
T

= k e− 1−rð Þ/ 1−q′ð Þð Þe 1−rð Þ/ 1−q′ð Þð ÞzAAz D
μ
ξ1−qre e DR/μð Þ 1−qð Þ

� �
,

ð111Þ

from which

μβe 1−rð Þ/ 1−q′ð Þ
AD ξ1−qre

= e 1−rð Þ/ 1−q′ð Þð ÞzAze DR/μð Þ 1−qð Þ: ð112Þ

Then,

R = μ

D 1 − qð Þ ln 1 − q

1 − q′
� �

ξ1−qie

ln
y 1 − q′
� �
1 − rð ÞA

0
@

1
A

0
@

1
A:

ð113Þ

From (112),

μβ 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D 1 − qð Þ = yey ln Byð Þ: ð114Þ

Thus,

y =WL

μβ 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D 1 − qð Þ

 !
: ð115Þ

Consequently, from (113), the Ray energy of the system is

R = μ

D 1 − qð Þ × ln 1 − q

1 − q′
� �

ξ1−qre

ln
1 − q′
� �
1 − rð ÞA WL

μβ 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D 1 − qð Þ

 !0
@

1
A

0
@

1
A:

ð116Þ

The specific heat at constant pressure is

CP∗ =
∂R
∂T

: ð117Þ

Let

a = 1 − q

1 − q′
� �

ξ1−qRe

,

c = μ 1 − rð Þe 1−rð Þ/ 1−q′ð Þ
D 1 − qð Þ :

ð118Þ

Then,

R = μ

D 1 − qð Þ ln a ln BWL

c
kT

� �� �� �
, ð119Þ

CP∗ =
μ

D 1 − qð Þ × − c/kT2� �� �
e−WL c/kTð Þ ln BWL c/kTð Þð Þ½ �−1

WL c/kTð Þ ln BWL c/kTð Þð ÞWL c/kTð Þ + ln BWL c/kTð Þð Þ + 1f g :

ð120Þ

The specific heat at constant pressure is either positive or
negative depending on the values of the deformation param-
eters q, q′ and r. For some values of the parameters, the spe-
cific heat CP∗ is depicted in Figures 5(a) and 5(b).
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4. Relationship among the Specific Heats and
Some Remarks

The relationship among the specific heats in the different
ensembles is determined as follows. Writing

X = − c/kT2� �� �
e−WL c/kTð Þ

WL c/kTð Þ ln BWL c/kTð Þ WL c/kTð Þ + 1½ � + 1f g ,

ð121Þ

then the specific heats can be written:

CV = 2X a 1/ α−Nð Þð Þ 1−qð Þ ln BWL c/kTð Þ½ �1/ α−Nð Þ 1−qð Þ

ln BWL c/kTð Þ , ð122Þ

CP =
X a1/α 1−qð Þ

α 1 − qð Þ
ln BWL c/kTð Þ½ �1/α 1−qð Þ

ln BWL c/kTð Þ , ð123Þ

CV∗ = 2 μX
D 1 − qð Þ ln BWL c/kTð Þ , ð124Þ

CP∗ =
μX

D 1 − qð Þ ln BWL c/kTð Þ : ð125Þ

From (122) and (123), we have the relation between the
specific heats in the microcanonical ensemble and the
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Figure 4: (a) Graph of CV∗ when q′, r vary and q = 0:4,T = 2, P = 3,D = 1, and k = A = 1. (b) Graph of CV∗ when q, q′ vary and r = 0:8, T = 3,
P = 4, D = 1, and k = A = 1.
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isoenthalpic-isobaric ensemble:

CV = 2 α 1 − qð ÞX− N/αð ÞCP ln BWL

c
kT

� �h iN/α �1/ 1− N/αð Þð Þ
:

ð126Þ

From (124) and (125), we have the relation between the
specific heats in the ðμ, V , LÞ ensemble and the ðμ, P, RÞ
ensemble:

CV∗ = 2CP∗: ð127Þ

4.1. Some Remarks. As discussed in [19], if entropy is nonex-
tensive, the physical temperature is not simply the inverse of
the Lagrange multiplier associated with the energy constraint

but a variable correctly defined through the generalized
zeroth law of thermodynamics. The definition of the physical
pressure also becomes different from the ordinary one. Tak-
ing into account these facts as well as the first law of thermo-
dynamics and Legendre transform structure, it was shown in
[19] that Clausius’ definition of the thermodynamic entropy
has to be appropriately modified.

In the above computation of the heat functions and spe-
cific heats, we used the inverse of the Lagrange multiplier β,
in particular T = 1/kβ, for the temperature of the system.
As this is no longer the physical temperature for nonexten-
sive entropy, we say that we used the “unphysical tempera-
ture,” the term being used also to refer to the same
expression in [19].

The results in [3] corresponding to (64) and (68), (85)
and (88), (97) and (105), and (116) and (120) cannot be
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Figure 5: (a) Graph of CP∗ when q′, r vary and q = 0:4, T = 2, P = 3, D = 1, and k = A = 1. (b) Graph of CP∗ when q, q′ vary and r = 0:8, T = 3,
P = 4, D = 1, and k = A = 1.
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recovered even when r⟶ 1. The reason is that in the gener-
alized statistical mechanics, the thermodynamic limit N
⟶∞ and the nonextensive limit q⟶ 1 do not commute
with each other [24, 26]. In the context of the translational
specific heat, it was observed [24, 26] that the classical q
⟶ 1 limit and the thermodynamic limit do not commute.
While equations (4.14) and (4.15) of [25] similarly demon-
strate that the thermodynamic limit N ⟶∞ of the rota-
tional and the diatomic specific heats does not commute
with the corresponding q⟶ 1 classical limits.

5. Conclusion

We have investigated the adiabatic class of ensembles in the
framework of generalized mechanics based on the three-
parameter entropy. The derivative and branches of the func-
tion were in particular useful in the applications to the ther-
mostatistics of the nonrelativistic ideal gas. In the
microcanonical ensemble and isoenthalpic-isobaric ensem-
ble, the formulas for the three-parameter entropy for an arbi-
trary number of particles were obtained. In the large N limit,
the heat functions were obtained in terms of the temperature
and expressed in terms of the logarithmic Lambert function.
From the heat functions, the specific heats at constant tem-
perature were computed. In the ðμ,V , LÞ and the ðμ, P, RÞ
ensembles, an approximate phase volume in the large N limit
was used and the three-parameter entropies of the ensembles
were computed. From the entropy function, the heat func-
tion and the specific heat were found and expressed also in
terms of the logarithmic Lambert function.

Reexamination of the classical gas model using the
appropriate expression for the physical temperature will be
explored in a separate paper. The authors, motivated by the
applications of the maximum entropy theory (MaxEnt) in
ecology [27], also find it interesting to use the q-entropy, ðq
, q′Þ-entropy, and ðq, q′, rÞ-entropy to formulate a general-
ized maximum entropy theory in ecology.
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