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In this paper, we explore the global dynamical characteristics, boundedness, and rate of convergence of certain higher-order
discrete systems of difference equations. More precisely, it is proved that for all involved respective parameters, discrete
systems have a trivial fixed point. We have studied local and global dynamical characteristics at trivial fixed point and proved
that trivial fixed point of the discrete systems is globally stable under respective definite parametric conditions. We have also
studied boundedness and rate of convergence for under consideration discrete systems. Finally, theoretical results are
confirmed numerically. Our findings in this paper are considerably extended and improve existing results in the literature.

1. Introduction

1.1. Motivation and Literature Review. No one can deny the
significance of difference equations these days. These equa-
tion models not only are the discrete physical phenomenon
but also are the integral part of numerical schemes used to
solve differential equations. These equations are widely
applied in many branches of scientific field. Difference equa-
tions describe the phenomenon of discrete dynamical sys-
tems and have applications in various branches of science
such as statistical problems, resource management, neural
networks, ecology, economics, queuing problems, number
theory, sociology, physics, engineering, psychology, quanta
in radiation, genetics in biology, combinatorial analysis,
probability theory, geometry, population dynamics, electri-
cal networks, stochastic time series, and queuing problems
[1, 2]. Studying the global characteristics of higher-order
nonlinear difference equations or systems of difference equa-
tions is a difficult but rewarding task. These findings pave
the way for the construction of a basic theory of higher-
order difference equations. Recently, many mathematicians
have explored the dynamics of difference equation along
their system. For instance, Oğul et al. [3] investigated the
dynamics of the following higher-order system:

xn+1 =
xn−15

±1 ± xn−3xn−7xn−11xn−15
: ð1Þ

Kulenović et al. [4] investigated the dynamic behavior of
the difference equation:

xn+1 =
αxn + βxn−1
A + xn−1

: ð2Þ

Zhang et al. [5] investigated the dynamic behavior of the
difference equation system:

xn+1 = A + xn
∑k

i=1yn−i
,

yn+1 = B + yn
∑k

i=1xn−i
:

ð3Þ

Kalabuŝić et al. [6] investigated the dynamic behavior of
the difference equation system:

xn+1 =
α1 + β1xn

yn
,

yn+1 =
α2 + γ2yn
A2 + xn

:

ð4Þ
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Kalabuŝić et al. [7] investigated the dynamic behavior of
the difference equation system:

xn+1 =
α1 + β1xn
A1 + yn

,

yn+1 =
γ2yn

A2 + B2xn + yn
:

ð5Þ

Kalabuŝić et al. [8] investigated the dynamic behavior of
the difference equation system:

xn+1 =
β1xn

B1xn + yn
,

yn+1 =
α2 + γ2yn
A2 + xn

:

ð6Þ

Garić-Demirović et al. [9] investigated the dynamic behav-
ior of four distinct difference equation systems. Elsayed [10, 11]
studied solutions form of difference equations and their sys-
tems. Further, Khan and Qureshi [12] studied the dynamic
behavior of a competitive system. DeVault et al. [13] investi-
gated the dynamic behavior of the difference equation:

xn+1 =
A
xn

+ 1
xn−2

: ð7Þ

Abu-Saris and DeVault [14] studied global attractivity of
the difference equation:

xn+1 = A + xn
xn−k

: ð8Þ

On the other hand, in recent years, many works have been
published that discussed dynamic behavior of difference equa-
tion along their systems [15–20]. In continuation of existing
study, it is important to mention that dynamical characteristics
of the following difference equation have been investigated by
Bajo and Liz [21]:

xn+1 =
xn−1

α1 + α2
Q1

i=0xn−i
, ð9Þ

where αℓðℓ = 1, 2Þ and x−ℓðℓ = 1, 0Þ are real constants. By
extending the work of [21], Zhang et al. [22] have explored
the dynamical properties of the system:

xn+1 =
xn−2

α2 +
Q2

i=0yn−i
,

yn+1 =
yn−2

α1 +
Q2

i=0xn−i
,

ð10Þ

where αℓðℓ = 1, 2Þ and x−ℓ, y−ℓðℓ = 2, 1, 0Þ are real constants.
1.2. Objective, Contributions, and Novelties. Motivated from
the aforementioned studies, the objective of the present
study is to investigate the behavior of certain rational sys-
tems by extending the work done by [21, 22]:

xn+1 =
α10yn−k

α11 + α12
Qk

i=0zn−i
,

yn+1 =
α13zn−k

α14 + α15
Qk

i=0xn−i
,

zn+1 =
α16xn−k

α17 + α18
Qk

i=0yn−i
,

ð11Þ

xn+1 =
α19zn−k

α20 + α21
Qk

i=0xn−i
,

yn+1 =
α22xn−k

α23 + α24
Qk

i=0yn−i
,

zn+1 =
α25yn−k

α26 + α27
Qk

i=0zn−i
,

ð12Þ

xn+1 =
α28yn−k

α29 + α30
Qk

i=0yn−i
,

yn+1 =
α31zn−k

α32 + α33
Qk

i=0zn−i
,

zn+1 =
α34xn−k

α35 + α36
Qk

i=0xn−i
,

ð13Þ

xn+1 =
α37zn−k

α38 + α39
Qk

i=0zn−i
,

yn+1 =
α40xn−k

α41 + α42
Qk

i=0xn−i
,

zn+1 =
α43yn−k

α44 + α45
Qk

i=0yn−i
,

ð14Þ

where αℓðℓ = 10,⋯,45Þ and x−ℓ, y−ℓ, z−ℓðℓ = −k,−k + 1,⋯,1, 0
Þ are real constants. More precisely, our main finding in this
paper includes the following:

(i) Exploration of trivial fixed point of discrete systems
(11)–(14)

(ii) Construction of the corresponding linearized
system

(iii) Investigation of global dynamics by stability theory

(iv) Study of boundedness of positive solution and con-
vergence rate of discrete systems (11)–(14)

(v) Validation of obtained results numerically

1.3. Paper Structure. The rest of the paper is structured as
follows: In the subsequent section, we explore trivial fixed
point and linearized form of discrete systems (11)–(14).
Local dynamical characteristics of systems (11)–(14) are
investigated in Section 3 while the boundedness for
(11)–(14) is explored in Section 4. In Section 5, global
dynamics is investigated. Section 6 includes the investigation
of rate of converges for said discrete systems. Obtained
results are numerically confirmed in Section 7. The conclu-
sion and future work are given in Section 8.
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2. Linearized Form and Trivial Fixed Point of
Systems (11)–(14)

Linearized form and trivial fixed points of discrete systems
(11)–(14) are studied in this section.

2.1. Fixed Point. Obviously, P0 = ð0, 0, 0Þ is the trivial fixed
point of discrete systems (11)–(14). Now, in the rest of the
section, linearized form for discrete systems (11)–(14) is
explored.

2.2. Linearized Form of Discrete System (11). The map for the
linearized form of discrete system (11) is

β 11ð Þ, β 11ð Þ
n ,⋯,β 11ð Þ

n−k , γ 11ð Þ, γ 11ð Þ
n ,⋯,γ 11ð Þ

n−k , δ
11ð Þ, δ 11ð Þ

n ,⋯,δ 11ð Þ
n−k

� �
↦ bΓ

= xn+1, xn,⋯,xn−k+1, yn+1, yn,⋯,yn−k+1, zn+1, zn,⋯,zn−k+1Þ,ð
ð15Þ

where

β 11ð Þ = α10yn−k
α11 + α12

Qk
i=0zn−i

, β 11ð Þ
n = xn,⋯, β 11ð Þ

n−k = xn−k+1,

γ 11ð Þ = α13zn−k
α14 + α15

Qk
i=0xn−i

, γ 11ð Þ
n = yn,⋯, γ 11ð Þ

n−k = yn−k+1,

δ 11ð Þ = α16xn−k
α17 + α18

Qk
i=0yn−i

, δ 11ð Þ
n = zn,⋯, δ 11ð Þ

n−k = zn−k+1:

ð16Þ

The linearized form of (11) at Λ under (15) is

Γn+1∧
11ð Þ = J

���
Λ
Γn∧

11ð Þ, ð17Þ

where Γn∧ð11Þ =
ðxn, xn−1,⋯,xn−k, yn, yn−1,⋯,yn−k, zn, zn−1,⋯,zn−kÞT ,

2.3. Linearized Form of Discrete System (12). Linearized form
of discrete system (12) at Λ under the map:

β 12ð Þ, β 12ð Þ
n ,⋯,β 12ð Þ

n−k , γ 12ð Þ, γ 12ð Þ
n ,⋯,γ 12ð Þ

n−k , δ 12ð Þ, δ 12ð Þ
n ,⋯,δ 12ð Þ

n−k

� �
↦ bΓ ,

ð20Þ

is

Γn+1∧
12ð Þ = J

���
Λ
Γn∧

12ð Þ, ð21Þ

where

Jj∧ =

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

−
α13α15zx

k

α14 + α15xk+1
� �2 −

α13α15zx
k

α14 + α15xk+1
� �2 ⋯ −

α13α15zx
k

α14 + α15xk+1
� �2 −

α13α15zx
k

α14 + α15xk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 α16

α17 + α18yk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 α10
α11 + α12zk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

−
α16α18xy

k

α17 + α18yk+1
� �2 −

α16α18xy
k

α17 + α18yk+1
� �2 ⋯ −

α16α18xy
k

α17 + α18yk+1
� �2 −

α16α18xy
k

α17 + α18yk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α10α12yz

k

α11 + α12zk+1
� �2 −

α10α12yz
k

α11 + α12zk+1
� �2 ⋯ −

α10α12yz
k

α11 + α12zk+1
� �2 −

α10α12yz
k

α11 + α12zk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 α13

α14 + α15xk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð18Þ

Λ = x, y, zð Þ: ð19Þ

Jj∧ =

−
α19α21zx

k

α20 + α21xk+1
� �2 −

α19α21zx
k

α20 + α21xk+1
� �2 ⋯ −

α19α21zx
k

α20 + α21xk+1
� �2 −

α19α21zx
k

α20 + α21xk+1
� �2

1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0
0 0 ⋯ 0 α22

α23 + α24yk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α22α24xy

k

α23 + α24yk+1
� �2 −

α22α24xy
k

α23 + α24yk+1
� �2 ⋯ −

α22α24xy
k

α23 + α24yk+1
� �2 −

α22α24xy
k

α23 + α24yk+1
� �2

1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0
0 0 ⋯ 0 α25

α26 + α27zk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 α19
α20 + α21zk+1

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α25α27yz

k

α26 + α27zk+1
� �2 −

α25α27yz
k

α26 + α27zk+1
� �2 ⋯ −

α25α27yz
k

α26 + α27zk+1
� �2 −

α25α27yz
k

α26 + α27zk+1
� �2

1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð22Þ
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and

β 12ð Þ = α19zn−k
α20 + α21

Qk
i=0xn−i

, β 12ð Þ
n = xn,⋯, β 12ð Þ

n−k = xn−k+1,

γ 12ð Þ = α22xn−k
α23 + α24

Qk
i=0yn−i

, γ 12ð Þ
n = yn,⋯, γ 12ð Þ

n−k = yn−k+1,

δ 12ð Þ = α25yn−k
α26 + α27

Qk
i=0zn−i

, δ 12ð Þ
n = zn,⋯, δ 12ð Þ

n−k = zn−k+1:

ð23Þ

2.4. Linearized Form of Discrete System (13). Linearized form

of discrete system (13) at Λ under the map:

β 13ð Þ, β 13ð Þ
n ,⋯,β 13ð Þ

n−k , γ 13ð Þ, γ 13ð Þ
n ,⋯,γ 13ð Þ

n−k , δ
13ð Þ, δ 13ð Þ

n ,⋯,δ 13ð Þ
n−k

� �
↦ bΓ ,
ð24Þ

is

Γn+1∧
13ð Þ = J

���
Λ
Γn∧

13ð Þ, ð25Þ

where

Jj∧ =

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α34α36x

k+1

α35 + α36xk+1
� �2 −

α34α36x
k+1

α35 + α36xk+1
� �2 ⋯ −

α34α36x
k+1

α35 + α36xk+1
� �2 α34α35

α35 + α36xk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α28α30y

k+1

α29 + α30yk+1
� �2 −

α28α30y
k+1

α29 + α30yk+1
� �2 ⋯ −

α28α30y
k+1

α29 + α30yk+1
� �2 α28α29

α29 + α30yk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α31α33z

k+1

α32 + α33zk+1
� �2 −

α31α33z
k+1

α32 + α33zk+1
� �2 ⋯ −

α31α33z
k+1

α32 + α33zk+1
� �2 α31α32

α32 + α33zk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

β 13ð Þ = α28yn−k
α29 + α30

Qk
i=0yn−i

, β 13ð Þ
n = xn,⋯, β 13ð Þ

n−k = xn−k+1,

γ 13ð Þ = α31zn−k
α32 + α33

Qk
i=0zn−i

, γ 13ð Þ
n = yn,⋯, γ 13ð Þ

n−k = yn−k+1,

δ 13ð Þ = α34xn−k
α35 + α36

Qk
i=0xn−i

, δ 13ð Þ
n = zn,⋯, δ 13ð Þ

n−k = zn−k+1:

ð26Þ
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2.5. Linearized Form of Discrete System (14). Linearized form
of discrete system (14) at Λ under the map:

β 14ð Þ, β 14ð Þ
n ,⋯,β 14ð Þ

n−k , γ 14ð Þ, γ 14ð Þ
n ,⋯,γ 14ð Þ

n−k , δ
14ð Þ, δ 14ð Þ

n ,⋯,δ 14ð Þ
n−k

� �
↦ bΓ ,
ð27Þ

is

Γn+1∧
14ð Þ = J

���
Λ
Γn∧

14ð Þ, ð28Þ

where

JjΛ =

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

−
α40α42x

k+1

α41 + α42xk+1
� �2 −

α40α42x
k+1

α41 + α42xk+1
� �2 ⋯ −

α40α42x
k+1

α41 + α42xk+1
� �2 α40α41

α41 + α42xk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

−
α43α45y

k+1

α44 + α45yk+1
� �2 −

α43α45y
k+1

α44 + α45yk+1
� �2 ⋯ −

α43α45y
k+1

α44 + α45yk+1
� �2 α43α44

α44 + α45yk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

−
α37α39z

k+1

α38 + α39zk+1
� �2 −

α37α39z
k+1

α38 + α39zk+1
� �2 ⋯ −

α37α39z
k+1

α38 + α39zk+1
� �2 α37α38

α38 + α39zk+1
� �2

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0

0 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

β 14ð Þ = α37zn−k
α38 + α39

Qk
i=0zn−i

, β 14ð Þ
n = xn,⋯, β 14ð Þ

n−k = xn−k+1,

γ 14ð Þ = α40xn−k
α41 + α42

Qk
i=0xn−i

, γ 14ð Þ
n = yn,⋯, γ 14ð Þ

n−k = yn−k+1,

δ 14ð Þ = α43yn−k
α43 + α45

Qk
i=0yn−i

, δ 14ð Þ
n = zn,⋯, δ 14ð Þ

n−k = zn−k+1:

ð29Þ

3. Local Dynamical Characteristics of Discrete
Systems (11)–(14)

Hereafter by Theorem 1.1 of [16], local dynamical char-
acteristics about P0 of discrete systems (11)–(14) is
explored.

3.1. Local Dynamical Characteristics of Discrete System (11)

Theorem 1. P0 of discrete system (11) is a sink if

α10
α11

< 1,

α13
α14

< 1,

α16
α17

< 1:

ð30Þ

Proof. At P0, (17) becomes

Γn+1∧
11ð Þ = J

���
P0
Γn∧

11ð Þ: ð31Þ

From (18), one has

B1 = JjP0
=

0 0 ⋯ 0 0 0 0 ⋯ 0 α10
α11

0 0 ⋯ 0 0

1 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 α13

α14

0 0 ⋯ 0 0 1 0 ⋯ 0 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 1 0 0 0 ⋯ 0 0
0 0 ⋯ 0 α16

α17
0 0 ⋯ 0 0 0 0 ⋯ 0 0

0 0 ⋯ 0 0 0 0 ⋯ 0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð32Þ

Now, if σ1, σ2, σ3,⋯, σk+1,⋯, σ2k+1,⋯, σ3k+3 represent
characteristic roots of P0 and diagonal matrix: bΩ = diag
ðϱ1, ϱ2,⋯,ϱk+1,⋯,ϱ2k+1,⋯,ϱ3k+3Þ where

ϱ1 = ϱk+2 = ϱ2k+3 = 1,
ϱ1+ς = ϱk+2+ς = ϱ2k+3+ς = 1 − ςε, 1 ≤ ς ≤ kwhere 0 < ε < 1,

ð33Þ
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0 < ε <min 1
k

1 − α10
α11

� �
, 1
k

1 − α13
α14

� �
, 1
k

1 − α16
α17

� �	 

:

ð34Þ
Now,

So,

0 < ϱk+1<⋯<ϱ2 < ϱ1,
0 < ϱ2k+2<⋯<ϱk+2,
0 < ϱ3k+3<⋯<ϱ2k+3:

ð36Þ

From (36), one obtains

ϱ2ϱ
−1
1 < 1,⋯, ϱk+1ϱ−1k < 1,

ϱk+3ϱ
−1
k+2 < 1,⋯, ϱ2k+2ϱ−12k+1 < 1,

ϱ2k+4ϱ
−1
2k+3 < 1,⋯, ϱ3k+3ϱ−13k+2 < 1:

ð37Þ

From (33) and (34), one gets

ϱ1ϱ
−1
2k+2

α10
α11

= ϱ−12k+2
α10
α11

= α10
α11

1
1 − kε

< 1,

ϱk+2ϱ
−1
3k+3

α13
α14

= ϱ−13k+3
α13
α14

= α13
α14

1
1 − kε

< 1,

ϱ2k+3ϱ
−1
k+1

α16
α17

= ϱ−1k+1
α16
α17

= α16
α17

1
1 − kε

< 1:

ð38Þ

Finally, from (37) and (38), one gets

max
1≤υ≤3k+3

ρυj j = bΩB1Ω∧−1
��� ��� =max ϱ1ϱ

−1
2k+2

α10
α11

, ϱ2ϱ−11 ,⋯,
	

ϱk+1ϱ
−1
k , ϱk+3ϱ−1k+2,⋯, ϱ2k+2ϱ−12k+1, ϱ3k+2ϱ−13k+1,⋯,

ϱ3k+3ϱ
−1
3k+2, ϱk+2ϱ−13k+3

α13
α14

, ϱ2k+3ϱ−1k+1
α16
α17



< 1:

ð39Þ

From (39), we get the required result.

In a similar way, dynamical characteristics of discrete
systems (12)–(14) around P0 can be investigated.

3.2. Local Dynamical Characteristics of Discrete
Systems (12)–(14)

Theorem 2. For local dynamical characteristics about P0 of
discrete systems (12)–(14), the following statements hold:

(i) P0 of (12) is a sink if
α19
α20

< 1,

α22
α23

< 1,

α25
α26

< 1

ð40Þ

bΩB1Ω∧−1 =

0 0 ⋯ 0 0 0 0 ⋯ 0 ϱ1ϱ
−1
2k+2

α10
α11

ϱ2ϱ
−1
1 0 ⋯ 0 0 0 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ϱk+1ϱ
−1
k 0 0 0 ⋯ 0 0

0 0 ⋯ 0 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 ϱk+3ϱ

−1
k+2 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ ϱ2k+2ϱ
−1
2k+1 0

0 0 ⋯ 0 ϱ2k+3ϱ
−1
k+1

α16
α17

0 0 ⋯ 0 0

0 0 ⋯ 0 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 0 0

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 ⋯ 0 ϱk+2ϱ

−1
3k+3

α13
α14

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0
0 0 0 ⋯ 0

ϱ3k+2ϱ
−1
3k+1 0 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ϱ3k+3ϱ
−1
3k+2 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð35Þ
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(ii) P0 of (13) is a sink if

α28
α29

< 1,

α31
α32

< 1,

α34
α35

< 1

ð41Þ

(iii) P0 of (14) is a sink if

α37
α38

< 1,

α40
α41

< 1,

α43
α44

< 1

ð42Þ

Proof. Its proof is the same as the proof of Theorem 1.

4. Boundedness of Discrete Systems (11)–(14)

The boundedness of discrete systems (11)–(14) is explored
in this section.

4.1. Boundedness of Discrete System (11)

Theorem 3. If Xn = fðxn, yn, znÞg is the positive solution of
discrete system (11), then for μ ≥ 0, the following holds:

0 < xn ≤

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ

y−k, if n = 3 + 3kð Þμ + 1,

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ

y1−k, if n = 3 + 3kð Þμ + 2,

⋮

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ

y−1, if n = 3 + 3kð Þμ + k,

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ

y0, if n = 3 + 3kð Þμ + k + 1,

α10
α11

� �μ+1 α13
α14

� �μ+1 α16
α17

� �μ

z−k, if n = 3 + 3kð Þμ + k + 2,

α10
α11

� �μ+1 α13
α14

� �μ+1 α16
α17

� �μ

z1−k, if n = 3 + 3kð Þμ + k + 3,

⋮

α10
α11

� �μ+1 α13
α14

� �μ+1 α16
α17

� �μ

z−1, if n = 3 + 3kð Þμ + 2k + 1,

α10
α11

� �μ+1 α13
α14

� �μ+1 α16
α17

� �μ

z0, if n = 3 + 3kð Þμ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
x−k, if n = 3 + 3kð Þμ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �μ+1
x1−k, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �μ+1
x−1, if n = 3 + 3kð Þμ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
x0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð43Þ

0 < yn ≤

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

z−k, if n = 3 + 3kð Þμ + 1,

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

z1−k, if n = 3 + 3kð Þμ + 2,

⋮

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

z−1 if n = 3 + 3kð Þμ + k,

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

z0, if n = 3 + 3kð Þμ + k + 1,

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ+1
x−k, if n = 3 + 3kð Þμ + k + 2,

α10
α11

� �
α13
α14

� �μ+1 α16
α17

� �μ+1
x1−k, if n = 3 + 3kð Þμ + k + 3,

⋮

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

x−1, if n = 3 + 3kð Þμ + 2k + 1,

α10
α11

� �μ α13
α14

� �μ+1 α16
α17

� �μ

x0, if n = 3 + 3kð Þμ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
y−k, if n = 3 + 3kð Þμ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �μ+1
y1−k, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �μ+1
y−1, if n = 3 + 3kð Þμ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
y0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð44Þ

Finally,

0 < zn ≤

α10
α11

� �μ α13
α14

� �μ α16
α17

� �μ+1
x−k, if n = 3 + 3kð Þμ + 1,

α10
α11

� �μ α13
α14

� �μ α16
α17

� �μ+1
x1−k, if n = 3 + 3kð Þμ + 2,

⋮

α10
α11

� �μ α13
α14

� �μ α16
α17

� �μ+1
x−1, if n = 3 + 3kð Þμ + k,

α10
α11

� �μ α13
α14

� �μ α16
α17

� �μ+1
x0, if n = 3 + 3kð Þμ + k + 1,

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ+1
y−k, if n = 3 + 3kð Þμ + k + 2,

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ+1
y1−k, if n = 3 + 3kð Þμ + k + 3,

⋮

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ+1
y−1, if n = 3 + 3kð Þμ + 2k + 1,

α10
α11

� �μ+1 α13
α14

� �μ α16
α17

� �μ+1
y0, if n = 3 + 3kð Þμ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
z−k, if n = 3 + 3kð Þμ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �μ+1
z1−k, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �μ+1
z−1, if n = 3 + 3kð Þμ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �μ+1
z0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
ð45Þ
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Proof. Noticeably, (43), (44), and (45) hold if μ = 0. If (43),
(44), and (45) are true for μ = σ, i.e.,

0 < xn ≤

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ

y−k, if n = 3 + 3kð Þσ + 1,

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ

y1−k, if n = 3 + 3kð Þσ + 2,

⋮

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ

y−1, if n = 3 + 3kð Þσ + k,

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ

y0, if n = 3 + 3kð Þσ + k + 1,

α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ

z−k, if n = 3 + 3kð Þσ + k + 2,

α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ

z1−k, if n = 3 + 3kð Þσ + k + 3,

⋮

α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ

z−1, if n = 3 + 3kð Þσ + 2k + 1,

α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ

z0, if n = 3 + 3kð Þσ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
x−k, if n = 3 + 3kð Þσ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �σ+1
x1−k, if n = 3 + 3kð Þσ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �σ+1
x−1, if n = 3 + 3kð Þσ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
x0, if n = 3 + 3kð Þσ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 < yn ≤

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

z−k, if n = 3 + 3kð Þσ + 1,

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

z1−k, if n = 3 + 3kð Þσ + 2,

⋮

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

z−1, if n = 3 + 3kð Þσ + k,

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

z0, if n = 3 + 3kð Þσ + k + 1,

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ+1
x−k, if n = 3 + 3kð Þσ + k + 2,

α10
α11

� �
α13
α14

� �σ+1 α16
α17

� �σ+1
x1−k, if n = 3 + 3kð Þσ + k + 3,

⋮

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

x−1, if n = 3 + 3kð Þσ + 2k + 1,

α10
α11

� �σ α13
α14

� �σ+1 α16
α17

� �σ

x0, if n = 3 + 3kð Þσ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
y−k, if n = 3 + 3kð Þσ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �σ+1
y1−k, if n = 3 + 3kð Þσ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �σ+1
y−1, if n = 3 + 3kð Þσ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
y0, if n = 3 + 3kð Þσ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð46Þ

Finally,

0 < zn ≤

α10
α11

� �σ α13
α14

� �σ α16
α17

� �σ+1
x−k, if n = 3 + 3kð Þσ + 1,

α10
α11

� �σ α13
α14

� �σ α16
α17

� �σ+1
x1−k, if n = 3 + 3kð Þσ + 2,

⋮

α10
α11

� �σ α13
α14

� �σ α16
α17

� �σ+1
x−1, if n = 3 + 3kð Þσ + k,

α10
α11

� �σ α13
α14

� �σ α16
α17

� �σ+1
x0, if n = 3 + 3kð Þσ + k + 1,

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ+1
y−k, if n = 3 + 3kð Þσ + k + 2,

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ+1
y1−k, if n = 3 + 3kð Þσ + k + 3,

⋮

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ+1
y−1, if n = 3 + 3kð Þσ + 2k + 1,

α10
α11

� �σ+1 α13
α14

� �σ α16
α17

� �σ+1
y0, if n = 3 + 3kð Þσ + 2k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
z−k, if n = 3 + 3kð Þσ + 2k + 3,

α10
α11

α13
α14

α16
α17

� �σ+1
z1−k, if n = 3 + 3kð Þσ + 2k + 4,

⋮

α10
α11

α13
α14

α16
α17

� �σ+1
z−1, if n = 3 + 3kð Þσ + 3k + 2,

α10
α11

α13
α14

α16
α17

� �σ+1
z0, if n = 3 + 3kð Þσ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
ð47Þ

Than for μ = σ + 1, we have

x 3k+3ð Þ σ+1ð Þ+1 =
α10y 3k+3ð Þσ+2k+3

α11 + α12
Qk

i=0z 3k+3ð Þσ+3k+3−i
, ≤ α10

α11
y 3k+3ð Þσ+2k+3

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+1
y−k,

x 3k+3ð Þ σ+1ð Þ+2 =
α10y 3k+3ð Þσ+2k+4

α11 + α12
Qk

i=0z 3k+3ð Þσ+3k+4−i
, ≤ α10

α11
y 3k+3ð Þσ+2k+4

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+1
y−k+1,

⋮

x 3k+3ð Þ σ+1ð Þ+k =
α10y 3k+3ð Þσ+3k+2

α11 + α12
Qk

i=0z 3k+3ð Þσ+4k+2−i
, ≤ α10

α11
y 3k+3ð Þσ+3k+2

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+1
y−1,
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x 3k+3ð Þ σ+1ð Þ+k+1 =
α10y 3k+3ð Þσ+3k+3

α11 + α12
Qk

i=0z 3k+3ð Þσ+4k+3−i
, ≤ α10

α11
y 3k+3ð Þσ+3k+3

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+1
y0,

y 3k+3ð Þ σ+1ð Þ+1 =
α13z 3k+3ð Þσ+2k+3

α14 + α15
Qk

i=0x 3k+3ð Þσ+3k+3−i
, ≤ α13

α14
z 3k+3ð Þσ+2k+3

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+1
z−k,

y 3k+3ð Þ σ+1ð Þ+2 =
α13z 3k+3ð Þσ+2k+4

α14 + α15
Qk

i=0x 3k+3ð Þσ+3k+4−i
, ≤ α13

α14
z 3k+3ð Þσ+2k+4

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+1
z−k+1,

⋮

y 3k+3ð Þ σ+1ð Þ+k =
α13z 3k+3ð Þσ+3k+2

α14 + α15
Qk

i=0x 3k+3ð Þσ+4k+2−i
, ≤ α13

α14
z 3k+3ð Þσ+3k+2

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+1
z−1,

y 3k+3ð Þ σ+1ð Þ+k+1 =
α13z 3k+3ð Þσ+3k+3

α14 + α15
Qk

i=0x 3k+3ð Þσ+4k+3−i
, ≤ α13

α14
z 3k+3ð Þσ+3k+3

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+1
z0,

z 3k+3ð Þ σ+1ð Þ+1 =
α16x 3k+3ð Þσ+2k+3

α17 + α18
Qk

i=0y 3k+3ð Þσ+3k+3−i
, ≤ α16

α17
x 3k+3ð Þσ+2k+3

≤
α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ+2
x−k,

z 3k+3ð Þ σ+1ð Þ+2 =
α16x 3k+3ð Þσ+2k+4

α17 + α18
Qk

i=0y 3k+3ð Þσ+3k+4−i
, ≤ α16

α17
x 3k+3ð Þσ+2k+4

≤
α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ+2
x−k+1,

⋮

z 3k+3ð Þ σ+1ð Þ+k =
α16x 3k+3ð Þσ+3k+2

α17 + α18
Qk

i=0y 3k+3ð Þσ+4k+2−i
, ≤ α16

α17
x 3k+3ð Þσ+3k+2

≤
α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ+2
x−1,

z 3k+3ð Þ σ+1ð Þ+k+1 =
α16x 3k+3ð Þσ+3k+3

α17 + α18
Qk

i=0y 3k+3ð Þσ+4k+3−i
, ≤ α16

α17
x 3k+3ð Þσ+3k+3

≤
α10
α11

� �σ+1 α13
α14

� �σ+1 α16
α17

� �σ+2
x0:

ð48Þ

And

x 3k+3ð Þ σ+1ð Þ+k+2 =
α10y 3k+3ð Þ σ+1ð Þ+1

α11 + α12
Qk

i=0z 3k+3ð Þσ+4k+4−i
, ≤ α10

α11
y 3k+3ð Þ σ+1ð Þ+1

≤
α10
α11

� �σ+2 α13
α14

� �σ+2 α16
α17

� �σ+1
z−k,

x 3k+3ð Þ σ+1ð Þ+k+3 =
α10y 3k+3ð Þ σ+1ð Þ+2

α11 + α12
Qk

i=0z 3k+3ð Þσ+4k+5−i
, ≤ α10

α11
y 3k+3ð Þ σ+1ð Þ+2

≤
α10
α11

� �σ+2 α13
α14

� �σ+2 α16
α17

� �σ+1
z−k+1,

⋮

x 3k+3ð Þ σ+1ð Þ+2k+1 =
α10y 3k+3ð Þ σ+1ð Þ+k

α11 + α12
Qk

i=0z 3k+3ð Þσ+5k+3−i
, ≤ α10

α11
y 3k+3ð Þ σ+1ð Þ+k

≤
α10
α11

� �σ+2 α13
α14

� �σ+2 α16
α17

� �σ+1
z−1,

x 3k+3ð Þ σ+1ð Þ+2k+2 =
α10y 3k+3ð Þ σ+1ð Þ+k+1

α11 + α12
Qk

i=0z 3k+3ð Þσ+5k+4−i
, ≤ α10

α11
y 3k+3ð Þ σ+1ð Þ+2

≤
α10
α11

� �σ+2 α13
α14

� �σ+2 α16
α17

� �σ+1
z0,

y 3k+3ð Þ σ+1ð Þ+k+2 =
α13z 3k+3ð Þ σ+1ð Þ+1

α14 + α15
Qk

i=0x 3k+3ð Þσ+4k+4−i
, ≤ α13

α14
z 3k+3ð Þ σ+1ð Þ+1

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+2
x−k,

y 3k+3ð Þ σ+1ð Þ+k+3 =
α13z 3k+3ð Þ σ+1ð Þ+2

α14 + α15
Qk

i=0x 3k+3ð Þσ+4k+5−i
, ≤ α13

α14
z 3k+3ð Þ σ+1ð Þ+2

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+2
x−k+1,

⋮

y 3k+3ð Þ σ+1ð Þ+2k+1 =
α13z 3k+3ð Þ σ+1ð Þ+k

α14 + α15
Qk

i=0x 3k+3ð Þσ+5k+3−i
, ≤ α13

α14
z 3k+3ð Þ σ+1ð Þ+k

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+2
x−1,

y 3k+3ð Þ σ+1ð Þ+2k+2 =
α13z 3k+3ð Þ σ+1ð Þ+k+1

α14 + α15
Qk

i=0x 3k+3ð Þσ+5k+4−i
, ≤ α13

α14
z 3k+3ð Þ σ+1ð Þ+k+1

≤
α10
α11

� �σ+1 α13
α14

� �σ+2 α16
α17

� �σ+2
x0,

z 3k+3ð Þ σ+1ð Þ+k+2 =
α16x 3k+3ð Þ σ+1ð Þ+1

α17 + α18
Qk

i=0y 3k+3ð Þσ+4k+4−i
, ≤ α16

α17
x 3k+3ð Þ σ+1ð Þ+1

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+2
y−k,
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z 3k+3ð Þ σ+1ð Þ+k+3 =
α16x 3k+3ð Þ σ+1ð Þ+2

α17 + α18
Qk

i=0y 3k+3ð Þσ+4k+5−i
, ≤ α16

α17
x 3k+3ð Þ σ+1ð Þ+2

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+2
y−k+1,

⋮

z 3k+3ð Þ σ+1ð Þ+2k+1 =
α16x 3k+3ð Þ σ+1ð Þ+k

α17 + α18
Qk

i=0y 3k+3ð Þσ+5k+3−i
, ≤ α16

α17
x 3k+3ð Þ σ+1ð Þ+k

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+2
y−1,

z 3k+3ð Þ σ+1ð Þ+2k+2 =
α16x 3k+3ð Þ σ+1ð Þ+k+1

α17 + α18
Qk

i=0y 3k+3ð Þσ+5k+4−i
, ≤ α16

α17
x 3k+3ð Þ σ+1ð Þ+k+1

≤
α10
α11

� �σ+2 α13
α14

� �σ+1 α16
α17

� �σ+2
y0:

ð49Þ

Finally,

x 3k+3ð Þ σ+1ð Þ+2k+3 =
α10y 3k+3ð Þ σ+1ð Þ+k+2

α11 + α12
Qk

i=0z 3k+3ð Þσ+5k+5−i
,

≤
α10
α11

y 3k+3ð Þ σ+1ð Þ+k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
x−k,

x 3k+3ð Þ σ+1ð Þ+2k+4 =
α10y 3k+3ð Þ σ+1ð Þ+k+3

α11 + α12
Qk

i=0z 3k+3ð Þσ+5k+6−i
,

≤
α10
α11

y 3k+3ð Þ σ+1ð Þ+k+3 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
x−k+1,

⋮

x 3k+3ð Þ σ+1ð Þ+3k+2 =
α10y 3k+3ð Þ σ+1ð Þ+2k+1

α11 + α12
Qk

i=0z 3k+3ð Þσ+6k+4−i
,

≤
α10
α11

y 3k+3ð Þ σ+1ð Þ+2k+1 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
x−1,

x 3k+3ð Þ σ+1ð Þ+3k+3 =
α10y 3k+3ð Þ σ+1ð Þ+2k+2

α11 + α12
Qk

i=0z 3k+3ð Þσ+6k+5−i
,

≤
α10
α11

y 3k+3ð Þ σ+1ð Þ+2k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
x0,

y 3k+3ð Þ σ+1ð Þ+2k+3 =
α13z 3k+3ð Þ σ+1ð Þ+k+2

α14 + α15
Qk

i=0x 3k+3ð Þσ+5k+5−i
,

≤
α13
α14

z 3k+3ð Þ σ+1ð Þ+k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
y−k,

y 3k+3ð Þ σ+1ð Þ+2k+4 =
α13z 3k+3ð Þ σ+1ð Þ+k+3

α14 + α15
Qk

i=0x 3k+3ð Þσ+5k+6−i
,

≤
α13
α14

z 3k+3ð Þ σ+1ð Þ+k+3 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
y−k+1,

⋮

y 3k+3ð Þ σ+1ð Þ+3k+2 =
α13z 3k+3ð Þ σ+1ð Þ+2k+1

α14 + α15
Qk

i=0x 3k+3ð Þσ+6k+4−i
,

≤
α13
α14

z 3k+3ð Þ σ+1ð Þ+2k+1 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
y−1,

y 3k+3ð Þ σ+1ð Þ+3k+3 =
α13z 3k+3ð Þ σ+1ð Þ+2k+2

α14 + α15
Qk

i=0x 3k+3ð Þσ+6k+5−i
,

≤
α13
α14

z 3k+3ð Þ σ+1ð Þ+2k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
y0,

z 3k+3ð Þ σ+1ð Þ+2k+3 =
α16x 3k+3ð Þ σ+1ð Þ+k+2

α17 + α18
Qk

i=0y 3k+3ð Þσ+5k+5−i
,

≤
α16
α17

x 3k+3ð Þ σ+1ð Þ+k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
z−k,

z 3k+3ð Þ σ+1ð Þ+2k+4 =
α16x 3k+3ð Þ σ+1ð Þ+k+3

α17 + α18
Qk

i=0y 3k+3ð Þσ+5k+6−i
,

≤
α16
α17

x 3k+3ð Þ σ+1ð Þ+k+3 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
z−k+1,

⋮

z 3k+3ð Þ σ+1ð Þ+3k+2 =
α16x 3k+3ð Þ σ+1ð Þ+2k+1

α17 + α18
Qk

i=0y 3k+3ð Þσ+6k+4−i
,

≤
α16
α17

x 3k+3ð Þ σ+1ð Þ+2k+1 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
z−1,

z 3k+3ð Þ σ+1ð Þ+3k+3 =
α16x 3k+3ð Þ σ+1ð Þ+2k+2

α17 + α18
Qk

i=0y 3k+3ð Þσ+6k+5−i
,

≤
α16
α17

x 3k+3ð Þ σ+1ð Þ+2k+2 ≤
α10
α11

α13
α14

α16
α17

� �σ+2
z0:

ð50Þ

Corollary 4. fXng of (11) is bounded if (30) holds.

Proof. It is a direct result of Theorem 3.
Hereafter, we will present boundedness for discrete

systems (12)–(14).
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Theorem 5. (i) If fXng is the positive solution of (12), then
for μ ≥ 0, the following holds:

0 < xn ≤

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ

z−k, if n = 3 + 3kð Þμ + 1,

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ

z−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ

z−1, if n = 3 + 3kð Þμ + k,

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ

z0, if n = 3 + 3kð Þμ + k + 1,

α19
α20

� �μ+1 α22
α23

� �μ+1 α25
α26

� �μ

y−k, if n = 3 + 3kð Þμ + k + 2,

α19
α20

� �μ+1 α22
α23

� �μ+1 α25
α26

� �μ

y−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α19
α20

� �μ+1 α22
α23

� �μ+1 α25
α26

� �μ

y−1, if n = 3 + 3kð Þμ + 2k + 1,

α19
α20

� �μ+1
 

α22
α23

� �μ+1 α25
α26

� �μ

y0, if n = 3 + 3kð Þμ + 2k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
x−k, if n = 3 + 3kð Þμ + 2k + 3,

α19
α20

α22
α23

α25
α26

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + 2k + 3,

⋮

α19
α20

α22
α23

α25
α26

� �μ+1
x−1, if n = 3 + 3kð Þμ + 3k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
x0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 < yn ≤

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

x−k, if n = 3 + 3kð Þμ + 1,

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

x−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

x−1, if n = 3 + 3kð Þμ + k,

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

x0, if n = 3 + 3kð Þμ + k + 1,

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

z−k, if n = 3 + 3kð Þμ + k + 2,

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

z−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

z−1, if n = 3 + 3kð Þμ + 2k + 1,

α19
α20

� �μ α22
α23

� �μ+1 α25
α26

� �μ

z0, if n = 3 + 3kð Þμ + 2k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
y−k, if n = 3k + 3ð Þμ + 2k + 3,

α19
α20

α22
α23

α25
α26

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + 2k + 3,

⋮

α19
α20

α22
α23

α25
α26

� �μ+1
y−1, if n = 3 + 3kð Þμ + 3k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
y0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð51Þ

Finally,

0 < zn ≤

α19
α20

� �μ α22
α23

� �μ α25
α26

� �μ+1
y−k, if n = 3 + 3kð Þμ + 1,

α19
α20

� �μ α22
α23

� �μ α25
α26

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α19
α20

� �μ α22
α23

� �μ α25
α26

� �μ+1
y−1, if n = 3 + 3kð Þμ + k,

α19
α20

� �μ α22
α23

� �μ α25
α26

� �μ+1
y0, if n = 3 + 3kð Þμ + k + 1,

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ+1
x−k, if n = 3 + 3kð Þμ + k + 2,

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ+1
x−1, if n = 3 + 3kð Þμ + 2k + 1,

α19
α20

� �μ+1 α22
α23

� �μ α25
α26

� �μ+1
x0, if n = 3 + 3kð Þμ + 2k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
z−k, if n = 3 + 3kð Þμ + 2k + 3,

α19
α20

α22
α23

α25
α26

� �μ+1
z−k+1, if n = 3 + 3kð Þμ + 2k + 3,

⋮

α19
α20

α22
α23

α25
α26

� �μ+1
z−1, if n = 3 + 3kð Þμ + 3k + 2,

α19
α20

α22
α23

α25
α26

� �μ+1
z0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð52Þ

(ii) If fXng is the positive solution of (13), then for μ ≥ 0,
the following holds:

0 < xn ≤

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ

y−k, if n = 3 + 3kð Þμ + 1,

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ

y−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ

y−1, if n = 3 + 3kð Þμ + k,

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ

y0, if n = 3 + 3kð Þμ + k + 1,

α28
α29

� �μ+1 α31
α32

� �μ+1 α34
α35

� �μ

z−k, if n = 3 + 3kð Þμ + k + 2,

α28
α29

� �μ+1 α31
α32

� �μ+1 α34
α35

� �μ

z−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α28
α29

� �μ+1 α31
α32

� �μ+1 α34
α35

� �μ

z−1, if n = 3 + 3kð Þμ + 2k + 1,

α28
α29

� �μ+1 α31
α32

� �μ+1 α34
α35

� �μ

z0, if n = 3 + 3kð Þμ + 2k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
x−k, if n = 3 + 3kð Þμ + 2k + 3,

α28
α29

α31
α32

α34
α35

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α28
α29

α31
α32

α34
α35

� �μ+1
x−1, if n = 3 + 3kð Þμ + 3k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
x0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð53Þ
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And

0 < yn ≤

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

z−k, if n = 3 + 3kð Þμ + 1,

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

z−k+1, if n = 3 + 3kð Þμ + 2

⋮

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

z−1, if n = 3 + 3kð Þμ + k,

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

z0, if n = 3 + 3kð Þμ + k + 1,

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

x−k, if n = 3 + 3kð Þμ + k + 2,

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

x−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

x−1, if n = 3 + 3kð Þμ + 2k + 1,

α28
α29

� �μ α31
α32

� �μ+1 α34
α35

� �μ

x0, if n = 3 + 3kð Þμ + 2k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
y−k, if n = 3 + 3kð Þμ + 2k + 3,

α28
α29

α31
α32

α34
α35

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α28
α29

α31
α32

α34
α35

� �μ+1
y−1, if n = 3 + 3kð Þμ + 3k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
y0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð54Þ

Finally,

0 < zn ≤

α28
α29

� �μ α31
α32

� �μ α34
α35

� �μ+1
x−k, if n = 3 + 3kð Þμ + 1,

α28
α29

� �μ α31
α32

� �μ α34
α35

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α28
α29

� �μ α31
α32

� �μ α34
α35

� �μ+1
x−1, if n = 3 + 3kð Þμ + k,

α28
α29

� �μ α31
α32

� �μ α34
α35

� �μ+1
x0, if n = 3 + 3kð Þμ + k + 1,

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ+1
y−k, if n = 3 + 3kð Þμ + k + 2,

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ+1
y−1, if n = 3 + 3kð Þμ + 2k + 1,

α28
α29

� �μ+1 α31
α32

� �μ α34
α35

� �μ+1
y0, if n = 3 + 3kð Þμ + 2k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
z−k, if n = 3 + 3kð Þμ + 2k + 3,

α28
α29

α31
α32

α34
α35

� �μ+1
z−k+1, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α28
α29

α31
α32

α34
α35

� �μ+1
z−1, if n = 3 + 3kð Þμ + 3k + 2,

α28
α29

α31
α32

α34
α35

� �μ+1
z0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð55Þ

(iii) If fXng is the positive solution of (14), then for μ ≥ 0,
the following holds:

0 < xn ≤

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ

z−k, if n = 3 + 3kð Þμ + 1,

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ

z−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ

z−1, if n = 3 + 3kð Þμ + k,

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ

z0, if n = 3 + 3kð Þμ + k + 1,

α37
α38

� �μ+1 α40
α41

� �μ+1 α43
α44

� �μ

y−k, if n = 3 + 3kð Þμ + k + 2,

α37
α38

� �μ+1 α40
α41

� �μ+1 α43
α44

� �μ

y−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α37
α38

� �μ+1 α40
α41

� �μ+1 α43
α44

� �μ

y−1, if n = 3 + 3kð Þμ + 2k + 1,

α37
α38

� �μ+1 α40
α41

� �μ+1 α43
α44

� �μ

y0, if n = 3 + 3kð Þμ + 2k + 2,

α37
α38

α40
α41

α43
α44

� �μ+1
x−k, if n = 3 + 3kð Þμ + 2k + 3,

α37
α38

α40
α41

α43
α44

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α37
α38

α40
α41

α43
α44

� �μ+1
x−1, if n = 3 + 3kð Þμ + 3k + 2,

α37
α38

α40
α41

α43
α44

� �μ+1
x0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð56Þ

And

0 < yn ≤

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

x−k, if n = 3 + 3kð Þμ + 1,

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

x−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

x−1, if n = 3 + 3kð Þμ + k,

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

x0, if n = 3 + 3kð Þμ + k + 1,

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

z−k, if n = 3 + 3kð Þμ + k + 2,

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

z−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

z−1, if n = 3 + 3kð Þμ + 2k + 1,

α37
α38

� �μ α40
α41

� �μ+1 α43
α44

� �μ

z0, if n = 3 + 3kð Þμ + 2k + 2,

α37
α38

α40
α41

α43
α44

� �μ+1
y−k, if n = 3 + 3kð Þμ + 2k + 3,

α37
α38

α40
α41

α43
α44

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α37
α38

α40
α41

α43
α44

� �μ+1
y−1, if n = 3 + 3kð Þμ + 3k + 2,

α37
α38

α40
α41

α43
α44

� �m+1
y0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð57Þ
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Finally,

0 < zn ≤

α37
α38

� �μ α40
α41

� �μ α43
α44

� �μ+1
y−k, if n = 3 + 3kð Þμ + 1,

α37
α38

� �μ α40
α41

� �μ α43
α44

� �μ+1
y−k+1, if n = 3 + 3kð Þμ + 2,

⋮

α37
α38

� �μ α40
α41

� �μ α43
α44

� �μ+1
y−1, if n = 3 + 3kð Þμ + k,

α37
α38

� �μ α40
α41

� �μ α43
α44

� �μ+1
y0, if n = 3 + 3kð Þμ + k + 1,

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ+1
x−k, if n = 3 + 3kð Þμ + k + 2,

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ+1
x−k+1, if n = 3 + 3kð Þμ + k + 3,

⋮

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ+1
x−1, if n = 3 + 3kð Þμ + 2k + 1,

α37
α38

� �μ+1 α40
α41

� �μ α43
α44

� �μ+1
x0, if n = 3 + 3kð Þμ + 2k + 2

α37
α38

α40
α41

α43
α44

� �μ+1
z−k, if n = 3 + 3kð Þμ + 2k + 3,

α37
α38

α40
α41

α43
α44

� �μ+1
z1−k, if n = 3 + 3kð Þμ + 2k + 4,

⋮

α37
α38

α40
α41

α43
α44

� �μ+1
z−1, if n = 3 + 3kð Þμ + 3k + 2,

α37
α38

α40
α41

α43
α44

� �μ+1
z0, if n = 3 + 3kð Þμ + 3k + 3:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ð58Þ

Proof. Same as the proof of Theorem 3.

Corollary 6. The following statements are true for (12)–(14):

(i) If (40) holds, then fðXnÞg of discrete system (12) is
bounded

(ii) If (41) holds, then fðXnÞg of discrete system (13) is
bounded

(iii) If (42) holds, then fðXnÞg of discrete system (14) is
bounded

Proof. Its consequence of Theorem 5.

5. Global Dynamics about P0 of (11)–(14)

Theorem 7. If (30) holds, then P0 of (11) is globally stable.

Proof. If (30) is true, then from discrete system (11), one has

xn+1 =
α10yn−k

α11 + α12
Qk

i=0zn−i
≤
α10
α11

yn−k < yn−k,

yn+1 =
α13zn−k

α14 + α15
Qk

i=0xn−i
≤
α13
α14

zn−k < zn−k,

zn+1 =
α16xn−k

α17 + α18
Qk

i=0yn−i
≤
α16
α17

xn−1 < xn−k:

ð59Þ

From (59), one gets

x 3k+3ð Þn+1 < y 3k+3ð Þn−k and x 3k+3ð Þn+3k+4 < y 3k+3ð Þn+2k+3,

y 3k+3ð Þn+1 < z 3k+3ð Þ−k and y 3k+3ð Þn+3k+4 < z 3k+3ð Þn+2k+3,

z 3k+3ð Þn+1 < x 3k+3ð Þn−k and z 3k+3ð Þn+3k+4 < x 3k+3ð Þn+2k+3:

ð60Þ

Moreover, from (60), one gets

x 3k+3ð Þn+3k+4 < y 3k+3ð Þn+2k+3 < z 3k+3ð Þn+k+2 < x 3k+3ð Þn+1,
y 3k+3ð Þn+3k+4 < z 3k+3ð Þn+2k+3 < x 3k+3ð Þn+k+2 < y 3k+3ð Þn+1,
z 3k+3ð Þn+3k+4 < x 3k+3ð Þn+2k+3 < y 3k+3ð Þn+k+2 < z 3k+3ð Þn+1:

ð61Þ

From (61), one can conclude that fxð3k+3Þn+1g,⋯, f
xð3k+3Þn+3k+3g; fyð3k+3Þn+1g,⋯, fyð3k+3Þn+3k+3g ; and f
zð3k+3Þn+1g,⋯, fzð3k+3Þn+3k+3g are decreasing. Thus, fxng, f
yng, and fzng are decreasing, and hence, one can conclude
that limn⟶∞ðxn, yn, znÞ = P0.

Theorem 8. If respective parametric conditions (40), (41),
and (42) hold, then P0 of discrete systems (12)–(14) is globally
stable.

Proof. Like as the proof of Theorem 7.

6. Convergence Rate

Theorem 9. If respective parametric conditions (30), (40),
(41), and (42) hold, then error vector

eϱn =

ϱ1n

⋮

ϱ1n−k

ϱ2n

⋮

ϱ2n−k

ϱ3n

⋮

ϱ3n−k

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

, ð62Þ

of positive solution: fXng of corresponding discrete systems
(11)–(14) satisfies the following relations:
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lim
n⟶∞

ffiffiffiffiffiffiffiffiffiffi
ϱnk kn

p
= νJjP0

��� ���,
lim

n⟶∞

ϱn+1k k
ϱnk k = νJjP0

��� ���, ð63Þ

where jνJjP0 j is equivalent to the modulus of one of the char-
acteristic roots of JjP0

calculated at trivial fixed point P0.

Proof. Let fðXnÞg be a positive solution of (11) for which
limn⟶∞ðxn, yn, znÞ =Λ. In order for error terms, we have

xn+1 − x = α10yn−k
α11 + α12

Qk
i=0zn−i

−
α10y

α11 + α12zk+1
,

= α10
α11 + α12

Qk
i=0zn−i

yn−k − yð Þ

−
α10α12y

Qk
i=1zn−i

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � zn − zð Þ

−
α10α12yz

Qk
i=2zn−i

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � zn−1 − zð Þ

−⋯−
α10α12yz

k−1zn−k

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � zn−k+1 − zð Þ

−
α10α12yz

k

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � zn−k − zð Þ,

ð64Þ

yn+1 − y = α13zn−k
α14 + α15

Qk
i=0xn−i

−
α13z

α14 + α15xk+1
,

= −
α13α15z

Qk
i=1xn−i

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � xn − xð Þ

−
α13α15zx

Qk
i=2xn−i

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � xn−1 − xð Þ

−⋯−
α13α15zx

k−1xn−k

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � xn−k+1 − xð Þ

−
α13α15zx

k

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � xn−k − xð Þ

+ α13
α14 + α15

Q1
i=0xn−k

zn−k − zð Þ,

ð65Þ

zn+1 − z = α16xn−k
α17 + α18

Qk
i=0yn−i

−
α16x

α17 + α18yk+1
,

= α16
α17 + α18

Qk
i=0yn−i

xn−k − xð Þ

−
α16α18x

Qk
i=1yn−i

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � yn − yð Þ

−
α16α18xy

Qk
i=2yn−i

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � yn−1 − yð Þ

−⋯−
α16α18xy

k−1yn−k

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � yn−k+1 − yð Þ

� α16α18xy
k

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � yn−k − yð Þ:

ð66Þ

Now, set
ϱ1n = xn − x,
ϱ2n = yn − y,
ϱ3n = zn − z:

ð67Þ

Utilizing (67) in (64) and (66), one gets

ϱ1n+1 =An−k
n ϱ2n−k + Bn

nϱ
3
n + Bn−1

n ϱ3n−1+⋯+Bn−k+1
n ϱ3n−k+1 + Bn−k

n ϱ3n−k,
ϱ2n+1 = Cn

nϱ
1
n + Cn−1

n ϱ1n−1+⋯+Cn−k+1
n ϱ1n−k+1 + Cn−k

n ϱ1n−k +Dn−k
n ϱ3n−k,

ϱ3n+1 = En−k
n ϱ1n−k + Fn

nϱ
2
n + Fn−1

n ϱ2n−1+⋯+Fn−k+1
n ϱ2n−k+1 + Fn−k

n ϱ2n−k,
ð68Þ

where

An−k
n = α10

α11 + α12zk+1
,

Bn
n = −

α10α12y
Qk

i=1zn−i

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � ,

Bn−1
n = −

α10α12yz
Qk

i=2zn−i

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � ,

⋮

Bn−k+1
n = −

α10α12yz
k−1zn−k

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � ,

Bn−k
n = −

α10α12yz
k

α11 + α12
Qk

i=0zn−i
� �

α11 + α12zk+1
� � ,

Cn
n = −

α13α15z
Qk

i=1xn−i

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � ,

Cn−1
n = −

α13α15zx
Qk

i=2xn−i

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � ,

⋮

Cn−k+1
n = −

α13α15zx
k−1xn−k

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � ,

Cn−k
n = −

α13α15zx
k

α14 + α15
Qk

i=0xn−i
� �

α14 + α15xk+1
� � ,

ð69Þ

Dn−k
n = α13

α14 + α15
Q1

i=0xn−k
,

En−k
n = α16

α17 + α18
Qk

i=0yn−i
,

Fn
n = −

α16α18x
Qk

i=1yn−i

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � ,

Fn−1
n = −

α16α18xy
Qk

i=2yn−i

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � ,

⋮

Fn−k+1
n = −

α16α18xy
k−1yn−k

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � ,

Fn−k
n = α16α18xy

k

α17 + α18
Qk

i=0yn−i
� �

α17 + α18yk+1
� � :

ð70Þ
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From (69) and (70), we get

lim
n⟶∞

An−k
n = α10

α11 + α12zk+1
,

lim
n⟶∞

Bn
n = lim

n⟶∞
Bn−1
n =⋯ = lim

n⟶∞
Bn−k+1
n = lim

n⟶∞
Bn−k
n = −

α10α12yz
k

α11 + α12zk+1
� �2 ,

lim
n⟶∞

Cn
n = lim

n⟶∞
Cn−1
n =⋯ = lim

n⟶∞
Cn−k+1
n = lim

n⟶∞
Cn−k
n = −

α13α15zx
k

α14 + α15xk+1
� �2 ,

lim
n⟶∞

Dn−k
n = α13

α14 + α15xk+1
,

lim
n⟶∞

En−k
n = α16

α17 + α18yk+1
,

lim
n⟶∞

Fn
n = lim

n⟶∞
Fn−1
n =⋯ = lim

n⟶∞
Fn−k+1
n = lim

n⟶∞
Fn−k
n = −

α16α18xy
k

α17 + α18yk+1
� �2 :

ð71Þ

So the limiting system [23]:

gϱn+1 = ~K eϱn, ð72Þ

where eϱn is depicted in (62) and ~K is same as Jj∧ about ∧. In
particular about P0, it becomes

which is the same as the linearized system of (11) about P0.
Adopting a similar procedure, one can prove the rest of the
results for discrete systems (12)–(14).

7. Numerical Simulations

We give some simulations in this section to verify not only
the main finding but also show different behavior of discrete
systems (11)–(14). For the systems under consideration,
these numerical simulations provide time plots for xn, yn,
zn, as well as a global attractor. The following scenarios
should be considered in this regard:

Example 1. Figure 1 indicates the behavior of discrete system
(11) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 4, 5,
3, 25, 26, 1, 32, 33, and 4 and initial values x−ℓ, ℓ−ℓ, z−ℓ
ðℓ = 2, 1, 0Þ, respectively, are 0.7, 0.9, 0.4, 1.1, 0.9, 0.4, 0.9,
0.9, and 0.8. Moreover, Figures 1(a)–1(c) show that P0 of
discrete system (11) is a sink, and its attractor is shown in
Figure 1(d).

Example 2. Figure 2 indicates the behavior of discrete system
(11) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 6, 5,
0.1, 25, 22, 0.3, 32, 30, and 0.4 and initial values x−ℓ, ℓ−ℓ, and

ϱ1n+1

⋮

ϱ1n−k+1

ϱ2n+1

⋮

ϱ2n−k+1

ϱ3n+1

⋮

ϱ3n−k+1

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

=

0 0 ⋯ 0 0 0 0 ⋯ 0 α10
α11

0 0 ⋯ 0 0

1 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0
0 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 α13

α14

0 0 ⋯ 0 0 1 0 ⋯ 0 0 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 1 0 0 0 ⋯ 0 0
0 0 ⋯ 0 α16

α17
0 0 ⋯ 0 0 0 0 ⋯ 0 0

0 0 ⋯ 0 0 0 0 ⋯ 0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 1 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ϱ1n

⋮

ϱ1n−k

ϱ2n

⋮

ϱ2n−k

ϱ3n

⋮

ϱ3n−k

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

, ð73Þ
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Figure 2: Dynamical characteristics of (11).
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Figure 1: Dynamical characteristics of (11).
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z−ℓðℓ = 2, 1, 0Þ, respectively, are 0.7, 0.9, 0.4, 1.1, 0.9, 0.4, 0.9,
0.9, and 0.8. Moreover, Figures 2(a)–2(c) show that P0 of
discrete system (11) is unstable.

Example 3. Figure 3 indicates the behavior of discrete system
(12) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 14,
15, 3, 15, 16, 3, 3, 4, and 4 and x−ℓ, ℓ−ℓ, and z−ℓðℓ = 2, 1, 0Þ,
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Figure 3: Dynamical characteristics of (12).
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Figure 4: Dynamical characteristics of (12).
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Figure 5: Dynamical characteristics of (13).
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Figure 6: Dynamical characteristics of (13).
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Figure 7: Dynamical characteristics of (14).
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Figure 8: Dynamical characteristics of (14).
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respectively, are 0.9, 0.9, 0.4, 1.1, 0.9, 0.4, 0.45, 0.23, and 0.2.
Moreover, Figures 3(a)–3(c) show that P0 of discrete system
(12) is a sink, and its attractor is shown in Figure 3(d).

Example 4. Figure 4 indicates the behavior of discrete system
(12) about P0 if k = 2, αℓðℓ = 1, 2,⋯,9Þ, respectively, are 14,
13, 13, 17, 16, 13, 6, 4, and 14 and x−ℓ, ℓ−ℓ, and z−ℓ
ðℓ = 2, 1, 0Þ, respectively, are 0.9, 0.9, 0.4, 1.1, 0.9, 0.4, 0.45,
0.23, and 0.2. Moreover, Figures 4(a)–4(c) show that P0 of
discrete system (12) is unstable.

Example 5. Figure 5 indicates the behavior of discrete system
(13) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 24,
25, 3, 5, 6, 3, 22, 23, and 8 and x−ℓ, ℓ−ℓ, and z−ℓðℓ = 2, 1, 0Þ,
respectively, are 1.9, 1.9, 1.4, 1.1, 1.9, 1.4, 1.45, 1.23, and
1.2. Moreover, Figures 5(a)–5(c) show that P0 of discrete
system (13) is a sink, and its attractor is shown in
Figure 5(d).

Example 6. Figure 6 indicates the behavior of discrete system
(13) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 27,
25, 3, 8, 6, 3, 25, 23, and 8 and x−ℓ, ℓ−ℓ, and z−ℓðℓ = 2, 1, 0Þ,
respectively, are 1.9, 1.9, 1.4, 1.1, 1.9, 1.4, 1.45, 1.23, and
1.2. Moreover, Figures 6(a)–6(c) show that P0 of discrete
system (13) is unstable.

Example 7. Figure 7 indicates the behavior of discrete system
(14) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 124,
125, 3, 5, 6, 3, 122, 123, and 8 and x−ℓ, ℓ−ℓ, and z−ℓðℓ = 2, 1, 0Þ
, respectively, are 1.9, 1.9, 1.4, 1.1, 1.9, 1.4, 1.45, 1.23, and 1.2.
Moreover, Figures 7(a)–7(c) show that P0 of discrete system
(14) is a sink, and its attractor is shown in Figure 7(d).

Example 8. Figure 8 indicates the behavior of discrete system
(14) about P0 if k = 2, αℓ ðℓ = 1, 2,⋯,9Þ, respectively, are 124,
123, 3, 15, 14, 3, 122, 121, and 8 and x−ℓ, ℓ−ℓ, and z−ℓ
ðℓ = 2, 1, 0Þ, respectively, are 1.9, 1.9, 1.4, 1.1, 1.9, 1.4, 1.45,
1.23, and 1.2. Moreover, Figures 8(a)–8(c) show that P0 of
discrete system (14) is unstable.

8. Conclusion and Future Work

In this paper, we explored global dynamical characteristics,
boundedness, and convergence rate of certain higher-order
discrete systems of difference equations which is a natural
extension of [21, 22]. We have proved that trivial fixed point
P0 of discrete systems (11)–(14) is globally stable if, respec-
tively, parametric conditions (i) α10/α11 < 1, α13/α14 < 1,
and α16/α17 < 1; (ii) α19/α20 < 1, α22/α23 < 1, and α25/α26 < 1;
(iii) α28/α29 < 1, α31/α32 < 1, and α34/α35 < 1; and (iv) α37/
α38 < 1, α40/α41 < 1, and α43/α44 < 1 hold. Further, we have
proved that every positive solution of discrete systems
(11)–(14) is bounded if (i) α10/α11 < 1, α13/α14 < 1, and α16/
α17 < 1; (ii) α19/α20 < 1, α22/α23 < 1, and α25/α26 < 1; (iii) α28
/α29 < 1, α31/α32 < 1, and α34/α35 < 1; and (iv) α37/α38 < 1,
α40/α41 < 1, and α43/α44 < 1 hold. It is also examined that
positive solution of discrete systems (11)–(14) converges to
P0. Finally, numerical verification of theoretical results is
performed. Closed-form solution and calculation of forbid-

den set for the discrete systems (11)–(14) are our next aim
to study.
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