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The object of this paper is to present an extension of the classical Hadamard fractional integral. We will establish some new results
of generalized fractional inequalities.

1. Introduction

It is important to note that the integral inequalities play a
basic role in statistics, mathematics, sciences, and technol-
ogy (SMST). As in [1–8], it has proven to be of great
importance from the past few decades. The formation of
fractional calculus has straight impact on the theory utiliz-
ing the solution of various spaces in SMST and to prove
its efficacy, various statements and applications of frac-
tional derivatives have been constructed. Authors Rie-
mann–Liouville and Grunwald–Letnikov are well known
in this filed. Caputo reformulated the classical statement
of the Riemann–Liouville fractional derivative for finding
solutions of fractional differential equations using initial
conditions. The notion of fractional calculus given by
Leibniz was studied by Grunwald–Letnikov in a different
structure [9–12].

Recently, in [13–17] and [18], the development between
probability theory and fractional calculus was given, and the
results of the classical approach were extended. Also, analy-
sis and observations on this direction and several purposes
have been found in the concrete problems which include
applied mathematics and fluid mechanics as in [2, 18–26],
and many others.

As in [27–32], for a function gðvÞ ∈ L1ð½α, β�Þ, the
Hadamard fractional integral of order κ ≥ 0 is given as follows:

HI
κ
α g vð Þ½ � = 1

Γ κð Þ
ðv
α

ln v
u

� �κ−1
g uð Þ du

u
,  0 < α < v ≤ β,

ð1Þ

which differs from Riemann-Liouville and Caputo’s definition
in the sense that the kernel of integral (1) contains a logarith-
mic function of an arbitrary exponent.

We need the following definition while determining
some application, and it is called the Beta function.

As in [22], the Beta function, symbolized by βðl,mÞ, is
given as

β l,mð Þ =
ð1
0
τl−m 1 − τð Þm−1dτ = Γ lð ÞΓ mð Þ

Γ l +mð Þ : ð2Þ

The basic notion of generalization of special func-
tions using a kind of new parameter fascinated many
researchers and mathematicians. More details about frac-
tional integrals can be found in [33–36] and others as
cited in the text. Accordingly, our main scenario in this
paper is to extend the idea of a new fractional integra-
tion with parameter κ ≥ 0 that generalizes Hadamard
fractional integrals.
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2. Main Results

In this section, we shall be dealing with the new generalized
type of results to random variables of a continuous type of
fractional integral order κ ≥ 0.

Definition 1. For a function gðvÞ ∈ L1ð½α, β�Þ, the generalized
fractional integral of the Hadamard type with order κ ∈ℝ+ is
given by

HI
−κ,λ
α,v g vð Þ½ � = 1

λΓ κð Þ
ðv
α

ln v
u

� �κ/λ−1
g uð Þ du

u
,  0 < α < v ≤ β,

ð3Þ

where ΓðκÞ = Ð∞
0 e−uuκ−1du represents the Gamma function

as can be seen in [37, 38] and many more.

Definition 2. For a r.v. Z having positive p.d.f. g : ½α, β�
⟶ℝ+ (α > 0), we define the fractional expectation func-
tion of order κ ≥ 0 as

EZ ,κ,λ vð Þ= HI
−κ,λ
α,v vg vð Þ½ � = 1

λΓ κð Þ
ðv
α

ln v
u

� �κ/λ−1
ug uð Þ du

u
,

ð4Þ

where α < v < β.

Definition 3. For a r.v. Z having a positive p.d.f. g : ½α, β�
⟶ℝ+ (α > 0), the fractional expectation function of
Z − EðZÞ of order κ ≥ 0 is given as

EZ−E Zð Þ,κ,λ vð Þ = 1
λΓ κð Þ

ðv
α

ln v
u

� �κ/λ−1
u − E Zð Þð Þg uð Þ du

u
,

ð5Þ

where α < v < β.

Definition 4. For a r.v. Z having a positive p.d.f. g : ½α, β�
⟶ℝ+ (α > 0), the fractional expectation function of order
κ ≥ 0 is given as

EZ ,κ,λ vð Þ= HI
−κ,λ
1,v vg vð Þ½ �

= 1
λΓ κð Þ

ðβ
α

ln v
u

� �κ/λ−1
u − E Zð Þð Þg uð Þ du

u
:

ð6Þ

Definition 5. If EðZÞ symbolizes the expected value of the
r.v. Z having a positive p.d.f. g : ½α, β�⟶ℝ+ with α > 0,
then the fractional variance function having order κ of Z
is given by

σ2
Z ,κ,λ= HI

−κ,λ
1,v vð − E Zð Þ½ �2g vð Þ�

= 1
λΓ κð Þ

ðv
α

ln v
u

� �κ/λ−1
u − E Zð Þð Þ2g uð Þ du

u
,

ð7Þ

where α < v < β.

Definition 6. If EðZÞ symbolizes the expected value of the
r.v. Z having a positive p.d.f. g : ½α, β�⟶ℝ+ with α > 0,
then the fractional variance function having order κ of Z
is given by

σ2Z ,κ,λ =
1

λΓ κð Þ
ðβ
α

ln v
u

� �κ/λ−1
u − E Zð Þð Þ2g uð Þ du

u
: ð8Þ

Now by choosing different values of κ and λ, we have the
following remarks.

Remark 7. (R1) Choosing λ = 1 and κ = 1, the classical expec-
tation of r.v. Z will be deduced.

(R2) Choosing λ = 1 and κ = 1, the classical variance of
r.v. Z will be deduced.

(R3) Choosing λ = 1, we reach to the definition of [31].

Theorem 8. Let the continuous r.v. be Z with p.d.f. g : ½α, β�
⟶ℝ+. Then,

σ2Z ,κ,λ = EZ2 ,κ,λ − 2E Zð ÞEZ ,κ,λ + E Zð Þ2HI −κ,λ
1,v g βð Þ½ �: ð9Þ

for all κ ≥ 0.

Proof. By definition, we have

σ2Z ,κ,λ =
1

λΓ κð Þ
ðβ
α

ln v
u

� �κ/λ−1
u − E Zð Þð Þ2g uð Þ du

u

= 1
λΓ κð Þ

ðβ
α

ln v
u

� �κ/λ−1
u2 − 2uE Zð Þ + E Zð Þ2� �

g uð Þ du
u

= 1
λΓ κð Þ

ðβ
α

ln v
u

� �κ/λ−1
u2g uð Þ du

u

− 2E Zð Þ 1
λΓ κð Þ

ðβ
α

ln v
u

� �κ/λ−1
ug uð Þ du

u

+ E Zð Þ2 1
λΓ κð Þ

ðβ
α

ln v
u

� �κ/λ−1
g uð Þ du

u

= EZ2,κ,λ − 2E Zð ÞEZ ,κ,λ + E Zð Þ2HI −κ,λ
1,v g βð Þ½ �:

ð10Þ

Theorem 9. Define a r.v. Z having a p.d.f. g : ½α, β�⟶ℝ+.
Then, we have the following inequalities:

(i) HI
−κ,λ
1,v ½gðvÞ�σ2Z ,κ,λ − ½EZ−EðZÞ,κðνÞ�2 ≤ kgk2∞½2

ðln ðv/uÞÞκ/λ/Γðκ + 1ÞHI −κ,λ
1,v ½v2� − 2ðHI −κ,λ

1,v ½v�Þ2�,
holds if g ∈ L∞½α, β� and for all α < ν ≤ β, κ ≥ 0, and λ ≥ 0.

(ii) HI
−κ,λ
1,v ½gðvÞ�σ2

Z ,κ,λ − ½EZ−EðZÞ,κðνÞ�2 ≤ 1/2ðv − αÞ2½ H
I −κ,λ

1,v ½gðvÞ�,
holds.
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Proof. For the proof of the result, we begin by choosing the
function H for x, y ∈ ðα, vÞ, α < v ≤ β as follows:

H v, yð Þ = H1 xð Þ −H1 yð Þð Þ H2 xð Þ −H2 yð Þð Þ
=H1 xð ÞH2 xð Þ −H1 xð ÞH2 yð Þ −H1 yð ÞH2 vð Þ

+H1 yð ÞH2 yð Þ,
ð11Þ

where κ ≥ 0.

Now on both sides of (11), we multiply by ððln ðv/xÞÞκ/λ−1
/xλΓðκÞÞpðxÞ, where the p is a function p : ½α, β�⟶ℝ+,
and then integrating the resulting identity from α to v, we see

1
λΓ κð Þ

ðv
α

ln v
x

� �κ/λ−1
p xð ÞH x, yð Þ dx

x
= HI

−κ,λ
1,v pH1H2 vð Þ½ �

−H yð ÞHI −κ,λ
1,v pH1 vð Þ½ �‐H1 yð ÞHI −κ,λ

1,v pH2 vð Þ½ �
+H1 yð ÞH2 yð ÞHI −κ,λ

1,v p vð Þ½ �:
ð12Þ

Now multiplying (12) by ððln ðv/yÞÞκ/λ−1/yλΓðκÞÞpðyÞ for
y ∈ ðα, vÞ, and then integrating the resulting identity over ðα, vÞ
with respect to y, we see

1
λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
p yð Þp xð ÞH x, yð Þ dx

x
dy
y

= 2HI −κ,λ
1,v p vð Þ½ �HI −κ,λ

1,v pH1H2 vð Þ½ �
− 2HI −κ,λ

1,v pH2 vð Þ½ �HI −κ,λ
1,v pH1 vð Þ½ �:

ð13Þ

Putting pðvÞ = gðvÞ and H1ðvÞ =H2ðvÞ = v − EðZÞ,
v ∈ ðα, βÞ in (13), we see

1
λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

= 2HI −κ,λ
1,v g vð Þ½ �HI −κ,λ

1,v g vð Þ v − E Xð Þ2� �� 	
− 2HI −κ,λ

1,v g vð Þ v − E Xð Þð Þ½ �2:
ð14Þ

But we can also write that as

1
λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

≤ gk k2∞
1

λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
x − yð Þ2 dx

x
dy
y

≤ gk k2∞ 2 ln v/αð Þκ/λ−1
Γ κ + 1ð Þ H

I −κ,λ
1,v v2

� 	
− 2 HI

−κ,λ
1,v v½ �

� �2
" #

:

ð15Þ

Consequently, part (i) follows from (14) and (15).

To prove (ii), we can write

1
λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

≤ sup
x,y∈ α,v½ �

x − yj j2 HI
−κ,λ
1,v g vð Þ½ �

� �2

= x − yj j2 HI
−κ,λ
1,v g vð Þ½ �

� �2
:

ð16Þ

Now using (14) and (16), the part (ii) of the result fol-
lows. This completes the proof.

Theorem 10. Let the continuous r.v. beZ with p.d.f. g : ½α, β�
⟶ℝ+. Then

(i) the inequality

HI
−κ,λ
1,v g vð Þ½ �σ2Z ,ω,λ+HI

−ω,λ
1,v g vð Þ½ �σ2Z ,κ,λ − E Z−E Zð Þ,κ,λð vð Þ

� �

× E Z−E Zð Þ,κ,ωð vð Þ
� �

≤ gk k2∞
ln v/αð Þð Þκ/λ
Γ κ + 1ð Þ H

I −ω,λ
1,v v2

� 	"

+ ln v/αð Þω/λ
Γ κ + 1ð Þ H

I −κ,λ
1,v v2

� 	
− HI

−κ,λ
1,v v½ �

� �
HI

−ω,λ
1,v v½ �

� �#
,

ð17Þ

holds for α < v ≤ β,ω ≥ 0, and f ∈ L∞ð½α, β�Þ and for all κ ≥ 0
and

(ii) the inequality

HI
−κ,λ
1,v g vð Þ½ �σ2Z ,ω,λ+HI

−ω,λ
1,v g vð Þ½ �σ2Z ,κ,λ − E Z−E Zð Þ,κ,λð vð Þ

� �
× E Z−E Zð Þ,κ,ωð vð Þ
� �

≤ v − αð Þ2 HI
−κ,λ
1,v g vð Þ½ �

� �
� HI

−ω,λ
1,v g vð Þ½ �

� �
,

ð18Þ

holds for α < v ≤ β and ω ≥ 0.

Proof. To prove (i), we multiply (12) by ððln ðv/yÞÞω/λ−1/
xλΓðωÞÞpðyÞ for both sides and get

1
λ2Γ κð ÞΓ ωð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
p yð Þp xð ÞH x, yð Þ dx

x
dy
y

= HI
−κ,λ
1,v p vð Þ½ �HI −ω,λ

1,v p vð ÞH1 vð ÞH2 vð Þ½ �
+HI

−ω,λ
1,v p vð Þ½ �HI −κ,λ

1,v p vð ÞH1 vð ÞH2 vð Þ½ �
−HI

−ω,λ
1,v p vð ÞH2 vð Þ½ �HI −λ,λ

1,v p vð ÞH1 vð Þ½ �
− HI

−κ,λ
1,v p vð ÞH2 vð Þ½ �HI −ω,λ

1,v p vð ÞH1 vð Þ½ �:
ð19Þ
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Putting pðvÞ = gðvÞ, H1ðvÞ =H2ðvÞ = v − EðZÞ, and v ∈
ðα, βÞ in (19), we see

1
λ2Γ κð ÞΓ ωð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �ω/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

= HI
−κ,λ
1,v g vð Þ½ �HI −ω,λ

1,v g vð Þ v − E Xð Þ2� �� 	
+ HI

−ω,λ
1,v g vð Þ½ � × HI

−κ,λ
1,v g vð Þ v − E Xð Þ2� �� 	

− 2HI −κ,λ
1,v g vð Þ v − E Xð Þð Þ½ �HI −ω,λ

1,v g vð Þ v − E Xð Þð Þ½ �:
ð20Þ

But we can also write

1
λ2Γ κð ÞΓ ωð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �ω/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

≤ gk k2∞
1

λ2Γ2 κð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �κ/λ−1
x − yð Þ2 dx

x
dy
y

≤ gk k2∞
ln v/αð Þð Þκ/λ−1
Γ κ + 1ð Þ H

I −κ,λ
1,v v2

� 	
+ ln v/αð Þð Þω/λ

Γ ω + 1ð Þ H

I −ω,λ
1,v v2

� 	"

− 2 HI
−κ,λ
1,v v½ �

� �
HI

−ω,λ
1,v v½ �

� �#
:

ð21Þ

Consequently, part (i) of the result follows from (20)
and (21).

To prove part (ii), we use the truth that sup
v,y∈½α,v�

jx − yj2 =

ðx − αÞ2 and get

1
λ2Γ κð ÞΓ ωð Þ

ðv
α

ðv
α

ln v
x

� �κ/λ−1
ln v

y

� �ω/λ−1
g yð Þg xð Þ x − yð Þ2 dx

x
dy
y

≤ x − αð Þ2 HI
−κ,λ
1,v g vð Þ½ �

� �
HI

−ω,λ
1,v g vð Þ½ �

� �
:

ð22Þ

Consequently, part (ii) of the result follows by employing
(20) and (21).

3. Applications and Examples

Application 11. Consider the positive functions g and h on
½α, β� such that for every u > α, 0<HI

−κ,λ
1,v gm,HI −κ,λ

1,v hm<∞
with

0 < K ≤
g uð Þ
h uð Þ ≤ L <∞, u ∈ α, β½ �, ð23Þ

where m ≥ 1; then, for every κ > 0, we have

HI
−κ,λ
1,v gm uð Þð

� �2/m
+ HI

−κ,λ
1,v hm uð Þð

� �2/m

≥
K + 1ð Þ L + 1ð Þ

L
− 2


 �
HI

−κ,λ
1,v gm vð Þð

h i1/m
HI

−κ,λ
1,v hm vð Þ

� �1/m
:

ð24Þ

Solution 12. From (23), we see

1
L
≤
h uð Þ
g uð Þ ⇒ 1

L
+ 1

� �m

≤
h uð Þ
g uð Þ + 1

� �m

⇒ L + 1ð Þmgm uð Þ

≤ Lm h + gð Þm uð Þ:

ð25Þ

In a similar way, we see

K ≤
g uð Þ
h uð Þ ⇒ K + 1ð Þmgm uð Þ ≤ h + gð Þm uð Þ: ð26Þ

Consequently, multiplying these equations by
ðln ðv/uÞÞκ/λ−1/uλΓðκÞ for u ∈ ðα, vÞ and then integrating
the resulting identity over ðα, vÞ with respect to u yield

HI
−κ,λ
1,v gm uð Þð Þ

� �1/m
≤

L
L + 1 g + hð Þm uð Þð Þ1/m, ð27Þ

HI
−κ,λ
1,v hm uð Þðð Þ

� � 1
m ≤

1
K + 1 g + hð Þm uð ÞÞð Þ 1

m: ð28Þ

Now on multiplying (27) and (28), we see

K + 1ð Þ L + 1ð Þ
L HI

−κ,λ
1,v gm uð Þðð Þ

� �1/m
HI

−κ,λ
1,v hm uð Þð Þ

� �1/m

≤ HI
−κ,λ
1,v g + hð Þm uð Þð Þ

� �2/m
:

ð29Þ

Consequently, the result follows by using Minkowski’s
integral inequality on the right-hand side of (29).

Example 1. Consider the function gðuÞ = ðln ðu/αÞÞη/λ−1,
we see

HI
−κ,λ
α,u ln u

α

� �η/λ−1
= 1
λΓ κð Þ

ðv
α

ln u
w

� �κ/λ−1
ln w

α

� �η/λ−1 dw
w

:

ð30Þ

Choosing τ = ln ðu/wÞ/ln ðu/αÞ, for τ ∈ ðα, β� with η,
κ > 0, we see with the help of (2) that

HI
−κ,λ
α,u ln u

α

� �κ/λ−1
= ln u

α

� � κ+ηð Þ/λ−1 1
λΓ κð Þ

ð1
0
1 − τð Þη/λ−1 1 − τð Þκ/λ−1dτ

= ln v
w

� �κ/λ−1 β κ/λ, η/λð Þ
λΓ κð Þ :

ð31Þ
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