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Nichols algebras are fundamental objects in the construction of quantized enveloping algebras and in the classification of pointed
Hopf algebras by the lifting method of Andruskiewitsch and Schneider. The structure of Cartan graphs can be attached to any
Nichols algebras of diagonal type and plays an important role in the classification of Nichols algebras of diagonal type with a
finite root system. In this paper, the main properties of all simply connected Cartan graphs attached to rank 6 Nichols algebras
of diagonal type are determined. As an application, we obtain a subclass of rank 6 finite dimensional Nichols algebras of
diagonal type.

1. Introduction

The theory of Nichols algebras is relatively young, but it has
interesting applications to other research fields such as Kac-
Moody Lie superalgebras [1] and conformal field theory [2–
4]. Besides, it plays an important role in quantum groups [5–8].

The theory of Nichols algebras is motivated by the Hopf
algebra theory. In any area of mathematics, the classification
of all objects is very important. In Hopf algebra theory, the
classification of all finite dimensional Hopf algebras is a
tough question [5]. The structure of Nichols algebras appears
naturally in the classification of pointed Hopf algebras in the
following way. Given a Hopf algebraH, consider its coradical
filtration

H0 ⊂H1 ⊂⋯, ð1Þ

such that H0 is a Hopf subalgebra of H and the associated
graded coalgebra

grH = ⊕
i
Hi/Hi−1: ð2Þ

Then, grH is a graded Hopf algebra, since the coradical
H0 of H is a Hopf subalgebra. In addition, consider a projec-

tion π : grH ⟶H0; let R be the algebra of coinvariants of π.
Then, by a result of Radford and Majid, R is a braided Hopf
algebra and grH is the bosonization (or biproduct) of R and
H0: grH ≃ R#H0. The principle of the “lifting method” intro-
duced in [7, 9] is first to study R, then to transfer the informa-
tion to grH via bosonization, and finally to lift to H. The
braided Hopf algebra R is generated by the vector space V
of H0-coinvariants of H1/H0, namely, Nichols algebra [9] B
ðVÞ generated by V in commemoration of W. Nichols [10]
who started to study these objects as bialgebras of type one
in 1978. Nichols algebras can be described in many different
but alternative ways (see, for example, [11–15]).

The methods developed in the study of the generaliza-
tions of Lie algebras are also useful to analyze Nichols alge-
bras [16]. Kharchenko proved that any Hopf algebra
generated by skew-primitive and group-like elements has a
restricted Poincaré-Birkhoff-Witt basis ([17], Theorem 2).
Note that Kharchenko results can be applied to Nichols alge-
bras of diagonal type. Motivated by the close relation to Lie
theory, Heckenberger [18] defined the arithmetic root system
and Weyl groupoid for Nichols algebras BðVÞ of diagonal
type. Later, Cuntz and Heckenberger [19] and Heckenberger
and Yamane [20] developed the combinatorial theory of
these two structures. Then, the theory of root systems and
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Weyl groupoids was carried out in more general Nichols
algebras [21–23]. Further, all finite Weyl groupoids were
classified in [24, 25]. Those constructions are very important
theoretical tools for the classification of Nichols algebra
BðVÞ.

The crucial step to classify pointed Hopf algebras is to
determine that all Nichols algebras BðVÞ is finite dimen-
sional. Andruskiewitsch stated the following question.

Question 1 (Andruskiewitsch [5]). Given a braiding matrix
ðqijÞ1≤i,j≤θ whose entries are roots of 1, when BðVÞ is

finite-dimensional, where V is a vector space with basis
x1,⋯, xθ and braiding cðxi ⊗ xjÞ = qijðxj ⊗ xiÞ? If so, compute
dimkBðVÞ, and give a “nice” presentation by generators and
relations.

Several authors obtained the classification result for infi-
nite and finite dimensional Nichols algebra of Cartan type
(see [13, 18, 26]). Heckenberger determined all finite dimen-
sional Nichols algebra of diagonal type [27–30], that is, when
V is the direct sum of 1-dimensional Yetter-Drinfel’d mod-
ules over H0. The generators and relations of such Nichols
algebras were also given [31, 32]. With the classification
result, Andruskiewitsch and Schneider [33] obtained a classi-
fication theorem about finite-dimensional pointed Hopf
algebras under some technical assumptions.

Based on such successful applications, the analysis to
Nichols algebras over arbitrary fields is crucial and has also
potential applications. Towards this direction, new examples
of Nichols algebras in positive characteristic and a combina-
torial formula to study the relations in Nichols algebras were
found [34]. Over fields of positive characteristic, rank 2, rank
3, and rank 4 finite dimensional Nichols algebras of diagonal
type were listed in [35–37].

In this paper, we illustrate the main properties of the
finite Cartan graphs of rank 6 attached to the Nichols alge-
bras of diagonal type in Theorem 39. As a consequence, a
subclass of rank 6 Nichols algebras of diagonal type with a
finite root system is given in Section 5. The main algorithm
in Section 3 is essential for our main goal.

Besides, the notations and conventions in [35–37] are
followed, and several results from these papers will be used.

2. Nichols Algebra of Diagonal Type

In this section, we recall Yetter-Drinfel’d modules, braided
vector spaces, and their relations. The main object of this
paper is also presented. For further details on these topics,
we refer to [1, 5, 6].

2.1. Yetter-Drinfel’d Modules. Let k be a field of characteristic
p > 0. Let k∗ = k \ f0g, ℕ0 =ℕ ∪ f0g, θ ∈ℕ0, and I = f1,⋯
, θg. We start by recalling the main objects.

Definition 2. Let V be a θ-dimensional vector space over k.
The pair ðV , cÞ is called a braided vector space, if c ∈AutðV
⊗VÞ is a solution of the braid equation, that is,

c ⊗ idð Þ id ⊗ cð Þ c ⊗ idð Þ = id ⊗ cð Þ c ⊗ idð Þ id ⊗ cð Þ: ð3Þ

A braided vector space ðV , cÞ is termed of diagonal type if
V admits a basis fxi ∣ i ∈ Ig such that for all i, j ∈ I one has

c xi ⊗ xj
� �

= qijxj ⊗ xi for some qij ∈ k∗: ð4Þ

The matrix ðqijÞi,j∈I is termed of the braiding matrix of V .

We say that the braiding matrix ðqijÞi,j∈I is indecomposable if

for any i ≠ j there exists a sequence i1 = i, i2,⋯, it = j, of ele-
ments of I such that qisis+1qis+1is ≠ 1, where 1 ≤ s ≤ t − 1.

In this paper, we mainly concern the braided vector
spaces of diagonal type with an indecomposable braiding
matrix.

Definition 3. Let H be a Hopf algebra. A Yetter-Drinfel’d
module V over H is a left H-module with left action: H ⊗V
⟶V and a left H-comodule with left coaction δL : V ⟶
H ⊗V satisfying the compatibility condition

δL h · vð Þ = h 1ð Þv −1ð Þκ h 3ð Þ
� �

⊗ h 2ð Þ · v 0ð Þ, h ∈H, v ∈ V : ð5Þ

We say that V is of diagonal type if H = k’G and V is a
direct sum of one-dimensional Yetter-Drinfel’d modules
over the group algebra k’G, where G is abelian.

We denote by H
HYD the category of Yetter-Drinfel’d

modules over H, where morphisms preserve both the action
and the coaction of H. The category H

HYD is braided with
braiding

cV ,W v ⊗wð Þ = v −1ð Þ ·w ⊗ v 0ð Þ ð6Þ

for all V ,W ∈ H
HYD, v ∈ V , and w ∈W. Actually, the cat-

egory H
HYD ia a braided monoidal category, where the

monoidal structure is given by the tensor product over k.
Then, any Yetter-Drinfel’d module V∈HHYD over H admits
a braiding cV ,V , and hence, ðV , cV ,VÞ is a braided vector space.
Conversely, any braided vector space can be realized as a
Yetter-Drinfel’d module over some Hopf algebras if and only
if the braiding is rigid ([38], Section 2). Notice that Yetter-
Drinfel’d module structures on V with different Hopf alge-
bras can give the same braiding and not all braidings of V
are induced by the above Equation (1).

IfH = k’G, then we write G
GYD for the category of Yetter-

Drinfel’d modules over k’G and say that V ∈ H
HYD is a

Yetter-Drinfel’d module over G. Notice that if V ∈ G
GYD is

of diagonal type, then ðV , cV ,VÞ is a braided vector space of
diagonal type. Any braided vector space of diagonal type is
also a Yetter-Drinfel’d module of diagonal type. Indeed,
assume that ðV , cÞ is a braided vector space of diagonal type
with an indecomposable braiding matrix ðqijÞi,j∈I of a basis

fxi ∣ i ∈ Ig. Let G0 be a free abelian group generated by ele-
ments fgi ∣ i ∈ Ig. Define the left coaction and left action by

δL xið Þ = gi ⊗ xi ∈G0 ⊗V , gi · xj = qijxj ∈ V : ð7Þ
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Then, V = ⊕ i∈Ikxi, and each kxi is one-dimensional
Yetter-Drinfel’d modules over G0. Hence, V is a Yetter-
Drinfel’d module of diagonal type over G0.

2.2. Nichols Algebras of Diagonal Type. Let ðV , cÞ be a θ
-dimensional braided vector space of diagonal type. In this
section, we recall a definition of the Nichols algebra BðVÞ
generated by ðV , cÞ. In order to do that, we introduce one
more notion in the category H

HYD.

Definition 4. LetH be a Hopf algebra. A braided Hopf algebra
in H

HYD is a 6-tupleB = ðB, μ, 1, δ, ε, κBÞ, where ðB, μ, 1Þ is
an algebra in H

HYD and a coalgebra ðB, δ, εÞ in H
HYD, and

κB : B⟶ B is a morphism in H
HYD such that δ, ε, and κB

satisfy κBðbð1ÞÞbð2Þ = bð1ÞκBðbð2ÞÞ = εðbÞ1, where we define
δðbÞ = bð1Þ ⊗ bð2Þ as the coproduct ofB to avoid the confusion.

Definition 5. The Nichols algebra generated by V ∈ H
HYD is

defined as the quotient

B Vð Þ = T Vð Þ/I Vð Þ = ⊕ ∞
n=0V

⊗n/I Vð Þ, ð8Þ

where I ðVÞ is the unique maximal coideal among all
coideals of TðVÞ which are contained in ⊕ n≥2V

⊗n. Nichols
algebra BðVÞ is said to be of diagonal type if V is a Yetter-
Drinfel’d module of diagonal type. The dimension of V is
the rank of Nichols algebra BðVÞ.

Note that if B ∈ H
HYD and B is an algebra in H

HYD, then
B ⊗ B is an algebra in H

HYD with the product given by

a ⊗ bð Þ c ⊗ dð Þ = a b −1ð Þ · c
� �

⊗ b 0ð Þd, ð9Þ

for all a, b, c, d ∈ B, where · denotes the left action of H
on B.

The tensor algebra TðVÞ admits a natural structure of a
Yetter-Drinfel’d module and an algebra structure in H

HYD.
It is then a braided Hopf algebra in H

HYD with coproduct δ
ðvÞ = 1 ⊗ v + v ⊗ 1 ∈ TðVÞ ⊗ TðVÞ and counit εðvÞ = 0 for all
v ∈ V such that δ and ε are the algebra morphisms. The anti-
pode of TðVÞ exists (see [7], Section 2.1). Notice that the
product defined by Equation (9) on TðVÞ is the unique alge-
bra structure such that δðvÞ = 1 ⊗ v + v ⊗ 1 ∈ TðVÞ ⊗ TðVÞ
for all v ∈ V . The coproduct can be extended from V to
TðVÞ. For example, for all v,w ∈ V , one gets (we write the
elements of TðVÞwithout the tensor product sign for brevity)

δ vwð Þ = δ vð Þδ wð Þ = 1 ⊗ v + v ⊗ 1ð Þ 1 ⊗w +w ⊗ 1ð Þ
= 1 ⊗ vw + v −1ð Þ ·w ⊗ v 0ð Þ + v ⊗w + vw ⊗ 1: ð10Þ

Let ðIiÞi∈I be the family of all ideals of TðVÞ contained in
⊕ n≥2V

⊗n, i.e.,

δ Iið Þ ⊂ Ii ⊗ T Vð Þ + T Vð Þ ⊗ Ii: ð11Þ

Then, the coideal I ðVÞ≔∑i∈IIi is the largest element in
ðIiÞi∈I . Hence, BðVÞ is a braided Hopf algebra in H

HYD. As
proved in [6] (Proposition 3.2.12), Nichols algebra BðVÞ is
the unique ℕ0-graded braided Hopf algebra generated by V
in H

HYD with homogenous components BðVÞð0Þ = k,
BðVÞð1Þ =V , and PðBðVÞÞ =V , where PðBðVÞÞ is the
space of primitive elements of BðVÞ.
2.3. Weyl Groupoids. In this section, we recall the notations
of semi-Cartan graphs, root systems, and Weyl groupoids.
We mainly follow the terminology from [20, 39] (see also
[35–37]).

Definition 6. A generalized Cartan matrix is a matrix
A = ðaijÞi,j∈I with integer entries such that

(i) aii = 2 and ajk ≤ 0 for any i, j, k ∈ I with j ≠ k

(ii) if aij = 0 for some i, j ∈ I, then aji = 0

A generalized Cartan matrix A ∈ℤI×I is decomposable if
there exists a nonempty proper subset I1 ⊂ I such that aij =
0 for any i ∈ I1 and j ∈ I \ I1. We say that A is indecomposable
if A is not decomposable.

Definition 7. Let X be a nonempty set and AX = ðaXijÞi,j∈I a
generalized Cartan matrix for all X ∈X . For any i ∈ I, let
ri : X ⟶X , X↦ rði, XÞ, where r : I ×X ⟶X is a map.
The quadruple

C =C I,X , r, AX� �
X∈X

� � ð12Þ

is called a semi-Cartan graph if r2i = idX for all i ∈ I, and aXij
= ariðXÞij for all X ∈X and i, j ∈ I. We say that a semi-Cartan

graph C is indecomposable if AX is indecomposable for all
X ∈X .

For the sake of simplicity, the elements of the set
friðXÞ, i ∈ Ig are termed the neighbors of X for all X ∈X .
The cardinality of I is termed the rank of C , and the elements
of X are the points of C .

Definition 8. A semi-Cartan graph C is standard, if AX = AY

for all X, Y ∈ObðW ðCÞÞ.

Definition 9. The exchange graph of C is a labeled nonor-
iented graph with vertices set X and edges set I, where two
vertices X, Y are connected by an edge i if and only if X ≠ Y
and riðXÞ = Y (and riðYÞ = X). We display one edge with sev-
eral labels instead of several edges for simplification. A semi-
Cartan graph C is said to be connected if its exchange graph
is connected.

For the remaining part of this section, we assume that
C =CðI,X , r, ðAXÞX∈XÞ is a connected semi-Cartan graph.
Let ðαiÞi∈I be the standard basis of ℤI . For all X ∈X , let
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sXi ∈Aut ℤI� �
, sXi αj = αj − aXijαi, ð13Þ

for all j ∈ I. Let DðX , IÞ be the category such that
ObDðX , IÞ =X and morphisms HomðX, YÞ = fðY , f , XÞ ∣ f
∈ EndðℤIÞg for X, Y ∈X with the composition ðZ, g, YÞ ∘ ð
Y , f , XÞ = ðZ, gf , XÞ for all X, Y , Z ∈X , f , g ∈ EndðℤIÞ. Let
W ðCÞ be the smallest subcategory of DðX , IÞ, where the
morphisms are generated by ðriðXÞ, sXi , XÞ, with i ∈ I, X ∈X
. From now on, we write sXi instead of ðriðXÞ, sXi , XÞ, if no
confusion is possible. Notice that all generators sXi are reflec-
tions and hence are invertible. Then, W ðCÞ is a groupoid.

For any category D and any object X in D, let HomðD,
XÞ = ∪Y∈DHomðY , XÞ.

Definition 10. For all X ∈X , the set

ΔX re = ωαi ∈ℤ
I ∣ ω ∈Hom W Cð Þ, Xð Þ� � ð14Þ

is called the set of real roots of C at X. The elements of
ΔX re
+ = ΔX re ∩ℕI

0 are called positive roots and those of ΔX re

∩ −ℕI
0 negative roots, denoted by ΔX re

− . If the set ΔX re is
finite for all X ∈X , then we say that C is finite.

Definition 11.We say thatR =RðC , ðΔXÞX∈XÞ is a root sys-
tem of typeC if for all X ∈X , the setsΔX are the subsets ofℤI

such that

ΔX = ΔX ∩ℕI
0

� �
∪− ΔX ∩ℕI

0
� �

: ð15Þ

(i) ΔX ∩ℤαi = fαi,−αig for all i ∈ I

(ii) sXi ðΔXÞ = ΔriðXÞ for all i ∈ I

(iii) ðrir jÞm
X
ij ðXÞ = X for any i, j ∈ I with i ≠ j where mX

ij

= ∣ΔX ∩ ðℕ0αi +ℕ0αjÞ ∣ is finite

We say that W ðRÞ≔W ðCÞ is the groupoid of R. As in
[13] (Definition 4.3), we say that R is reducible if there exist
nonempty disjoint subsets of I ′, I ′′ ⊂ I such that I = I ′ ∪ I ′′
and aij = 0 for all i ∈ I ′, j ∈ I ′′ and

ΔX = ΔX ∩ 〠
i∈I ′

ℤαi

 !
∪ ΔX ∩ 〠

j∈I ′′
ℤαj

0
@

1
A for allX ∈X:

ð16Þ

In this case, we writeR =RjI1 ⊕RjI2 . IfR ≠RjI1 ⊕RjI2
for all nonempty disjoint subsets I1, I2 ⊂ I, then R is termed
irreducible.

Definition 12. Let R =RðC , ðΔXÞX∈XÞ be a root system of
type C . We say that R is finite if ΔX is finite for all X ∈X .

Let R =RðC , ðΔXÞX∈XÞ be a root system of type C . We
recall some properties of R from [19, 24].

Lemma 13. Let X ∈X , k ∈ℤ, and i, j ∈ I such that i ≠ j. Then
αj + kαi ∈ ΔX re if and only if 0 ≤ k ≤ −aXij .

Notice that the finiteness ofR does not mean thatW ðRÞ
is also finite, since the set X might be infinite.

Lemma 14. Let C =CðI,X , r, ðAXÞX∈XÞ be a connected semi-
Cartan graph and R =RðC , ðΔXÞX∈XÞ be a root system of
type C . Then, the following are equivalent.

(1) R is finite

(2) ΔX is finite for some X ∈X

(3) C is finite

(4) W ðRÞ is finite

Recall thatC is a connected semi-Cartan graph. Then, we
get the following.

Proposition 15. Let R =RðC , ðΔXÞX∈XÞ be a root system of
type C . Then, the following are equivalent.

(1) There exists X ∈X such that AX is indecomposable

(2) The semi-Cartan graph C is indecomposable

If R is finite, then the semi-Cartan graph C is indecom-
posable if and only if the root system R is irreducible.

Definition 16. We say C is a Cartan graph if the following
hold:

(i) For all X ∈X , the set ΔX re = ΔX re
+ ∪ ΔX re

−

(ii) If lYmn ≔ jΔY re ∩ ðℕ0αm +ℕ0αnÞj is finite, then

ðrmrnÞl
Y
mnðYÞ = Y , where m, n ∈ I, Y ∈X

In this case, W ðCÞ is called the Weyl groupoid of C .

LetRre ≔RðC , ðΔX reÞX∈XÞ. Then, C is a Cartan graph if
and only ifRre is a root system of type C . Indeed, we get that
sXi ðΔX reÞ = ΔriðXÞ re by Equation (14). For all X ∈X , we obtain

that ΔX re = ΔX re
+ ∪ ΔX re

− , since ωsriðXÞi ðαiÞ = −ωðαiÞ for any ω
∈HomðW ðCÞ, XÞ.

The following proposition implies that ifR is a finite root
system of typeC , thenR =Rre; namely, all roots are real and
R is uniquely determined by C .

Proposition 17. Let R =RðC , ðΔXÞX∈XÞ be a root system of
type C . Let X ∈X , m ∈ℕ0, and i1,⋯, im ∈ I such that

ω = idXsi1 si2 ⋯ sim ∈Hom W Cð Þ, Xð Þ ð17Þ
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and ℓðωÞ =m. Then, the elements

βn = idXsi1 si2 ⋯ sin−1 αin
� �

∈ ΔX ∩ℕI
0 ð18Þ

are pairwise different, where n ∈ f1, 2,⋯,mg (and β1 = αi1 ).
Here,

ℓ ωð Þ =min m ∈ℕ0 ∣ ω = idXsi1 si2 ⋯ sim , i1, i2,⋯, im ∈ I
� �

ð19Þ

is the length of ω ∈HomðW ðCÞ, XÞ. In particular, if R is
finite and ω ∈HomðW ðCÞÞ is the longest element, then

βn ∣ 1 ≤ n ≤ ℓ ωð Þ = ΔX
�� ��
2

( )
= ΔX ∩ℕI

0: ð20Þ

Remark 18. If C is a finite Cartan graph, thenR is finite, and
hence,

Rre =Rre C , ΔX re� �
X∈X

� � ð21Þ

is the unique root system of type C by Proposition 17; that is,
R is uniquely determined by C .

2.4. Cartan Graphs for Nichols Algebras of Diagonal Type. In
this section, we attach a semi-Cartan graph to a tuple of
finite-dimensional Yetter-Drinfel’d modules under some
finiteness conditions. Let G be an abelian group. Let FG

θ be
the set of θ-tuples of finite-dimensional irreducible objects
in G

GYD andXG
θ be the set of θ-tuples of isomorphism classes

of finite-dimensional irreducible objects in G
GYD. For any

ðM1,⋯,MθÞ ∈FG
θ , write ½M�≔ ð½M1�,⋯, ½Mθ�Þ ∈XG

θ the
corresponding isomorphism class of ðM1,⋯,MθÞ.

Assume that VM = ⊕ i∈Ikxi∈GGYD is a Yetter-Drinfel’d
module of diagonal type over G, where fxi ∣ i ∈ Ig is a basis
of V . Then, there exists a matrix ðqijÞi,j∈I such that δðxiÞ =
gi ⊗ xi and gi · xj = qijxj for all i, j ∈ I. We fix that M = ðkx1,
kx2,⋯, kxθÞ ∈FG

θ is a tuple of one-dimensional Yetter-
Drinfel’d over G and ½M� ∈XG

θ . We say that the matrix
ðqijÞi,j∈I is the braiding matrix of M. Recall that the matrix

is independent of the basis fxi ∣ i ∈ Ig up to permutation of
I. We say BðVMÞ =Bð ⊕ n

i=1kxiÞ is the Nichols algebra of
the tuple M, denoted by BðMÞ.

Recall that the adjoint representation ad of a Nichols
algebra BðVÞ from [9] is the linear map adc :V ⟶ End
ðBðVÞÞ

adcx yð Þ = μ id − cð Þ x ⊗ yð Þ = xy − x −1ð Þ:y
� �

x 0ð Þ ð22Þ

for all x ∈ V , y ∈BðVÞ, where μ is the multiplication map
of BðVÞ and c is defined by Equation (6). In particular,
the braided commutator adc of BðMÞ takes the form

adcxi yð Þ = xiy − gi · yð Þxi for all i ∈ I, y ∈B Mð Þ: ð23Þ

In order to construct a semi-Cartan graph to M, we
recall some finiteness conditions from [7, 22].

Definition 19. Let i ∈ I. We say that M is i-finite, if for any
j ∈ I \ fig, ðadcxiÞmðxjÞ = 0 for some m ∈ℕ.

Lemma 20. For any i, j ∈ I with i ≠ j, s, the following are
equivalent.

(i) ðm + 1Þqiiðqmii qijqji − 1Þ = 0 and ðk + 1Þqiiðqkiiqijqji − 1Þ
≠ 0 for all 0 ≤ k <m

(ii) ðadcxiÞm+1ðxjÞ = 0 and ðadcxiÞmðxjÞ ≠ 0 in BðVÞ

Here, ðnÞq ≔ 1 + q +⋯ + qn−1, which is 0 if and only if
qn = 1 for q ≠ 1 or p ∣ n for q = 1. Notice that ð1Þq ≠ 0 for any
q ∈ℕ.

Hence, we get the following from Lemma 20.

Lemma 21. Let i ∈ I. Then, M = ðkxjÞj∈I is i-finite if and only

if for any j ∈ I \ fig there is a nonnegative integer m satisfying
ðm + 1Þqiiðqmii qijqji − 1Þ = 0.

Let i ∈ I. Assume that M is i-finite. Let ðaMij Þj∈I ∈ℤ
I and

RiðMÞ = ðRiðMÞjÞj∈I , where

aMij =
2, if j = i,
−max m ∈ℕ0 ∣ adcxið Þm xj

� �
≠ 0

� �
, if j ≠ i,

 

Ri Mð Þi = kyi, Ri Mð Þj = k adcxið Þ−aMij xj
� �

,
ð24Þ

where yi ∈ ðkxiÞ∗ \ f0g. If M is not i-finite, then let
RiðMÞ =M. Then, RiðMÞ is a θ-tuple of one-dimensional
Yetter-Drinfel’d modules over G.

Let

FG
θ Mð Þ = Ri1

⋯ Rin
Mð Þ ∈FG

θ ∣ n ∈ℕ0, i1,⋯, in ∈ I
� �

XG
θ Mð Þ = Ri1

⋯ Rin
Mð Þ	 


∈XG
θ ∣ n ∈ℕ0, i1,⋯, in ∈ I

� �
:

ð25Þ

Definition 22. We say that M admits all reflections if N is i
-finite for all N ∈FG

θ ðMÞ.

Notice that the reflections depend only on the braiding
matrix ðqijÞi,j∈I . We recall the notion of generalized Dynkin

diagram for a braided vector space of diagonal type [40].

Definition 23. Let V be a θ-dimensional braided vector space
of diagonal type with the braiding matrix ðqijÞi,j∈I . The gener-
alized Dynkin diagram of V is a nondirected graph D with
the following properties:
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(i) There is a bijective map ϕ from I to the vertices ofD

(ii) For all i ∈ I, the vertex ϕðiÞ is labeled by qii

(iii) For all i, j ∈ I with i ≠ j, the number nij of edges
between ϕðiÞ and ϕðjÞ is either 0 or 1. If qijqji = 1,
then nij = 0; otherwise, nij = 1 and the edge is labeled
by qijqji

We say that the generalized Dynkin diagram of M is the
generalized Dynkin diagram of braided vector space ⊕ i∈I
Mi. Notice that the generalized Dynkin diagram ofM is con-
nected if the braiding matrix of M is indecomposable.

In more details, one can obtain the labels of the general-
ized Dynkin diagram of RiðMÞ = ðRiðMÞjÞj∈I by the following
lemma.

Lemma 24. Let i ∈ I. Assume thatM is i-finite and let aij ≔ aMij
for all j ∈ I. Let ðq′jkÞj,k∈I be the braiding matrix of RiðMÞ with
respect to ðyjÞj∈I . Then,

qjj ′ =

qii, if j = i,

qjj, if j ≠ i, qijqji = q
aij
ii ,

qiiqjj qijqji
� �−aij , if j ≠ i, qii ∈ G′1−aij ,

qjj qijqji
� �−aij , if j ≠ i, qii = 1,

0
BBBBBBBB@

qij ′qji ′ =

qijqji, if j ≠ i, qijqji = q
aij
ii ,

q2ii qijqji
� �−1

, if j ≠ i, qii ∈G′1−aij ,

qijqji
� �−1

, if j ≠ i, qii = 1,

0
BBBBB@

qjk ′qkj ′ =

qjkqkj, if qirqri = qairii , r ∈ j, kf g,
qjkqkj qikqkiq

−1
ii

� �−aij , if qijqji = q
aij
ii , qii ∈G′1−aik ,

qjkqkj qijqji
� �−aik

qikqkið Þ−aij , if qii = 1,

qjkqkjq
2
ii qijqjiqikqki
� �−aij , if qii ∈G′1−aik , qii ∈G′1−aij ,

0
BBBBBBBB@

ð26Þ

for j ≠ k, jj − ij = 1, jk − ij = 1. For jj − ij > 1, jk − ij > 1,
qjk′ qkj′ = qjkqkj. Here, Gn′ denotes the set of primitive nth roots

of unity in k, that is, Gn′ = fq ∈ k∗ ∣ qn = 1, qk ≠ 1 for all 1 ≤ k
< ng for n ∈ℕ.

IfM admits all reflections, then we are able to construct a
semi-Cartan graph CðMÞ of M by ([36], Proposition 1.5).

Theorem 25. Assume that M admits all reflections. For all
X ∈XG

θ ðMÞ, let ½X�θ = fY ∈XG
θ ðMÞjY and X have the same

generalized Dynkin diagramg:

Let YθðMÞ = f½X�θ ∣ X ∈XG
θ ðMÞg and A½X�θ = AX for all

X ∈XG
θ ðMÞ. Let t : I ×YθðMÞ⟶YθðMÞ, ði, ½X�θÞ↦

½RiðXÞ�θ. Then, the tuple

C Mð Þ = I,Yθ Mð Þ, t, AY� �
Y∈Yθ Mð Þ

n o
ð27Þ

is a connected semi-Cartan graph. We say that CðMÞ is the
semi-Cartan graph attached to M.

Furthermore, one can attach a groupoid W ðMÞ≔W ðC
ðMÞÞ to M if M admits all reflections.

Notice that Nichols algebra BðMÞ is ℕθ
0-graded with

deg Mi = αi for all i ∈ I. Following the terminology in [22],
we say that the Nichols algebra BðMÞ is decomposable if
there exists a totally ordered index set ðL, ≤Þ and a sequence
ðWlÞl∈L of finite-dimensional irreducible ℕθ

0-graded objects
in G

GYD such that

B Mð Þ ≃ ⊗
l∈L
B Wlð Þ: ð28Þ

For each decomposition (28), we define the set of positive

roots Δ½M�
+ ⊂ℤI and the set of roots Δ½M� ⊂ℤI of ½M� by

Δ M½ �
+ = deg Wlð Þ ∣ l ∈ Lf g, Δ M½ � = Δ M½ �

+ ∪−Δ M½ �
+ : ð29Þ

By [22] (Theorem 4.5), we obtain that the set of roots
Δ½M� of ½M� does not depend on the choice of the
decomposition.

Remark 26. If dim Mi = 1 for all i ∈ I, then the Nichols alge-
bra BðMÞ is decomposable based on the theorem of
Kharchenko ([17], Theorem 2). The set of roots of Nichols
algebra BðMÞ can be always defined, and it is denoted by
Δ½M�. If the set of roots Δ½M� is finite, then we can check that
M admits all reflections by [22] (Corollary 6.12).

If M admits all reflections and Δ½M� is finite, then we can
define a finite root system RðMÞðCðMÞ, ðΔ½N�ÞN∈FG

θ ðMÞÞ of

type CðMÞ.

Theorem 27. Assume thatM admits all reflections. Then, the
following are equivalent.

(1) Δ½M� is finite

(2) CðMÞ is a finite Cartan graph

(3) W ðMÞ is finite
(4) RðMÞ≔RðMÞðCðMÞ, ðΔ½N�ÞN∈FG

θ ðMÞÞ is finite

In all cases,RðMÞ is the unique root system of typeCðMÞ.

Proof. Since M is a θ-tuple of one-dimensional Yetter-
Drinfel’d modules, we obtain that the Nichols algebra
BðMÞ generated by VM is decomposable, and hence, Δ½M�

is defined. Then, RðMÞ =RðMÞðCðMÞ, ðΔ½N�ÞN∈FG
θ ðMÞÞ is
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the root system of type CðMÞ by [22] (Theorem 6.11).
Hence, the claim is true by Lemma 14. ☐

3. Calculation of Finite Cartan Graphs

In this section, we obtain the properties of finite connected
indecomposable Cartan graphs attached to Nichols algebras
of diagonal type with a finite root system and present the
results in Theorem 39.

Our algorithms described below are sufficiently powerful
in finding the properties, which are extremely essential for
our classification. The implementation in Shell terminates
within a few seconds on a usual computer.

3.1. The Idea. For convenience, we copy the irreducible root
systems of rank 6 in [25] (Appendix B) to Appendix 5.

This is an overview of the main algorithm without any
details.

3.2. Some Remarks

Remark 29. Before starting the algorithms, we give several
remarks on Algorithm 28.

(1) In step 1, we restrict the input root systems to Appen-
dix 5. In details, since Cuntz and Heckenberger illus-
trate all the finite Weyl groupoids in [25], the finite
root system of Nichols algebras of diagonal type must
be contained in [25] (Cor. 3.13 Appendix B). The
classification of Nichols algebras of diagonal type
with a finite root system which appears in [25]
(Cor. 3.13) is not difficult to achieve

(2) From steps 1 to 3, we obtain all the possible reflected
root systems of the given root system rs. By Lemma
14, the Weyl groupoid is finite. Hence, in step 3, the
implementation of the reflections terminates

(3) From Table 1 of Appendix A in [25], for each root
system rs, there is an object such that the generalized
Cartan matrix is of type A6. Hence, for simplification,

we collect all objects with generalized Cartan
matrixes of type A6 in step 4 of the algorithm

3.3. The Algorithms. The fundamental function in Algo-
rithm 28 is the function “Sort”:

By Algorithm 30, every root system could be sorted under
the same given partial order “cmpvect.” Then, comparing
and determining whether two root systems are equal are
possible.

As a result, we could append new root systems to a con-
tainer with an order, which is essential in the following
function.

Check the neighborhoods of root systems which have Cartan matrix of type A6.
Input: all root systems in Appendix 5.
Output: All the A6 neighborhoods

1. Copy the data in Appendix 5 to set rs and allrs.
2. Call Sortðrs, cmpvectÞ.
3. Call Reflectionðrs, iÞ, for i ∈ f1,⋯,6g and sort all the reflected root systems. Check if the reflections yield new root systems. If

yes, then sort them and add to the set allrs. Repeat above to all new found root systems and update the set allrs until the reflections yield
no new root systems.

4. Call cmðallrs½i�Þ, for i = 1,⋯, LengthðallrsÞ. Check if its Cartan matrix is of type A6 by calling IsTypeA6(cm(allrs[i])). Collect
root systems which have Cartan matrix of finite type of A6 to set “A6roots”.

5. Reflect all rank 6 root systems in set “A6roots” in 6 directions and remember all the positions of the reflected root systems in
allrs.

6. Return part of the Exchange graph including all objects with Cartan matrix of type A6 and the Cartan matrixes of the reflected
root systems.

Algorithm 28: GoodNeighborhoods(rs).

Table 1: Finite dimensional Nichols algebra of diagonal type over k
(p ≠ 3).

X Gener. Dynkin diagrams Fixed parameters

X1
𝜁 𝜁−1 𝜁 𝜁−1 𝜁 𝜁−1 −1 𝜁−1 𝜁 𝜁−1 𝜁

ζ ∈G′3

X2 𝜁 𝜁−1 𝜁 𝜁−1

𝜁

𝜁

𝜁

−1 −1

−1

𝜁−1 𝜁

X3
𝜁 𝜁−1 𝜁 𝜁−1 𝜁 𝜁−1 −1

−1

𝜁−1 𝜁

𝜁

X4 𝜁
𝜁−1 𝜁−1

𝜁

𝜁−1

𝜁−1−1

𝜁−1 𝜁𝜁

X5
𝜁 𝜁−1 𝜁

𝜁−1 𝜁 𝜁
𝜁−1

−1

𝜁−1

𝜁−1

𝜁

X6 𝜁−1𝜁 −1−1

𝜁

𝜁

𝜁−1

𝜁−1
𝜁−1 𝜁𝜁

X7 𝜁−1 𝜁−1𝜁−1

𝜁

𝜁

𝜁−1

𝜁−1
𝜁−1 𝜁𝜁
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Remark 32. The reflection in step 2 of Algorithm 31 is given
in Equation (13).

Remark 34. The entries of the generalized Cartan matrix of
the given root system are defined in Lemma 13.

Finally, we still need a function to check which of the root
system is indeed type of A6.

4. Classification Theorem of Finite
Cartan Graphs

LetM ≔ ðkx1,⋯, kx6Þ be a tuple of one-dimensional Yetter-
Drinfel’d modules over k G. Assume that M admits all
reflections and CðMÞ =CðI,X , r, ðAXÞX∈XÞ be the attached
indecomposable semi-Cartan graph to M. Assume that Δ½M�

is the set of roots of BðMÞ. If Δ½M� is finite, then CðMÞ is a
finite Cartan graph by Theorem 27.

Theorem 36. Assume Δ½M� is finite, then there exists a point
X ∈X satisfying that the set ΔXre

+ appears in [25] (Corollary
3.13) or in one of the sets listed in Appendix.

Proof. If CðMÞ is equivalent to a Cartan graph in [15] (Cor-
ollary 3.13), then the claim is true. Otherwise, CðMÞ has a
unique finite root system by Theorem 27, sayRðMÞ. Assume
that R =RðC , ðΔX reÞX∈XÞ is the unique root system, where
ΔX re is the real roots of X. Moreover, the root system RðM
Þ is irreducible by Proposition 15. For any X ∈X , let ΔX re

+
be the positive roots of X. By [25] (Theorem 40), there exists
a point X ∈X satisfying that the set ΔX re

+ is in the list of
Appendix or in [25] (Corollary 3.13) up to a permutation
of I. There are precisely 4 such possible sets of real roots for
the rank 6 case. ☐

The aim of this section is to classify all the finite Cartan
graphs CðMÞ. The output of Algorithm 28 is crucial for the
classification of Theorem 39.

In general, the points of a finite Cartan graph C could
have many different neighborhoods. Depending on the out-
put, we construct the following “good A6 neighborhoods”
in order to cover all the finite connected indecomposable
Cartan graphs in such way that at least one point of C has
one of the good neighborhoods.

Definition 37. We say that X has a good A6 neighborhood if
there exists a permutation of I and an integer a ∈ℕ such that

AX = Ar1 Xð Þ = A6, AX = Ar2 Xð Þ = A6, AX = Ar3 Xð Þ = A6,

Ar4 Xð Þ =

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 −1 0

0 0 −1 2 −1 0

0 0 −1 −1 2 −1

0 0 0 0 −1 2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
, Ar5 Xð Þ

=

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 a

0 0 0 −1 2 −1

0 0 0 a −1 2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
,

ð30Þ

andAX = Ar6ðXÞ = A6, where a satisfies one of the following.

Sort the input root system with the given partial order.
Input: Every rank 6 finite root system in Appendix 5 and function “cmpvect”.
Output: An ordered root system, where the order is given by function “cmpvect”.

1. The function “cmpvect”: given two different roots βi, βj in rs, the order of the two roots depends on the natural order of the two
integers in the first place k where two roots differ (counting from the beginning of the roots): βi < βj if and only if βi½k� < βj½k�. Return
True, if βi < βj. Else, return False.

2. For roots in rs, sort them with the partial order given by “cmpvect” in Step 1. Update rs and return.

Algorithm 30: Sort(rs, cmpvect).

Reflect a root system.
Input: A root system and a direction.
Output: Reflected root systems.

1. Input a root system rs in Appendix 5 and direction i, where i ∈ f1,⋯,6g.
2. Calculate the matrix of i-th reflection with respect to given standard basis αk, k ∈ f1,⋯6g, and denote it as si.
3. For every positive root α in the given root system rs, calculate si · α.
4. Construct a set N consisting of αi and si · α, for all α in the given root system rs.
5. Return N .

Algorithm 31: Reflection(rs, i).
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(1) a = 0, ar5r4ðXÞ36 = 0, ar5r4ðXÞ32 = −1, ar3r4ðXÞ25 = 0, ar5r6ðXÞ43 =
−1

(2) a = −1, ar5r4ðXÞ36 = 0, ar3r4ðXÞ25 = 0

Remark 38. The conditions listed in Definition 37 are possi-
bly not enough to do the classification. In the classification
of finite dimensional Nichols algebras of diagonal type over
fields of positive characteristic, we need to add more restric-
tions about the points of the Cartan graph CðMÞ. For more
explanation about how it works, we can check a demonstra-
tion in Section 5.

Theorem 39. Assume there exists a point X ∈X satisfying
that the set ΔX re

+ appears in Appendix 5 (except E6 type), then
up to equivalence, there exists a point Y ∈X such that Y has
one of the good A6 neighborhoods.

Proof. If Δ½M� appears in Appendix A (except E6 type), then
there are precisely 3 possible sets of real roots for the rank 6
case. We analyze each set of the real roots in the list. Since

the reflection sXi maps ΔX re
+ \ fαig bijectively to ΔriðXÞ re+ \

fαig for any i ∈ I, the Cartan matrices of all neighbors of
X can be obtained from ΔX re

+ by Lemma 13. If there exists
a point Y of the Cartan graph CðMÞ which has a good A6
neighborhood, then the claim is true. Otherwise, repeat the
previous step to the neighbors of X. Since X is finite, this
algorithm terminates. The elementary calculations are
done by GAP Algorithm 1. ☐

5. Application

In this section, we present a case of finite dimensional rank 6
Nichols algebras of diagonal type over fields of positive char-
acteristics. We illustrate them with the corresponding gener-
alized Dynkin diagrams and give the exchange graph of the
Cartan graph attached to the Nichols algebras.

Theorem 40. Let k be a field of characteristic p > 0. Let I =
f1, 2, 3, 4, 5, 6g. Let ðV , cÞ be a braided vector space of diago-
nal type over k with basis fxk ∣ k ∈ Ig satisfying

c xi ⊗ xj
� �

= qijxj ⊗ xi for some qij ∈ k
∗: ð31Þ

Check whether a matrix is type of A6.
Input: The generalized Cartan matrix of a root system.
Output: True or False.

1. Construct a matrix A6 =

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
.

2. If there is a permutation of f1,⋯,6g satisfying the input matrix cm is of type A6, then return True. Otherwise, return False.

Algorithm 35: IsTypeA6(cm).

Calculate the generalized Cartan matrix of a root system.
Input: A root system.
Output: The generalized Cartan matrix of the root system.

1. Input a root system rs in Appendix 5.
2. Create a matrix cm with entries aij, where aii = 2, aij = −max fk ∣ kαi + αj ∈ rsg, for i, j ∈ f1,⋯,6g and i ≠ j.
3. Return cm.

Algorithm 33: cm(rs).

X7 X6 X4 X2

X1

X3 X5
1 2 3 5

4
6

Figure 1: Exchange graph of CðMÞ:

D6 :
1 2 3 4

5

6

Figure 2: Generalized Dynkin diagram of type D6.
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Assume that ðqijÞi,j∈I is an indecomposable braiding

matrix. Let M ≔ ðkxiÞi∈I . Assume that the Nichols algebra
BðVÞ generated by ðV , cÞ has a finite set of roots Δ½M� listed
in Appendix 5 (except E6 type). Then the generalized Dynkin
diagrams D of V partially appear in Table 1. In this case, the
row of Table 1 containing D consists precisely of the general-
ized Dynkin diagrams of all the points of CðMÞ. Figure 1 is
the exchange graph of the corresponding Cartan graph CðMÞ.

Remark 41. In the part of the proof, we give the following
statement to avoid confusion.

(1) Label the vertices of the generalized Dynkin diagrams
from left to right and then top to bottom by 1,⋯, 6
(for example: label D6 as in Figure 2)

(2) For a generalized Dynkin diagram D and i, j, k, l,m
, n ∈ I, write τijklmnD for the graphD where the verti-
ces of D change to i, j, k, l, m, n, respectively

Proof. Assume that BðVÞ has a finite set of roots Δ½M�. Let
X = ½M�s6, I = f1, 2, 3, 4, 5, 6g, and AX ≔ ðaijÞi,j∈I be the

Cartan matrix of X. Let ðqi,jÞi,j∈I be the braiding matrix of X

and ðqriðXÞi,j Þ
i,j∈I be the braiding matrix of riðXÞ. To simplify

the labels, we write qij ′ ≔ qijqji for 1 ≤ i, j ≤ 6. Since BðVÞ
has a finite set of roots Δ½M�, we obtain that CðMÞ is a finite
Cartan graph by Theorem 27; we are free to assume that there
exists a point X such that AX has a good A6 neighborhood by
Theorem 39. ☐

Consider the case that q44 = −1 and qiiqi,i+1 ′ − 1 = qjj
qj−1,j ′ − 1 = 0 for all i ∈ f1, 2, 3, 5g and j ∈ f2, 3, 5, 6g. Let a
≔ ar5ðXÞ46 . From Lemma 24, we get Ar5ðXÞ = A6 and then a =
0. Let q≔ q′23 and r ≔ q′34. Then the condition where q = r
= −1 does not hold.

Since X has a good A6 neighborhood, we obtain qr ≠ 1.
Then, we get 4th direction reflection

q q − 1 q q−1 q q−1 −1 r−1 r r−1 r r4 q q−1 q q−1 −1 (qr)−1 −1 r−1 r

q r

−1

(X) :X :

ð32Þ

According to ar5r4ðXÞ36 = 0 by Definition 37 (6), then qr2 = 1
. Hence, we get that

r5r4 (X) : 𝜏123564
q q−1 q q−1 (qr )−1

qr −1

r−1
r

r
−1

ð33Þ

The condition ar5r4ðXÞ32 = −1 implies that rq = −1 or q2r = 1
by Lemma 24. If rq = −1 then r = −1, q = 1, which is a contra-
diction. If q2r = 1, then q = r and q3 = 1. Hence,

X : 𝜁 𝜁−1 𝜁 𝜁−1 𝜁 𝜁−1 −1 𝜁−1 𝜁 𝜁−1 𝜁 ð34Þ

where ζ ∈ G′3. We denote it as X1 in Table 1. Doing all the
reflections of X1, we obtain the generalized Dynkin diagrams
X2, X3, X4, X5, X6, and X7 in Table 1. And the corresponding
exchange graph of CðMÞ is Figure 1.

Appendix

The Input Irreducible Root Systems of Rank 6

Nr. 1 with 36 positive roots (type E6):
1, 2, 3, 4, 5, 6, 12, 13, 14, 25, 36, 123, 124, 125, 134, 136,

1234, 1235, 1236, 1245, 1346, 12234, 12345, 12346, 12356,
122345, 122346, 123456, 1222345, 1223246, 1223456, 1222
3456, 12232456, 122232456, 132232456, 1322324256

Nr. 2 with 46 positive roots:
1, 2, 3, 4, 5, 6, 12, 13, 14, 23, 25, 46, 123, 124, 125, 134, 146,

235, 1234, 1235, 1245, 1246, 1346, 12234, 12235, 12345,
12346, 12456, 122345, 122346, 122345, 123456, 1222345, 12
23426, 1223456, 1223456, 12223245, 12223456, 12234256, 12
2232456, 122234256, 132234256, 1222324256, 1322324256, 13
23324256, 13233242526

Nr. 3 with 63 positive roots:
1, 2, 3, 4, 5, 6, 12, 13, 14, 23, 35, 56, 123, 124, 134, 135, 235,

356, 1224, 1234, 1235, 1345, 1356, 2356, 12234, 12325, 12345,
12356, 13456, 122234, 122345, 123245, 123256, 123456, 1222
345, 1223245, 1223456, 1232456, 1232526, 12223245, 1222
3456, 12232456, 12324526, 13223245, 122232456, 122324526,
132232425, 132232456, 1222324526, 122334526, 1322324256,
1322324526, 1222334526, 1322334526, 13223242526, 132333452
6, 13223342526, 14223342526, 13233342526, 14233342526, 1423
3442526, 14233442536, 142334425362

Nr. 4 with 68 positive roots:
1, 2, 3, 4, 5, 6, 12, 13, 14, 35, 56, 122, 123, 124, 134, 135,

356, 1223, 1224, 1234, 1235, 1345, 1356, 12234, 12235,
12345, 12356, 13456, 13234, 122325, 122345, 122356, 123456
, 132234, 132345, 1223245, 1223256, 1223456, 1322345, 13232
45, 1323456, 12232456, 12232526, 13223245, 13223456, 13232
456, 122324526, 14223245, 132232456, 132324526, 142232425,
142232456, 1322324526, 132334526, 1422324256, 1422324526,
1322334526, 1422334526, 14223242526, 1522334526, 14223342
526, 1523334526, 15223342526, 15233342526, 16233342526, 16
233442526, 16233442536, 162334425362

Data Availability

The data used to support the findings of this study is available
inside the paper.

Disclosure

Since we are dealing with the finite dimensional Nichols
algebras and related structures, the backgrounds in Intro-
duction and the terminology in Section 2 are similar to that
of the corresponding author’s paper [37] (Introduction and
Section 1) submitted as preprint in arXiv.org with the link
http://arxiv.org/abs/1911.03555 and published in the Journal
of Algebra [37].
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