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Based on the extended homogeneous balance method, the auto-B€acklund transformation transformation is constructed and some
new explicit and exact solutions are given for the fourth-order nonlinear generalized Boussinesq water wave equation. Then, the
fourth-order nonlinear generalized Boussinesq water wave equation is transformed into the planer dynamical system under
traveling wave transformation. We also investigate the dynamical behaviors and chaotic behaviors of the considered equation.
Finally, the numerical simulations show that the change of the physical parameters will affect the dynamic behaviors of the system.

1. Introduction

Many nonlinear phenomena can be described by nonlinear
wave equations, where Boussinesq equation is one of the
important mathematical models, which is widely used in
shallow water and the percolation in horizontal porous
media [1]. Boussinesq equation has many different forms
[2–8]. Clarkson and Kruskal gave a new method for deter-
mining similarity reductions of Boussinesq equation in Ref.
[2]. Nonclassical symmetry reduction can be used to reduce
the Boussinesq equation in Ref. [3]. Based on the asymptotic
expansion for small phase speed, an asymptotic semianalyti-
cal solution was found in Ref. [4]. Higher-order Boussinesq
equations (fourth-order and sixth-order Boussinesq equa-
tions ) for two-way propagation of shallow water waves were
studied in Ref. [5]. The generalized Boussinesq equation was
reduced using Lie group and some exact solutions were
obtained in Ref. [6]. The Hirota bilinear method is used to
construct two soliton solutions for the (2 + 1)-dimensional

Boussinesq equation, the (3 + 1)-dimensional Boussinesq
equation, and the sixth-order Boussinesq equation. But the
three variants of the Boussinesq equation are nonintegrable
and do not admit N-soliton solutions in Ref. [7]. The gener-
alized (2 + 1)-dimensional Boussinesq equation is investi-
gated by the bifurcation method of dynamical systems, and
some exact solutions were obtained in Ref. [8].

In this work, we consider the fourth-order nonlinear
generalized Boussinesq water wave equation:

utt − auxx − 2bu2x − 2buuxx + cuxxxx = 0, ð1Þ

where u = uðx, tÞ is a real function and a, b, and c are real
nonzero arbitrary constants [9–15].

As far as the authors know, Lie symmetry method is used
to analyze Equation (1) and some soliton wave solutions are
obtained in Ref. [9]. Based on Hirota’s bilinear method, Qin
got some rational solutions and interaction solutions of
Equation (1) in Ref. [10]. The rogue wave and semirational
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solutions of Equation (1) are studied by Hirota’s bilinear
method [11]. The general rogue wave solutions of arbitrary
orders for Boussinesq equation were found by bilinear
Kadomtsev-Petviashvili (KP) reduction method in Ref.
[12]. Some travelling wave solutions of Equation (1) were
given by extended tanh method and rational method [13,
14]; the solitary wave and shock wave solutions of Equation
(1) were obtained by method of undetermined coeffi-
cients [15].

Many powerful methods for solving exact solutions of
partial differential equations have been developed such as
Darboux transform [16, 17] and Lie group method
[18–20]. The extended homogeneous balance method
(EHBM) is an effective method solving nonlinear partial dif-
ferential equations [21–23]. So, we apply EHBM to construct
new solutions of Equation (1) in this paper.

The analysis of bifurcation and chaos behavior is a
very interesting nonlinear phenomenon, which has been
applied in many fields, such as engineering, telecommuni-
cation, and ecology [24–27]. By analyzing the dynamic
behavior of differential equation, we can study whether
the periodic external perturbation will lead to the chaotic
behavior of differential equation. So, we will study the
dynamical behaviors and chaotic behaviors of Equation
(1) in this paper.

The rest of this paper is arranged as follows. In Section 2,
based on the extended homogeneous balance method, the
auto-B€acklund transformation is constructed and some
new explicit and exact solutions of Equation (1) are
obtained. In Section 3, based on the theory of plane dynamic
system, dynamical behaviors and chaotic behaviors of Equa-
tion (1) are studied. Some conclusions are provided at the
end of the paper.

2. Abundant New Explicit and Exact
Solutions to Equation (1)

In terms of the idea of extended homogeneous balance
method [21, 22], we assume that the solution of Equation
(1) has the following form:

u x, tð Þ = ∂ m+nð Þ f ϕð Þ
∂xm∂tn

+ u0 = f m+nð Þϕmx ϕ
n
t +⋯, ð2Þ

where u0 = u0ðx, tÞ is the arbitrary known seed solution and
m, n, and function f ðϕÞ are to be determined later.

From (2), we obtain

uxxxx = f m+n+4ð Þϕm+4
x ϕnt +⋯,

u2x = f m+n+1ð Þ f m+n+1ð Þϕ2m+2
x ϕ2nt +⋯,

uuxx = f m+nð Þ f m+n+2ð Þϕ2m+2
x ϕ2nt +⋯:

ð3Þ

According to the homogeneous principle method [21,
22], balancing the highest-order derivative term uxxxx and

the highest-order nonlinear term, u2x , uuxx can be
obtained

2m + 2 = 2m + 2 =m + 4, n = 2n = 2n, ð4Þ

which gives

m = 2, n = 0: ð5Þ

Thus, (2) can be rewritten as follows

u x, tð Þ = ∂2 f ϕð Þ
∂x2

+ u0 = f ′′ϕ2x + f ′ϕxx + u0: ð6Þ

From (6), it is easy to deduce that

utt = f 4ð Þϕ2t ϕ
2
x + f 3ð Þϕttϕ

2
x + 4f 3ð Þϕtϕxϕxt

+ 2f ′′ϕ2xt + 2f ′′ϕxϕxtt + f 3ð Þϕ2t ϕxx
+ f ′′ϕxxϕtt + f ′′ϕtϕxxt + f ′ϕxxtt + u0tt ,

ð7Þ

uxx = f 4ð Þϕ4x + 6f 3ð Þϕ2xϕxx + 3f ′′ϕ2xx
+ 4f ′′ϕxϕxxx + f ′ϕxxxx + u0xx,

ð8Þ

u2x = f 3ð Þ
� �2

ϕ6x + 9 f ′′
� �2

ϕ2xϕ
2
xx + f ′

� �2
ϕ2xxx

+ u20x + 6f 3ð Þ f ′′ϕ4xϕxx + 2f 3ð Þ f ′ϕ3xϕxxx
+ 2u0x f 3ð Þϕ3x + 6f ′′f ′ϕxϕxxϕxxx
+ 6u0x f ′′ϕxϕxx + 2u0x f ′ϕxxx,

ð9Þ

uuxx = f ′′f 4ð Þϕ6x + 6f ′′f 3ð Þϕ4xϕxx + 3 f ′′
� �2

ϕ2xϕ
2
xx

+ 4 f ′′
� �2

ϕ3xϕxxx + f ′ f ′′ϕ2xϕxxxx + f ′′ϕ2xu0xx
+ f ′ f 4ð Þϕ4xϕxx + 6f ′ f 3ð Þϕ2xϕ

2
xx + 3f ′ f ′′ϕ3xx

+ 4f ′ f ′′ϕxϕxxϕxxx + f ′
� �2

ϕxxϕxxxx

+ f ′ϕxxu0xx + f 4ð Þu0ϕ
4
x + 6f 3ð Þu0ϕ

2
xϕxx

+ 3f ′′u0ϕ2xx + 4f ′′u0ϕxϕxxx + f ′u0ϕxxxx + u0u0xx ,
ð10Þ

uxxxx = f 6ð Þϕ6x + 15f 5ð Þϕ4xϕxx + 45f 4ð Þϕ2xϕ
2
xx

+ 20f 4ð Þϕ3xϕxxx + 15f 3ð Þϕ3xx
+ 60f 3ð Þϕxϕxxϕxxx + 15f 3ð Þϕ2xϕxxxx
+ 10f ′′ϕ2xx + 15f ′′ϕxxϕxxxx
+ 6f ′′ϕxϕxxxx + f ′ϕxxxxxx + u0xxxx:

ð11Þ
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Table 1: Information of equilibrium points.

No. Values of parameters detM P1ð Þ detM P2ð Þ P1 P2 Phase portraits

1 c > 0, a < 0 J P1ð Þ > 0 J P2ð Þ < 0 center point saddle point Figure 1(a)

c > 0, a > 0, ∣k2 ∣ >
ffiffiffi
a

p
∣ k1 ∣ J P1ð Þ > 0 J P2ð Þ < 0 center point saddle point Figure 1(b)

c < 0, a > 0, ∣k2 ∣ <
ffiffiffi
a

p
∣ k1 ∣ J P1ð Þ > 0 J P2ð Þ < 0 center point saddle point Figure 1(c)

c < 0, a < 0 J P1ð Þ < 0 J P2ð Þ > 0 saddle point center point Figure 2(a)

c > 0, a > 0, ∣k2 ∣ <
ffiffiffi
a

p
∣ k1 ∣ J P1ð Þ < 0 J P2ð Þ > 0 saddle point center point Figure 2(b)

c < 0, a > 0, ∣k2 ∣ >
ffiffiffi
a

p
∣ k1 ∣ J P1ð Þ < 0 J P2ð Þ > 0 saddle point center point Figure 2(c)
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Figure 1: Phase portraits of system (50).
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Figure 2: Continued.
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Now, substituting (7)–(11) into Equation (1) and sim-
plifying, it yields

ϕ6x −2b f 3ð Þ
� �2

− 2bf 4ð Þ f ′′ + cf 6ð Þ
� �

+ ϕ4x −af 4ð Þ − 24bf ′′f 3ð Þ + 2bf ′ f 4ð Þ − 15cf 5ð Þ
� �

ϕxx

h
− 2bu0 f 4ð Þ

i
+ ϕ3x −4bf ′ f 3ð Þ − 8b f ′

� �2��

+ 20cf 4ð Þ
�
ϕxxx − 4bf 3ð Þu0x� + ϕ2x f 4ð Þϕ2t + f 3ð Þϕtt

h
− 6a + 12bu0ð Þf 3ð Þϕxx + −24b f ′′

� �2�

+ 2bf ′ f 3ð Þ + 45cf 4ð Þ
�
ϕ2xx

+ −2bf ′ f ′′ + 15cf 3ð Þ
� �

ϕxxxx − 2bf ′′u0xx
i

+ ϕx 4f 3ð Þϕtϕxt + 2f ′′ϕxtt
h

+ −4af ′′ − 20bf ′ f ′′ϕxx + 60cf 3ð Þϕxx − 8bu0 f ′′
� �

ϕxxx

+ 6cf ′′ϕxxxx − 12bu0x f ′′ϕxx
i
,

ð12Þ

ϕ3xx −6bf ′ f ′′ + 15cf 3ð Þ
� �

− 3a + 6bu0ð Þf ′′ϕ2xx

+ ϕxx f 3ð Þϕ2t − 2b f ′
� �2

ϕxxxx + 15cf ′′ϕxxxx
�

+ f ′′ϕtt − 2bf ′u0xx
i
+ ϕ2xxx −2b f ′

� �2
+ 10cf ′′

� �
− 4bu0x f ′ϕxxx − a + 2bu0ð Þf ′ϕxxxx + 2f ′′ϕ2xt
+ f ′ϕttxx + 2f ′′ϕtϕxxt + cf ′ϕxxxxxx + u0tt − au0xx
+ cu0xxxx − 2bu20x − 2bu0u0xx = 0:

ð13Þ

Setting the coefficient of the term ϕ6x in Equation (13)
to zero, we obtain a nonlinear ordinary differential equa-
tion for function f ðϕÞ:

−2b f 3ð Þ
� �2

− 2bf 4ð Þ f ′′ + cf 6ð Þ = 0: ð14Þ

Integrating Equation (14) once and neglecting the
constant of integration gives

−2bf 3ð Þ f ′′ + cf 5ð Þ = 0: ð15Þ

Again integrating Equation (15) and letting the con-
stant of integration be zero, we obtain

−b f ′′
� �2

+ cf 4ð Þ = 0, ð16Þ

which has particular solution

f ϕð Þ = r ln ϕ, ð17Þ

where r = −6c/b:
According to (17), we get the following results:

f ′
� �2

= −rf ′′, f ′′f ′ = −
r
2 f

3ð Þ, f 3ð Þ f ′ = −
r
3 f

4ð Þ, ð18Þ

f 4ð Þ f ′ = −
r
4 f

5ð Þ, f ′′
� �2

= −
r
6 f

4ð Þ, f ′′f 3ð Þ = −
r
12 f

5ð Þ:

ð19Þ
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Figure 2: Phase portraits of system (50).
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By (6) and (17), we obtain the auto-B€acklund transfor-
mation of Equation (1) as follows:

u x, tð Þ = −
rϕ2x
ϕ2

+ rϕxx
ϕ

+ u0: ð20Þ

Letting the seed solution

u0 x, tð Þ = 0, ð21Þ

and using results (19), then Equation (13) can be simplified
as

f 4ð Þ −aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx
� 	

ϕ2x

+ f 3ð Þ ϕtt − 6aϕxx + 9cϕxxxxð Þϕ2x
�

+ 4ϕxϕtϕxt − 3cϕ3xx + ϕxxϕ
2
t

	
+ f ′′ ϕ2xt + 2ϕxϕxtt + ϕttϕxx + 2ϕtϕxxt

�
− 3aϕ2xx − 4aϕxϕxxx + 6cϕxϕxxxxx
− 2cϕ2xxx + 3cϕxxϕxxxx

	
+ f ′ ϕxxtt − aϕxxxx + cϕxxxxxx½ � = 0:

ð22Þ
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Figure 3: Phase portraits of system (54) with ω = 0:01 and different values of g0. (a) g0 = 0, (b) g0 = 0:01, (c) g0 = 0:1, and (d) g0 = 5.
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Setting the coefficients of f ð4Þ, f ð3Þ, f ′′, and f ′ in Equa-
tion (22) to zero yields a set of partial differential equations
for ϕðx, tÞ as follows:

ϕ2x −aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx

 �

= 0, ð23Þ

ϕtt − 6aϕxx + 9cϕxxxxð Þϕ2x + 4ϕxϕtϕxt − 3cϕ3xx + ϕxxϕ
2
t = 0,

ð24Þ

ϕ2xt + 2ϕxϕxtt + ϕttϕxx + 2ϕtϕxxt − 3aϕ2xx
− 4aϕxϕxxx + 6cϕxϕxxxxx − 2cϕ2xxx + 3cϕxxϕxxxx = 0,

ð25Þ

ϕtt − aϕxx + cϕxxxxð Þxx = 0: ð26Þ

Here, Equations (24) and (25) can be rewritten as

ϕ2x ϕtt − aϕxx + cϕxxxx½ � + ϕxx −aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx
� 	

+ 2ϕx −aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx
� 	

x
= 0,

ð27Þ

ϕtt ϕtt − aϕxx + cϕxxxx½ � + 2ϕx ϕtt − aϕxx + cϕxxxx½ �x
+ −aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx
� 	

xx
= 0:

ð28Þ

By analysis of Equations (27) and (28), we find that
Equations (23)–(26) are satisfied automatical under the fol-
lowing conditions:

ϕtt − aϕxx + cϕxxxx = 0, ð29Þ

−aϕ2x + 4cϕxϕxxx + ϕ2t − 3cϕ2xx = 0: ð30Þ
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Figure 4: Phase portraits of system (54) with ω = 10 and different values of g0. (a) g0 = 0, (b) g0 = 0:01, (c) g0 = 0:1, and (d) g0 = 10.
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To obtain some exact solutions of Equations (29) and
(30), we assume the solutions of the form:

ϕ x, tð Þ = A + B sin ξð Þ exp ηð Þ, ð31Þ

where ξ = Kx +Ωt + ξ0, η = kx + ωt + η0 ; A, B, K , Ω, ξ0, k, ω,
and η0 are constants which are to be determined.

Substituting (31) into Equations (29) and (30) and sim-
plifying, it leads to a system of nonlinear algebraic equations
with respect to K , Ω, k,and ω as follows

−Ω2 + ω2 + aK2 − ak2 + cK4 − 6cK2k2 + ck4 = 0,
2Ωω − 2aKk − 4ckK3 + 4cKk3 = 0,

−2aKk + 2Ωω + 12c − 4ð ÞkK3 − 12c − 4ð ÞKk3 = 0,
−ak2 + ω2 + ck4 − 6cK2k2 + aK2 −Ω2 + cK4 = 0,

Ω2 − aK2 − 4cK4 = 0:

ð32Þ

By solving the above equations, the following sets of
solutions are obtained

Case 1. K = 0,Ω = 0, k = k, ω = ω, where k ≠ 0, c ≠ 1/3, ω2 + c
k4 − ak2 = 0, ac > 0:

Case 2. k = 0,Ω = 0, K =
ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
, ω = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p
, where c >

0, a < 0, c ≠ 1/3:

Case 3. k = 0,Ω = 0, K = −
ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
, ω = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p
, where c

> 0, a < 0, c ≠ 1/3:

Case 4. Ω =Ω, k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
, K = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
, ω = 2Ω, where

c < 0, c ≠ 1/3:

Case 5. Ω =Ω, k = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
, K =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
, ω = 2Ω, where

c < 0, c ≠ 1/3:
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Figure 5: Phase portraits of system (54) with g0 = 0:1 and different values of ω. (a) ω = 0:1: (b) ω = 1: (c) ω = 10: (d) ω = 100.
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Case 6. Ω =Ω, k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
, K =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
, ω = −2Ω, where

c > 0, c ≠ 1/3:

Case 7. Ω =Ω, k = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
, K = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
, ω = −2Ω,

where c > 0, c ≠ 1/3:

According to (20), (21), and (31), the solution of the
fourth-order nonlinear generalized Boussinesq water wave
equation is as follows:

u x, tð Þ = −
rϕ2x
ϕ2

+ rϕxx
ϕ

= 6cB2 exp 2ηð Þ K cos ξð Þ + k sin ξð Þ½ �2
b A + B sin ξð Þ exp ηð Þ½ �2

−
6cB exp ηð Þ k2 − K2
 �

sin ξð Þ + 2Kk cos ξð Þ� 	
b A + B sin ξð Þ exp ηð Þ½ � ,

ð33Þ

where ξ = Kx +Ωt + ξ0, η = kx + ωt + η0:

For Case 1, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

u x, tð Þ = 6cB2k2 sin2ξ0 exp 2 kx + ωt + η0ð Þ
b A + B sin ξ0 exp 2 kx + ωt + η0ð Þ½ �2

−
6cBk2 sin ξ0 exp kx + ωt + η0ð Þ

b A + B sin ξ0 exp 2 kx + ωt + η0ð Þ½ � :
ð34Þ

If A = 1, B sin ξ0 = 1, Equation (34) is reduced to the sol-
itary wave solutions as follows:

u x, tð Þ = −
3ck2
2b sech2 1

2 kx + ωt + η0ð Þ
� �

: ð35Þ

For Case 2, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:
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Figure 6: Phase portraits of system (54) with g0 = 5 and different values of ω. (a) ω = 0:001: (b) ω = 0:1: (c) ω = 1: (d) ω = 10.
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If A = 0, Equation (36) is reduced to

u x, tð Þ = −3a
2b csc2

ffiffiffiffiffiffi
−a
4c

r
x + ξ0

 !
, ð37Þ

which are periodic wave solutions.

For Case 3, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

If A = 0, Equation (38) is reduced to Equation (37). For Case 4, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

For Case 5, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

u x, tð Þ =
−3aB2 exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p� �
t + η0

� �
exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p� �
t + η0

� �
+ A sin −

ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
 �
x + ξ0


 �h i
2cb A + B sin −

ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
x + ξ0


 �
exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p
t + η0

� �h i2 : ð38Þ

u x, tð Þ =
−6cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x + 2Ωt + η0

� �
cos −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x +Ωt + ξ0

� �
− sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x +Ωt + ξ0

� �h i
b A + B sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x +Ωt + ξ0

� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x + 2Ωt + η0

� �h i2

+
12cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c

p� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x + 2Ωt + η0

� �
cos −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x +Ωt + ξ0

� �
b A + B sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x +Ωt + ξ0

� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p� �
x + 2Ωt + η0

� �h i :

ð39Þ

u x, tð Þ =
6cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x + 2Ωt + η0

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
− sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �h i
b A + B sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x + 2Ωt + η0

� �h i2

+
12cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c

p
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x + 2Ωt + η0

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
b A + B sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x + 2Ωt + η0

� �h i :

ð40Þ

u x, tð Þ =
−3aB2 exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p� �
t + η0

� �
exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p� �
t + η0

� �
+ A sin

ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
 �
x + ξ0


 �h i
2cb A + B sin

ffiffiffiffiffiffiffiffiffiffiffi
−a/4c

p
 �
x + ξ0


 �
exp ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2/16c

p� �
t + η0

� �h i2 : ð36Þ
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For Case 6, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

For Case 7, the exact explicit solutions to the fourth-
order nonlinear generalized Boussinesq water wave equation
are obtained as follows:

Remark 1. Equations (29) and (30) may also have other
forms of solutions as follows:

ϕ x, tð Þ = A + B cos ξð Þ exp ηð Þ,
ϕ x, tð Þ = A + B sinh ξð Þ exp ηð Þ,
ϕ x, tð Þ = A + B cosh ξð Þ exp ηð Þ,

ð43Þ

where ξ = Kx +Ωt + ξ0, η = kx + ωt + η0 ;
A, B, K ,Ω, ξ0, k, ω, and η0 are constants which are to be
determined.

3. Dynamical Behaviors and Chaotic
Behaviors of Equation (1)

In this section, based on the theory of the plane dynamic sys-
tem, the bifurcation analysis of the unperturbed dynamic
system which is obtained by traveling wave transformation
(special combinations of Lie point symmetries) is carried
out. The periodic perturbed term is added to the obtained
unperturbed dynamic system, and the chaotic behaviors of
perturbed system is analyzed under different values of the
physical parameters.

3.1. Bifurcation and Phase Portraits of Equation (1). In Ref.
[9], Lie point symmetries admitted by Equation (1) were
given as follows:

V1 =
∂
∂t

,V2 =
∂
∂x

,

V3 = 2bt ∂
∂t

+ bx
∂
∂x

− a + 2buð Þ ∂
∂u

,
ð44Þ

which form a three-dimensional Lie algebra.
We consider the Lie point symmetry as follows:

k1V1 + k2V2 = k1
∂
∂t

+ k2
∂
∂x

, ð45Þ

where k1, k2 are constants.
The corresponding characteristic equation is

dt
k1

= dx
k2

= du
0 : ð46Þ

Solving the above characteristic equation, we obtain the
group invariant solution:

u x, tð Þ = X ξð Þ, ð47Þ

u x, tð Þ =
6cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
− sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �h i
b A + B sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �h i2

−
12cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c

p
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
b A + Bsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �h i :

ð41Þ

u x, tð Þ = −
6cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �
cos −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
− sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �h i
b A + B sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω2/4c4

p
x +Ωt + ξ0

� �
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �h i2

−
12cB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c

p
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �
cos −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
b A + B sin −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x +Ωt + ξ0

� �
exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ω2/4c4

p
x − 2Ωt + η0

� �h i :

ð42Þ
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where ξ = k1x − k2t is the similarity invariant. This is a trav-
eling wave transformation, which we will use to analyze
dynamic behaviors of the equation.

Under the traveling wave transformation, Equation (1) is
reduced to

k22 − ak21

 �

X ′′ − 2bk21 X ′
� �2

+ XX ′′
� �

+ ck41X
4ð Þ = 0, ð48Þ

where the ‘‘′” denotes the differentiation with respect to the
variable ξ.

Integrating Equation (48) twice with respect to ξ and
vanishing the constants of integration yields

X ′′ = αX2 + βX: ð49Þ

where α = b/ck21, β = ðak21 − k22Þ/ck41:
Letting X ′ = Y , Equation (49) is equivalent to the two-

dimensional plane autonomous system:

dX
dξ

= Y ,

dY
dξ

= αX2 + βX:

0
BBB@ ð50Þ

Obviously, system (50) is an integrable Hamiltonian sys-
tem. Applying the first integral, we get Hamiltonian func-
tions as follows:

1
2Y

2 −
α

3 X
3 −

β

2 X
2 = h, ð51Þ

where h is the constant of integration.
By solving the following system:

Y = 0,
αX2 + βX = 0,

 
ð52Þ

equilibrium points of system (52) can be obtained as P1ð0, 0Þ
and P2ð−β/α, 0Þ.

Let MðPiÞ denote the coefficient matrix of the linearized
system of system (50) at equilibrium points PiðXi, 0Þði = 1,
2Þ as follows:

M Pið Þ =
0 1

2αXi + β 0

 !
, ð53Þ

where the trace ofMðPiÞ is zero and the determinant ofM is
JðPiÞ = det MðPiÞ = −ð2αXi + βÞ. Then, we obtain det MðP1
Þ = −β and det MðP2Þ = β.

By the theory of planar dynamical systems [24–30], we
draw the following conclusion as in Table 1. The different
phase portraits of system (50) are shown in Figures 1 and 2.

3.2. Chaotic Behaviors of Equation (1). In this section, the
dynamics of system (50) perturbed by periodic term is to

be investigated via numerical simulations. For this purpose,
suppose that periodic term is g0 cos ðωξÞ. Letting Z = ωξ,
system (50) is modified as following three-dimensional sys-
tem:

dX
dξ

= Y ,

dY
dξ

= αX2 + BβX + g0 cos Zð Þ,

dZ
dξ

= ω:

0
BBBBBBBB@

ð54Þ

In the simulations, choosing parameters α = 2, β = −8,
the effects of amplitude and frequency on the dynamics of
system (54) are to be discussed.

Firstly, the effect of amplitude is considered. For this
end, frequency ω is fixed while g0 is chosen as different
values. The corresponding phase portraits are depicted in
Figures 3 and 4. By analyzing Figures 3 and 4, we can get
the following results.

Case 1. When g0 = 0. System (54) is undisturbed by periodic
signal, and it is provided with periodic solution (see
Figures 3(a) and 4(a)).

Case 2. When g0 ≠ 0. Figure 3 means that the system (54) is
disturbed by periodic signal, and system (54) presents limit
cycles for low frequency (see Figures 3(b)–3(d)). Figure 4
shows that, when system (54) is disturbed by periodic signal
with higher frequency, it can appear as limit cycles (see
Figures 4(b) and 4(c)) and chaotic phenomenon (see
Figure 4(d))with the change of amplitude.

Consequently, Figures 3 and 4 indicate that the ampli-
tude has much effect on the dynamics of system (54).

Secondly, g0 taken as a constant, and ω is chosen as dif-
ferent values. The corresponding phase portraits are calcu-
lated and shown in Figures 5 and 6. In Figure 5, it is
obvious to see that, for small amplitude g0 = 0:1, with the
change of frequency, system (54) has various phenomenon,
such as chaos (see Figures 5(a) and 5(b)) and limit cycle
(Figures 5(c) and 5(d)). Figure 6 suggests that, for small
amplitude g0 = 5, system (54) mainly shows chaos.

4. Conclusions

The extended homogeneous balance method is an effective
method solving nonlinear partial differential equations. We
applied it to obtain the auto-B€acklund transformation trans-
formation and some new exact explicit solutions for the
fourth-order nonlinear generalized Boussinesq water wave
equation. Using the theory of plane dynamic system, the
dynamical behavior analysis of the perturbed dynamic sys-
tem and the chaotic behaviors of the perturbed system are
analyzed. The change of the physical parameters will affect
the dynamic behavior of the dynamic system.
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