
Research Article
Application of a Large-Parameter Technique for Solving a
Singular Case of a Rigid Body

A. I. Ismail 1,2

1Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah,
P.O. Box 5555, Saudi Arabia
2Mathematics Department, Faculty of Science, Tanta University, Tanta, P.O. Box 31527, Egypt

Correspondence should be addressed to A. I. Ismail; aiismail@uqu.edu.sa

Received 7 August 2020; Revised 6 December 2020; Accepted 22 February 2021; Published 18 March 2021

Academic Editor: Eugen Radu

Copyright © 2021 A. I. Ismail. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the motion of a rigid body in a singular case of the natural frequency (ω = 1/3) is considered. This case of singularity
appears in the previous works due to the existence of the term ½ω2 − ð1/9Þ� in the denominator of the obtained solutions. For this
reason, we solve the problem from the beginning. We assume that the body rotates about its fixed point in a Newtonian force field
and construct the equations of the motion for this case when ω = 1/3. We use a new procedure for solving this problem from the
beginning using a large parameter ε that depends on a sufficiently small angular velocity component ro. Applying this procedure, we
derive the periodic solutions of the problem and investigate the geometric interpretation of motion. The obtained analytical
solutions graphically are presented using programmed data. Using the fourth-order Runge-Kutta method, we find the numerical
solutions for this case aimed at determining the errors between both obtained solutions.

1. Introduction

In [1], the problem of the motion of a fast coherent body
around a fixed point under the influence of a Newtonian field
of attraction at the value ω = 1/3 of the natural frequency was
studied. This anomaly appeared in [2] and is specialized in
various bodies classified according to the inertia. Using the
Poincare small-parameter method [3], periodic solutions—-
with basic zero amplitudes—of the semilinear independent
system were obtained in the form of power series expansions
up to the third approximation containing assumed small
parameters. In [4], Poincare’s method that depends on a
small parameter assumed to be inversely proportional to a
high angular velocity component ro is studied. Some impor-
tant other analytical and numerical solutions besides practi-
cal applications are presented in [5, 6].

In our problem, we assume a slowly rotating body with
low angular velocity ro, so we cannot use the small-
parameter technique. We must look for another technique
to solve the considered problem under the new initial condi-
tions of the motion. We assume a large parameter ε directly
proportional to 1/ro [7]. Therefore, we qualify the large-

parameter method [8] to solve the presented problem under
the new initial conditions for the motion. The equations of
motion and their reduction are derived to describe the behav-
ior of the body at any instant in time. The first integrals of the
motion are obtained. Achieving a large parameter depends
on the properties of the motion, and the periodic solutions
are obtained in a new domain using the large-parameter
technique. The geometric interpretation of the motion is
illustrated to describe Euler’s angles in a new domain
depending on the time, the angular velocity, and the large
parameter. Gyroscopic motions are considered for some
values of moments of inertia. Many applications are given.

2. The Considered Problem

The semilinear system of equations of motions is obtained in
suitable symbols in [7] as follows:

9€p2 + p2 − 9ε−2F p2, _p2, γ2, _γ2, εð Þ = 0,
€γ2 + γ2 − ε−2ϕ p2, _p2, γ2, _γ2, εð Þ = 0,

ð1Þ
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where

p2 = p2 p, γð Þ,  p2γ2ð Þ,  ⋅ = d
dτ

, τ = t
ro
,

F = F2 + ε−1F3+⋯, Fϕð Þ, ε = c

ffiffiffiffiffiffiffiffi
γo ′′

q
r0

, 0 ≺ γo ′′ ≺ 1,

Fk τð Þ = Fk p 0ð Þ
2 , _p 0ð Þ

2 , γ 0ð Þ
2 , _γ 0ð Þ

2

� �
≡ Fk

0ð Þ, Fϕð Þ, k = 2, 3ð Þ:
ð2Þ

The symbols like ðabÞ denote the canceled equations; c is
a constant.

The following first integral is deduced as [9]

γ22 = 1 − γ″−20 + _γ22 + 2ε−1 νp2γ2 + ν1 _p2 _γ2 + s21ð Þ + ε−2

� ν1
2 _p22 − 2 _γ2A−1

1 e1 _γ2 + _p2s21 +
0:5 _γ2s11

A1
− y0′a−1

� ��

+ ν2p22 + s221 + 2s22 − s11ð Þ
�
+ ε−3 ⋯ð Þ,

ð3Þ

where

S 0ð Þ
ij = S 0ð Þ

ij p 0ð Þ
2 , _p 0ð Þ

2 , γ 0ð Þ
2 , _γ 0ð Þ

2
� �

  i, j = 1, 2ð Þ, ð4Þ

υ, υ1, A1, e1, yo ′, and a are constants depending on the
rigid body parameters.

Applying the method of the large parameter [8], we
obtain periodic solutions—with basic zero amplitudes—of
the semilinear independent system in the form of power
series expansions until the second approximation. On the
use of a hypothetical large parameter, we achieve the periodic
solutions in the following form:

p = c
ffiffiffiffiffiffiffiffi
γ0 ′′

q
M1 cos 0:33τ +M2 sin 0:33τð Þf

+ ε−1 χ + ℓ1 cos 0:33τ +m1 sin 0:33τ + χ1M3 cos τð Þ

+ ε−2 〠
7

i=0
R1i cos 0:33iτ + R1i′ sin 0:33iτ

� �
+⋯

)
, i ≠ 6,

Table 1: The analytical solutions when ω = 1/3.

t P J X1 Y1

0 1.154701 3.179794 6:67E − 01 2:13E − 11
10 1.544112 2.576352 5:72E − 01 -1.86373

20 1.866479 9:95E − 01 4:53E − 01 -3.02009

30 2.107803 −9:64E − 01 3:15E − 01 -3.03018

40 2.257608 -2.55702 1:62E − 01 -1.89017

50 2.309387 -3.17963 2:64E − 03 −3:28E − 02
60 2.260894 -2.59541 −1:57E − 01 1.837096

70 2.114234 -1.02612 −3:10E − 01 3.009679

80 1.875774 9:33E − 01 −4:49E − 01 3.039946

90 1.555868 2.537413 −5:69E − 01 1.916409

100 1.168407 3.179119 −6:64E − 01 6:55E − 02
110 7:30E − 01 2.614198 −7:30E − 01 -1.81027

120 2:60E − 01 1.057064 −7:65E − 01 -2.99895

130 −2:21E − 01 −9:01E − 01 −7:66E − 01 -3.04939

140 -6.92E-01 -2.51754 -7.34E-01 -1.94245

150 -1.13404 -3.17828 −6:71E − 01 −9:82E − 02
160 -1.52634 -2.63271 −5:78E − 01 1.783242

170 -1.85237 -1.0879 −4:60E − 01 2.987903

180 -2.09797 8:70E − 01 −3:22E − 01 3.058513

190 -2.25248 2.497397 −1:70E − 01 1.968273

200 -2.30918 3.177095 −1:06E − 02 1:31E − 01
210 -2.26562 2.650935 1:49E − 01 -1.75603

220 -2.12369 1.118617 3:02E − 01 -2.97654

230 -1.88955 −8:38E − 01 4:43E − 01 -3.06731

240 -1.57337 -2.47699 5:64E − 01 -1.99389

250 -1.18886 -3.17558 6:60E − 01 −1:64E − 01
260 −7:53E − 01 -2.66888 7:28E − 01 1.72863

270 −2:84E − 01 -1.14922 7:64E − 01 2.964859

280 1:97E − 01 8:07E − 01 7:67E − 01 3.075783

290 6:70E − 01 2.45632 7:37E − 01 2.019302

300 1.113256 3.173723 6:74E − 01 1:96E − 01
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Figure 1: The analytical solution P against the time t.
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Figure 2: The analytical solution J against the time t.
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q = c
ffiffiffiffiffiffiffiffi
γ0 ′′

q
0:33A−1

1 M1 sin 0:33τ −M2 cos 0:33τð Þ	
+A−1

1 ε−1 y0′a−1 + χ2M3 sin τ − 0:33 ℓ1 sin 0:33τ +m1 cos 0:33τð Þ
h i

+ ε−2 〠
7

i=0
R2i cos 0:33iτ + R2i′ sin 0:33iτ

� �
+⋯

)
, i ≠ 6,

r = r0 1 + 0:5E2ε−2 〠
7

i=0
R3i cos 0:33iτ + R3i′ sin 0:33iτ

� �
+ R36 cos 2τ

" #
+⋯

( )
, i ≠ 1,

γ = γ0″ M3 cos τ + ε−1a M1 cos 0:33τ +M2 sin 0:33τÞ −M1 cos τ½ �	
+ ε−2 〠

6

i=0
R4i cos 0:33τ + R4i′ sin 0:33τ

� �
+ R49 cos 3τ

" #
+⋯

)
, i ≠ 2, 4,

γ′ = γ0″ −M3 sin τ − ε−1a 0:5ν1 M1 sin 0:33τ −M2 cos 0:33τð Þ − aM1 sin τ½ �	
+ ε−2 〠

6

i=0
R5i cos 0:33iτ + R5i′ sin 0:33iτ

� �
+ R59 sin 3τ

" #
+⋯

)
, i ≠ 2, 4,

γ″ = γ0″ 1 + ε−1M3E a cos δ + 0:5 0:33bA−1
1 − a


 �
cos δ + 0:66τð Þ�	

− 0:5 0:33bA−1
1 + a


 �
cos δ − 1:25τð Þ


+ ε−2 〠
4

i=0
R6i cos 0:33iτ + R6i′ sin 0:33iτ

� �
+ R66 cos 2τ

" #
+⋯

)
, i ≠ 1,

ð5Þ

whereM1,M2,M3 are the basic amplitudes of the initial solu-
tions of p2, _p2, γ2, respectively, ℓ1,m1 are the deviations of the
amplitudes of the solutions p2, _p2 from their basic amplitudes,

E = ðM1
2 +M2

2Þ1/2, δ = tan−1ðM2/M1Þ, and c, χ, χ1, χ2, and
Rji are constants that depend on the rigid body parameter
and are determined with correspondence by the system (1).

3. Geometric Interpretation of Motion

In this section, we describe the motion by Euler’s angles θ, ψ,
and φ which are determined from the obtained periodic solu-
tions (5). Since the initial system of (1) does not depend
explicitly on time, then the periodic solutions are still so if t
is replaced by ðt + t0Þ where t0 is an arbitrary interval of time
[10]. Let t = t0 be the initial instant of time, and substituting
the periodic solutions (5) into Euler’s angles, we get [11]

φ0 − 0:5π = r0t0+⋯, tan θ0 =M3,

θ − θ0 = ε−1E θ1 t + t0ð Þ − θ1 t0ð Þ½ � − ε−2 cos θ0 sin−1θ0
� θ2 t + t0ð Þ − θ2 t0ð Þ½ �+⋯,

ψ − ψ0 =MgℓC−1r0
−1 sin−1θ0 0:5χ1 + ν0 cos2θ0 sin−1θ0


 �
t

+ 0:5ε−1r0 sin−1θ0 ψ1 t + t0ð Þ − ψ1 t0ð Þ½ �
+ ε−2r0 cos θ0 sin−3θ0 ψ2 t + t0ð Þ − ψ2 t0ð Þ½ �+⋯,

Table 2: The numerical solutions when ω = 1/3.

t P J X1 Y1

0 1.154701 3.179794 6:67E − 01 2:13E − 11
10 1.544319 2.576409 5:73E − 01 -1.863584

20 1.866884 9:95E − 01 4:54E − 01 -3.019916

30 2.108389 −9:63E − 01 3:15E − 01 -3.030202

40 2.258349 -2.556521 1:62E − 01 -1.890568

50 2.310252 -3.179412 2:81E − 03 −3:35E − 02
60 2.261844 -2.595745 −1:57E − 01 1.8362

70 2.115229 -1.027045 −3:10E − 01 3.00906

80 1.876771 9:31E − 01 −4:49E − 01 3.039994

90 1.556824 2.536283 −5:69E − 01 1.917292

100 1.169281 3.178677 −6:64E − 01 6:70E − 02
110 7:31E − 01 2.61479 −7:31E − 01 -1.808615

120 2:61E − 01 1.058642 −7:65E − 01 -2.997872

130 −2:20E − 01 −8:99E − 01 −7:67E − 01 -3.049446

140 −6:92E − 01 -2.515767 −7:35E − 01 -1.943798

150 -1.13402 -3.177588 −6:71E − 01 −1:01E − 01
160 -1.52653 -2.633542 −5:78E − 01 1.780833

170 -1.85276 -1.090117 −4:60E − 01 2.986351

180 -2.09855 8:67E − 01 −3:22E − 01 3.058559

190 -2.25321 2.494973 −1:70E − 01 1.970085

200 -2.31004 3.176146 −1:07E − 02 1:34E − 01
210 -2.26657 2.651998 1:49E − 01 -1.752857

220 -2.12469 1.121468 3:02E − 01 -2.9745

230 -1.89055 −8:35E − 01 4:43E − 01 -3.06733

240 -1.57433 -2.473905 5:64E − 01 -1.996149

250 -1.18975 -3.174351 6:60E − 01 −1:67E − 01
260 −7:54E − 01 -2.670157 7:28E − 01 1.724689

270 −2:85E − 01 -1.152689 7:64E − 01 2.96232

280 1:97E − 01 8:02E − 01 7:67E − 01 3.075759

290 6:70E − 01 2.452564 7:37E − 01 2.021988

300 1.113222 3.172203 6:75E − 01 2:01E − 01
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Figure 3: The numerical solution P against the time t.
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Figure 4: The numerical solution J against the time t.
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φ − φ0 = r0 − 0:5χ1MgℓC−1r0
−1 γo ′′ sin−1θ0 + a E r0

−1c cos δ
ffiffiffiffiffiffiffiffi
γo ′′

q� ��

+ 0:5MgℓC−1E2R30γo ′′ − ν∗0

ffiffiffiffiffiffiffiffi
γo ′′

q
r0 + a c E cos δ sin θ0/

ffiffiffiffiffiffiffiffi
γo ′′

q�

+MgℓC−1r0
−1R60γo ′′

i
− 0:17EMgℓC−1

ffiffiffiffiffiffiffiffi
γo ′′

q
0:5 0:33bA−1

1 − a

 ��

� R72′ cos δ + R72 sin δ
� �

− 0:33bA−1
1 + a


 �
R74′ cos δ − R74 sin δ

� ���
t

+ 0:5ε−1
ffiffiffiffiffiffiffiffi
γo ′′

q
φ1 t + t0ð Þ − φ1 t0ð Þ½ � + ε−2 φ2 t + t0ð Þ − φ2 t0ð Þ½ �+⋯,

ð6Þ

where the functions θ1, θ2, θ3, ψ1, ψ2, φ1, φ2, ν0, ν∗0 and the
constants Rij, Rij′ are determined from the correspondence
with the system (1) and (5).

4. Numerical and Analytical Solutions of the
Slow SpinningMotion of a BodyWhenω = 1/3

In this section, we will program the analytical solutions to the
problem mentioned above and represent these solutions
graphically. Also, the numerical solutions of the system of
semilinear differential equations are considered and will be
inferred by the Runge-Kutta method [12] of the fourth rank.
The obtained results are represented graphically under the
same conditions. In the end, we have done comparing
analytical solutions with numerical ones through common
graphical representations. We will denote p2, γ2 by P, J ,
respectively, and their derivatives to time by the symbols
X1 = dP/dt, Y1 = dJ/dt.

4.1. The Analytical Solutions. Let us introduce the variables [13]:

p = c
ffiffiffiffiffiffiffiffi
γ0 ′′

q
p1, γ = γ0 ′′γ1, ð7Þ

then, using (7) and (5), we get

p1 =M1 cos 0:33τ +M2 sin 0:33τ + ε−1

� χ + ℓ1 cos 0:33τ +m1 sin 0:33τ + χ1M3 cos τð Þ

+ ε−2 〠
7

i=0
R1i cos 0:33iτ + R1i′ sin 0:33iτ

� �
+⋯,

γ1 =M3 cos τ + ε−1a M1 cos 0:33τ +M2 sin 0:33τ −M1 cos τð Þ

+ ε−2 〠
6

i=0
R4i cos 0:33iτ + R4i′ sin 0:33iτ

� �
+ R49 cos 3τ

" #
+⋯,

ð8Þ

thus, the analytical solutions p2, γ2 are achieved using a
computer program (see Table 1). These solutions appear in
the formof numerical values dependent on time and the param-
eters of the coherent body. Assume the following data of the
parameters of the slow spinning gyro obtained for this problem:

A = 2:4,
B = 2:4,
C = 3:2,
x0 = 0:0,
y0 = 0:0,
z0 = 3:0,
γ0″ = 0:3,
λ = 0:5,
r0 = 0:000005,
T = 18787751:42E − 6:

ð9Þ

We obtain the following graphical representations of the
analytical solutions (see Figures 1 and 2).

4.2. The Numerical Solutions. Using the semilinear system
(1), using the same data (9) and the initial values for the
analytical solutions, and then applying the fourth-order
Runge-Kutta method through another program, we get the
numerical solutions as in Table 2, while the representations
of their graphs are shown (see Figures 3 and 4).

To verify the accuracy of the analytical solutions
and numerical ones, we compare them graphically (see
Figures 5 and 6).

This comparison showed that the deviations between
analytical and numerical solutions are very small and can
be neglected, and this confirms the accuracy of analytical
large-parameter technique and numerical one.
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Figure 5: The analytical and numerical solutions P against the time t.
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From the figures, we deduce that the periodicity of the
solution J is faster than that for the solution P. Moreover,
the amplitude for solution J is larger than that for the
solution P.

5. Result and Discussion

The analytical and numerical solutions, their derivatives, and
the comparisons between them are given in Tables 1 and 2
and Figures 1–6 which lead us to the following analysis and
discussion. Solution P rotates slowly, but solution J rotates
fastly. The amplitude of P is between ð−3, 3Þ while the
amplitude of J is between ð−4, 4Þ; that is, the amplitude of J
is larger than that for P.

6. Conclusions

We conclude that the equations of motion for a singular case
excluded from the previous works [14] are obtained and
reduced to a semilinear system of the second order of two
variables. New initial conditions of the motion are assumed
like the sufficiently small angular velocity of the body given
initially about the major of the minor axis of the ellipsoid
of inertia. Due to this assumption, we obtain a new parameter
named the large parameter. A new procedure named the
large-parameter technique is given for solving the obtained
system. The geometric interpretations of motions are illus-
trated in this case. Using the fourth-order Runge-Kutta
method, we obtained the numerical solutions for the prob-
lem. A comparison between the analytical and the numerical
solutions is carried out to prove the accuracy of both tech-
niques and solutions obtained. The errors between both tech-
niques are very small and can be neglected. It is possible to
enter the third component of the gyroscopic moment vector
on the movement of the body and deduce the effect of this
rotation on the body as well as its engineering interpretation.
All anomalies that appeared in previous researches [15, 16]
have been treated. The Lagrange gyroscope as a very special
case could also be deduced from the solutions obtained
[17]. The considered techniques give the solutions in a new
domain of motion which is the reflection of one of the previ-
ous works. The numerical and analytical procedures which
are presented in this article can be applied for solving other

problems by reflecting the parameters of the initial condition
of the motion [18–20]. The critical points for this work are
summarized as follows:

(1) The natural frequency value ω = 1/3 treats a perma-
nent singular case in the previous works which can-
not be removed

(2) The angular velocity component ro about the z-axis is
assumed to be sufficiently small instead of sufficiently
large value in the previous works

(3) The solutions p, q, r; γ, γ′, γ″, and Euler’s angles θ, ψ, φ
are determined in a new domain ðτ⟶∞,ro ⟶ 0, ε
⟶∞Þ instead of ðτ⟶ 0, ro →∞,ε⟶ 0Þ in the
previous works

(4) The required initial energy for the motion is low
compared with that in the previous works, and the
spin is weak which gives a weak oscillation case

(5) The parameter ε is large instead of a small one in the
previous works

(6) The body mass center is slightly displaced from the
origin

Nomenclature

OXYZ: The fixed frame in space
Oxyz: The moving frame fixed in the body
ω: The natural frequency value
ro: The angular velocity component about the z

-axis
p, q, r: The components of the angular velocity vector

about the principal axes
γ, γ′, γ″: The components of the fixed unit vector in the

direction of the Z-axis
t: The time of the motion
θ, ψ, φ: Euler’s angles
ε: The large parameter
A, B, C: The inertia moments
ðxo, yo, zoÞ: The body mass center coordinates
λ: The Newtonian attracting center coefficient
T : The periodic time
M: The mass of the body
g: The acceleration of the gravity
ℓ: The distance between the mass center and the

fixed point O.
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