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In view of the shortcomings of the existing multimotor synchronous control strategy, a new method of mean deviation coupling
control for multimotor system via global fast terminal sliding mode control is proposed. Firstly, the mathematical model of
permanent magnet synchronous motor (PMSM) under a d-q reference frame is established. Next, based on the deviation
coupling control, the deviation is calculated by the average speed, and the structure of the deviation coupling control strategy
is optimized. The speed controller of the multimotor system is designed based on the global fast terminal sliding mode control
(GFTSMC) algorithm to improve the synchronization accuracy of the system. In addition, a load torque Luenberger observer
is designed to observe the load in real time. Then, the stability analysis of the controller is carried out by using the Lyapunov
function. Finally, a four-motor experimental platform is built to verify the effectiveness of the proposed control strategy.

1. Introduction

Permanent magnet synchronous motor is widely used in indus-
trial production and electric vehicle because of its high-power
density, simple structure, and high efficiency [1]. However, a
single motor is difficult to meet the needs of high performance
and high precision in many applications, so multi-motor drive
system has become a research hotspot in recent years [2, 3].
Although the same speed signal is given to each motor, the out-
put speed of each motor would be inconsistent due to the load
interference in the working process, and the synchronization
performance of the system would be affected. Therefore, multi-
motor synchronous control has become one of the key technol-
ogies of the multimotor drive system [4]. As early as last
century, research on the synchronous control strategy of multi-
motors has been carried out by researchers. After decades of
development, the master-slave control strategy, crosscoupling
control strategy, adjacent crosscoupling control strategy, ring
coupling control strategy, deviation coupling control strategy,
virtual spindle synchronous control strategy, and so on have
been proposed for the multimotor system [5–13].

In the master-slave control strategy, one motor is
selected as the master motor, the other motor is the slave
motor, and the output speed signal of the master motor is
used as the input speed signal of the slave motor. The struc-
ture is simple [14]. When the master motor speed changes,
the speed of the slave motor changes accordingly. But when
the speed of one slave motor changes, the signal cannot be
fed back to other motors, which causes the speed to be out
of sync [15]. In the crosscoupling control strategy, the speed
difference between the two motors is used as the compensa-
tion signal and fed back to the motor controller [16]. In
order to improve the synchronization performance, fuzzy
control algorithm, adaptive control-algorithm, neural network
algorithm, and second-order sliding mode control algorithm
are applied to the crosscoupling control strategy [17–21].
However, the crosscoupling control strategy is only suitable
for the dual motor system. For this reason, Zhao et al. [9] pro-
posed adjacent crosscoupling control. For any motor, only the
speed of two motors adjacent to it is taken into account. But
when the number of motors is greater than 3, there will always
be a motor whose control is lagging behind [22].
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The ring coupling control takes into account the error
between the motor output speed and the given speed and
the error between the adjacent motor speeds, so it can be
applied to the multimotor system with more than three
motors [11]. However, the speed difference feedback of adja-
cent motors in the ring coupling control is unidirectional.
When the number of motors is large, the whole system has
a large feedback delay, and its response speed needs to be
improved. According to the relationship between the speed
difference and the speed deviation of each motor, the devia-
tion coupling control compensates the speed of each motor
to achieve the advantages of good synchronization perfor-
mance and fast response speed [4]. But the structure of the
system is complex, and the calculation of the system is very
large [23]. The synchronous control of virtual spindle is
evolved from mechanical axis, and the link of each unit is
no longer constrained by distance and has larger output
power. However, there is an essential defect in its structure;
there is a steady-state error between the output of the motor
and the reference of the output of the virtual axis. When the
system is started or stopped or when a single motor is dis-
turbed, there would be a phenomenon of misalignment
between the axes [24].

The control accuracy of multimotor synchronous con-
trol strategy is closely related to its control algorithm. In this
regard, many control algorithms have been proposed, such
as proportional integral derivative (PID) control, sliding
mode control (SMC), fuzzy control, and neural network
control [25–28]. Because PMSM is a nonlinear, multivari-
able, and strongly coupled control object [29] and sliding
mode control has the advantages of simple algorithm and
insensitive to parameter changes and disturbances, so sliding
mode control algorithm is very suitable for multimotor syn-
chronous control [30]. However, because of the discontinu-
ous switching characteristics of conventional SMC, the
chattering phenomenon of increasing system energy con-
sumption and reducing system stability is caused. In order
to suppress the chattering phenomenon, the concepts of
“quasisliding mode” and “boundary layer” were introduced
into the design of SMC [31], and the chattering phenome-
non is suppressed effectively. However, the control effect
and inhibition effect cannot be optimal at the same time
because of the selection of boundary layer thickness. Gao
introduced the concept of reaching law into the design of
sliding mode variable structure control [32] and proposed
a chattering elimination method, which ensures the dynamic
quality of sliding mode dynamic arrival process by adjusting
the parameters of reaching law. But larger parameters will
cause chattering. Sun et al. [33] proposed a fuzzy sliding
mode control strategy by combining fuzzy control rules with
sliding mode variable structure control to achieve the pur-
pose of suppressing chattering.

Although the above methods can suppress the chattering
to a certain extent, the chattering problem cannot be solved
fundamentally, which is rooted in the switching term in the
conventional SMC. One of the methods to solve the chatter-
ing problem is to design terminal sliding mode control
(TSMC) strategy by using nonlinear function instead of
switching term in SMC [34]. Zhuang et al. [35] designed a

terminal sliding surface for high-order nonlinear systems
to overcome the disadvantage of discontinuous derivatives
of conventional SMC sliding surface. But the common ter-
minal sliding mode controller has singularity problem. In
order to solve the singular problem in the ordinary TSMC,
Feng et al. [36] put forward a nonsingular terminal sliding
mode control strategy, which solves the singular problem
better. For nonlinear systems, Liu et al. [37] proposed
GFTSMC, which avoids the singularity problem, and the
response speed of the system is improved, and the chattering
in the SMC is eliminated effectively.

Aiming at the shortcomings of the existing multimotor
synchronization control strategy, mean deviation coupling
control for multimotor system via global fast terminal slid-
ing mode control is proposed in this paper, and the advan-
tages of good synchronization performance and fast
response speed of deviation coupling control is retained.
The average speed is used to replace the speed difference
between each motor, which simplifies the structure of devia-
tion coupling control strategy and reduces the calculation of
the system. The GFTSMC algorithm is used to solve the
chattering problem in sliding mode control and to improve
the response speed and control accuracy of the system. In
addition, to solve the problem of unmeasurable load torque,
a load torque Luenberger observer is designed to estimate
the load of the motor in real time and feedback it to the con-
troller. The remaining chapters of this paper are arranged as
follows: in Section 2, the mathematical model of PMSM is
established. The mean deviation coupling controller for mul-
timotor system via global fast terminal sliding mode control
and load torque Luenberger observer is designed in Section
3. In Section 4, the stability of the controller is analyzed by
using the Lyapunov function, and the four-motor system
platform is built to verify the effectiveness of the mean devi-
ation coupling control strategy for multimotor system via
global fast terminal sliding mode control in Section 5, and
the conclusion of this paper is given in Section 6.

2. Mathematical Mode of PMSM

The rotor field-oriented control of PMSM with id = 0 is
adopted to establish the dynamic mathematical model of
PMSM in d - q coordinate system:

ud = Rid − ωψq +
dψd

dt
,

uq = Riq + ωψd +
dψq

dt
,

8>><>>: ð1Þ

where ud and uq represent the components of the d and q
axis of stator voltage, respectively; id and iq represent the
components of the d and q axis of stator current, respec-
tively; R represents the stator resistance; ω represents the
rotor electric angular velocity; and ψd and ψq represent the
components of the d and q axis of stator flux, respectively.
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The stator flux linkage equation of PMSM is as follows:

ψd = ψf + Ldid ,
ψq = Lqiq,

(
ð2Þ

where ψf is the flux from the rotor permanent magnet turn
chain to the stator winding and Ld and Lq are the inductance
of the d - q axis, respectively. The electromagnetic torque
equation of PMSM is as follows:

Te =
3
2 p ψdiq − ψqid
� �

: ð3Þ

Since the motor is surface-mounted PMSM, Ld = Lq,
substituting equation (2) into equation (3), the following
equation can be obtained:

Te =
3
2 pψf iq: ð4Þ

The motion equation of PMSM is as follows:

Te − Tl − ηω = J _ω, ð5Þ

where Tl is the load torque of the motor, η is viscous damp-
ing, and J is the moment of inertia of the rotor. By substitut-
ing equation (4) into equation (5), the following equation
can be obtained:

_ω = 3p
2J ψf iq −

η

J
ω −

Tl

J
: ð6Þ

For the multimotor system, the motion equation of the i
th motor is as follows:

_ωi =
3p
2J ψf iiq −

η

J
ωi −

Til

J
, ð7Þ

where i is the subscript (the same below) used to mark the
variables of the ith motor. ωi represents the speed of the i
th motor, iiq represents the q axis component of the stator
current of the ith motor, and Til represents the external load
of the ith motor. Set

a = 3p
2J ψf ,

ui = iiq,

b = η

J
,

di =
Til

J
:

ð8Þ

Then, equation (7) can be abbreviated as

_ωi = aui − bωi − di: ð9Þ

3. Controller Design

Based on the idea of deviation coupling control and the
GFTSMC algorithm, the mean deviation coupling control
strategy via global fast terminal sliding mode control is pro-
posed. The control structure block diagram is shown in
Figure 1.

Given the reference speed ωr of each motor, there is an
error between the actual speed and the given speed when
the motor system starts or changes speed, which is called
tracking speed error er,i:

er,i = ωr − ωi: ð10Þ

Under the action of the speed tracking controller, the
actual speed will finally reach the given speed:

lim
t⟶+∞

er,i = 0: ð11Þ

Due to the interference of the external load of each
motor, the speed of the motor changes in a certain period
of time, which makes the speed of each motor inconsistent.
Under the multimotor synchronous control strategy pro-
posed in this paper, the speed of a single motor is compared
with the average speed, and the error between the speed of
each motor and the average speed em,i is obtained:

em,i = ωm − ωi: ð12Þ

The GFTSMC algorithm is used to compensate the aver-
age speed error, so that the speed of each motor is the same,
and the synchronization of multimotor is realized, and the
control goal is finally achieved:

ω1 = ω2 =⋯⋯ = ωn = ωm = ωr , ð13Þ

where ωrði = 1, 2,⋯, nÞ is the speed of each motor and ωm is
the average speed:

ωm = 1
n
〠
n

i=1
ωi: ð14Þ

From the above control process, it can be seen that the
controller of each motor can be regarded as two subcontrol-
lers, as shown in Figure 2. One is the speed tracking control-
ler Cr,i, which makes the motor track the given speed signal
accurately; the other is the speed compensation controller
Cm,i, which compensates the difference between the motor
speed and the average speed. This control structure solves
the coupling problem of multimotor system. In the deviation
coupling control, there is direct speed feedback between
motors, which leads to the coupling problem of the multi-
motor system. Through the mean deviation coupling control
strategy, the speed feedback obtained by the motor comes
from its own speed and the average speed of all motors.
The two fed back speeds form two speed differences, which
are output to the current signal of a single motor through
the action of the speed controller. This simplifies the
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problem of multimotor synchronous control to the problem
of single motor speed control. The coupling problem of the
multimotor system is solved.

3.1. A General Method for GFTSMC Design. A high-order
single-input single-output nonlinear system is considered:

_xm = xm+1, m = 1, 2,⋯, n − 1,
_xn = f xð Þ + g xð Þu,

(
ð15Þ

where f ðxÞ and gðxÞ are smooth functions in the Rn
field

and gðxÞ ≠ 0, u ∈ R1. A fast sliding mode with recursive
structure is represented as [38]

s1 = s0 + α0s0 + β0s
q0/p0
0 ,

s2 = s1 + α1s1 + β1s
q1/p1
1 ,

⋯

sn−1 = sn−2 + αn−2sn−2 + βn−2s
qn−2/pn−2
n−2 ,

8>>>>><>>>>>:
ð16Þ

where qj, pj ðqj < pjÞ (j = 1, 2,⋯n − 2), and αj, βj > 0 are odd
numbers. In order to avoid the singularity problem in the
global fast terminal sliding mode, the following conditions
must be satisfied [39]:

qj
pj

> n − j − 1
n − j

: ð17Þ

The global fast terminal sliding mode control law is
designed as follows [38]:

u tð Þ = −
1

g xð Þ f xð Þ + 〠
n−2

k=0
αks

n−k−1ð Þ
k + 〠

n−2

k=0
βk

dn−k−1

dtn−k−1
sqk/pkk + φsn−1 + γsq/pn−1

 !
,

ð18Þ

where s0 = x1, φ, γ > 0, p and q (p > q) are positive odd num-
bers. In the control law (18), the time for the state of the sys-
tem to reach the sliding surface along the sliding surface is
[38]

tsn−1 =
p

φ p − qð Þ ln φ sn−1 0ð Þð Þ p−qð Þ/p + γ

γ
: ð19Þ

3.2. Design of Speed Tracking Controller. The first derivative
of velocity tracking error is

_er,i = _ωr − _ωi = _ωr − aui + bωi + di: ð20Þ

Since PMSM is a second-order single-input single-
output nonlinear control system, according to equation
(15), the system state variable of the speed tracking control-
ler Cr,i can be set as

xi1 =
ðt
0
er,i τð Þdτ,

xi2 = er,i:

8<: ð21Þ

The global fast terminal sliding surface of the speed
tracking controller is defined as

si = er,i + α
ðt
0
er,i τð Þdτ + β

ðt
0
er,i τð Þdτ

� �q/p
, ð22Þ

where α, β > 0 and p and q (p > q) are positive odd numbers.
In order to avoid the singularity problem, according to equa-
tion (10), when n = 2 and j = 0, p and q should satisfy the
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Figure 1: Mean deviation coupling control block diagram.
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following conditions:

q < p < 2q: ð23Þ

The speed tracking controller is designed as follows:

ur,i =
1
a

_ωr + bωi + di + aer,i +
βd

Ð t
0er,i τð Þdτ

� �q/p
dt

+ φsi + γsq/pi

264
375:

ð24Þ

3.3. Design of Speed Compensation Controller. The first
derivative of average velocity error is as follows:

_em,i =
1
n
〠
n

j=1
_ωj − _ωi =

1
n
〠
n

j=1
aur,j − bωj − dj

� �
− aur,i − bωi − dið Þ

= a
1
n
〠
n

j=1
ur,j − ur,i

 !
− b

1
n
〠
n

j=1
ωj − ωi

 !
−

1
n
〠
n

j=1
dj − di

 !

= a
1
n
〠
n

j=1
ur,j − ur,i

 !
− bem,i −

1
n
〠
n

j=1
dj − di

 !
:

ð25Þ

The speed compensation controller is defined as

um,i =
1
n
〠
n

j=1
ur,j − ur,i: ð26Þ

Equation (25) can be simplified as

_em,i = aum,i − bem,i −
1
n
〠
n

j=1
dj − di

 !
: ð27Þ

The system state variables of speed compensation con-
troller Cm,i are set as follows:

yi1 =
ðt
0
em,i τð Þdτ,

yi2 = em,i:

8<: ð28Þ

The global fast terminal sliding mode surface of the
speed compensation controller is expressed as follows:

δi = em,i + α
ðt
0
em,i τð Þdτ + β

ðt
0
em,i τð Þdτ

� �q/p
: ð29Þ

The speed compensation controller is designed as
follows:

um,i =
1
a

bem,i +
1
n
〠
n

j=1
dj − di − αem,i −

βd
Ð t
0em,i τð Þdτ

� �q/p
dt

− φδi − γδq/pi

264
375:

ð30Þ

3.4. Design of Load Torque Luenberger Observer. In the
actual motor control system, the speed is measurable, but
the load torque Til is not so Til and di are unknown. In
the design of motor controller, one of them includes di.
Therefore, it is necessary to design a load torque observer
to feed back the observed values of Til and di to the speed
controller.

The state variable, input, and output of load torque
Luenberger observer are selected as follows:

x =
ωi

Til

" #
,

ui = Te,
y = ωi

ð31Þ

The general form of state space variables is as follows:

_x =Ax + Bui,
y = Cx +Dui,

ð32Þ

where A, B, C, and D are coefficient matrices, which depend
on the parameters of PMSM. In this paper, when the control
frequency is very high and the sampling period is very small,
the load torque is a constant value in a sampling period. By
changing equation (32) to the state space expression, it can
be obtained that

_ωi

_Til

" #
=

−η
J

−1
J

0 0

24 35 ωi

Til

" #
+

1
J

0

24 35Tie,

y = 1 0½ �
ωi

Til

" #
:

ð33Þ

The load torque Luenberger observer is designed as fol-
lows:

_̂x =Ax̂ + Bui + L y − ŷð Þ,
ŷ =Cx̂,

(
ð34Þ

where L is a coefficient matrix and

L =
L1

L2

" #
,

A =
−η
J

− L1
−1
J

−L2 0

24 35,
B =

1
J

0

24 35,
C = 1 0½ �:

ð35Þ
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Equation (34) is derived as follows:

_̂x = A‐LCð Þx̂ + Bui + Ly: ð36Þ

Substituting equations (31) and (35) into equation (36),
the following results can be obtained:

_bω i

_̂Til

24 35 =
−η
J

− L1
−1
J

−L2 0

24 35 bω i

T̂ il

" #
+

1
J

0

24 35Tie +
L1

L2

" #
ωi:

ð37Þ

Equation (37) is simplified as following:

_bω i =
1
J

Tie − T̂il − ηbω i + JL1 ωi − bω ið Þ� �
_̂Til = L2 ωi − bω ið Þ

8><>: ð38Þ

To make the observed load torque approach the real
value, another constraint is that the eigenvalue of the A - L
C matrix is less than 0 [40]. The eigenvalues of the A-LC
matrix are obtained:

λI −
−η
J

− L1
−1
J

−L2 0

24 35������
������ = 0, ð39Þ

where I is the unit matrix. Equation (39) is converted into
the following form:

λ2 + η

J
+ L1

� �
λ −

L2
J
= 0: ð40Þ

Set the value of the eigenvalue λ as a1, a2 ða1 < 0, a2 < 0Þ
, and the following result can be obtained:

λ2 − a1 + a2ð Þλ + a1a2 = 0: ð41Þ

By comparing equations (40) and (41), the following
equation can be obtained:

L1 = − a1 + a2 +
η

J

� �
,

L2 = − a1a2 Jð Þ:

8><>: ð42Þ

By changing the values of a1 and a2, the speed of the
observed load torque value approaching the real value is
adjusted. After the load torque observed values of each
motor is obtained, the observed values of di can be obtained
as follows:

d̂i =
T̂ il

J
: ð43Þ

Substitute d̂i for di in equations (24) and (30) to obtain

ur,i =
1
a

_ωr + bωi + d̂i + aer,i +
βd

Ð t
0er,i τð Þdτ

� �q/p
dt

+ φsi + γsq/pi

264
375,

um,i =
1
a

bem,i +
1
n
〠
n

j=1
d̂ j − d̂i − αem,i −

βd
Ð t
0em,i τð Þdτ

� �q/p
dt

− φδi − γδq/pi

264
375:

ð44Þ

4. Stability Analysis

Consider a Lyapunov function:

V = 1
2〠

n

i=1
s2i +

1
2〠

n

i=1
δ2i : ð45Þ

The first derivative of V is obtained:

_V = 〠
n

i=1
si _si + 〠

n

i=1
δi
_δi: ð46Þ

The first-order differential of si is obtained:

_si = _er,i + αer,i tð Þ + β
d
Ð t
0er,i τð Þdτ

� �q/p
dt

: ð47Þ

Substituting equation (20) into equation (47), it can be
obtained that

_si = _ωr − aur,i + bωi + di + αer,i tð Þ + β
d
Ð t
0er,i τð Þdτ

� �q/p
dt

:

ð48Þ

Substituting equation (24) into equation (48), it can be
obtained that

_si = −φsi − γsq/pi , ð49Þ

si _si = −φs2i − γs p+qð Þ/p
i : ð50Þ

The first derivative of δi is obtained:

_δi = _em,i + αem,i tð Þ +
βd

Ð t
0em,i τð Þdτ

� �q/p
dt

: ð51Þ

Substituting equation (27) into equation (51), it can be
obtained that

_δi = aum,i − bem,i −
1
n
〠
n

j=1
dj − di

 !
+ αem,i tð Þ

+
βd

Ð t
0em,i τð Þdτ

� �q/p
dt

:

ð52Þ
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Substituting equation (30) into equation (52), the follow-
ing equation can be obtained:

_δi = −φδi − γδq/pi , ð53Þ

δi
_δi = −φδ2i − γδ

p+qð Þ/p
i : ð54Þ

Substituting equations (50) and (54) into (46), the fol-
lowing equation can be obtained:

_V = 〠
n

i=1
si _si + 〠

n

i=1
δi
_δi = 〠

n

i=1
−φs2i − γs p+qð Þ/p

i

� �
+ 〠

n

i=1
−φδ2i − γδ

p+qð Þ/p
i

� �
:

ð55Þ

Since p and q are positive odd numbers and ðp + qÞ are
even numbers, the following result can be obtained:

s p+qð Þ/p
i ≥ 0,

δ
p+qð Þ/p
i ≥ 0:

ð56Þ

It can be obtained that _V ≤ 0. According to the Lyapu-
nov stability theorem, the controller is asymptotically stable.

5. Experiments

In order to verify the effectiveness of the control strategy
proposed in this paper, a multimotor experimental platform
is built, which is composed of four permanent magnet syn-
chronous motors with the same parameters. The experimen-
tal platform is shown in Figure 3. The work process of the
experimental platform is as follows: (1) edit instruction data;
(2) the upper computer software imports instruction data;
(3) the upper computer sends the instruction data to each
motor controller through an RS-485 multifunction con-
verter; (4) the controller performs control according to the
received instruction; and (5) the data acquisition card
EM9636 collects the speed and torque signals and processes
them through LabVIEW software, and then, the data are
recorded. The parameters of the motor are shown in
Table 1. The control structure of a single motor using the
control strategy proposed in this paper is shown in Figure 4.

In the experiment, the master-slave control (MSC) strat-
egy (motor 1 is the master motor), ring coupling control
(RCC) strategy, adjacent crosscoupling control (ACCC)
strategy, and mean deviation coupling control (MDCC)
strategy are compared. In order to simulate the variety of
load changes in the actual situation, two kinds of load forms
are given to the multimotor system in the experiment:

(1) Alternate loading of each motor after no-load start

(2) Step change or continuous change of load after start-
ing under unbalanced load

5.1. Alternate Loading of Each Motor after No-Load Start.
After the motor reaches the given speed ωr = 600 r/min, load

motor 1 with 10N·m at 1 s and remove the load at 2 s; load
motor 2 with 20N·m at 3 s and remove the load at 4 s; load
motor 3 with 30N·m at 5 s and remove the load at 6 s; and
load motor 4 with 40N·m at 7 s and remove the load at 8 s.
Table 2 shows the load size and time period of each motor.

Figure 5 shows the motor speed curves of the four con-
trol strategies. The orange curve represents the speed curve
of motor 1, the green curve represents the speed curve of
motor 2, the blue curve represents the speed curve of motor
3, and the red curve represents the speed curve of motor 4. It
can be seen from the Figure 5 that when the load changes
suddenly, the motor speed will fluctuate. Under the action
of the controller, it will reach the steady state again after a
period of time. Among the four control strategies, the speed
fluctuation of the MSC is the largest, and the speed fluctua-
tion reaches 138 r/min when the motor 4 is suddenly loaded
at 7 s; under the same condition, the speed fluctuation of the
MDCC is only 55 r/min, which is the smallest of the four
control strategies, and its adjustment time is also the short-
est. From the speed curve distribution of the four motors,
the speed curve distribution of the MSC is the most discrete.
The RCC and the ACCC are better than the MSC; however,
they are all worse than the MDCC.

In order to evaluate the synchronization performance of
each control strategy more intuitively, two kinds of statistics
are used to describe the synchronization degree of each con-
trol strategy:

(1) Range

Range =max ωið Þ −min ωið Þ,  i = 1, 2, 3, 4ð Þ ð57Þ

(2) Mean deviation (MD)

MD= 1
4〠

4

i=1
ωi − ωmj j ð58Þ

Figure 6 shows the range curves of the four control strat-
egies. The orange curve represents the MSC, the green curve
represents the ACCC, the blue curve represents the RCC,
and the red curve represents the MDCC. It can be seen from
Figure 6 that when the load increases suddenly, with the
increase of the load value, the range of the four control strat-
egies become larger. When loading motor 1, since motor 1 of
the MSC is the master motor, the range value of the MSC at
1 s is not the largest. When the load is suddenly increased on
the slave motor, the range of MSC is the largest. The range of
the four control strategies at the moment of sudden load is
shown in Table 3.

It can be seen from Table 3 that when motor 1 load
changes suddenly, the range of the RCC is the largest, reach-
ing 18.0 r/min and 18.1 r/min, and the range of the MDCC is
the smallest, being 8.0 r/min and 7.7 r/min, respectively.
When motor 2 load changes suddenly, the range of the
MSC is the largest, reaching 66.7 r/min and 67.0 r/min. The
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range of the RCC is 36.4 r/min, and the range of the ACCC is
36.4 r/min. The range is 26.0 r/min and 26.1 r/min, and the
range of the MDCC is the smallest, which is 16.8 r/min
and 16.5 r/min. When motor 3 load changes suddenly, the
range value of the MSC is the largest, which is 101.5 r/min
and 101.9 r/min, followed by the RCC, which is 54.7 r/min
and 55.1 r/min. The range of the ACCC is 39.3 r/min and
38.6 r/min, and the range of the MDCC is 25.6 r/min and
25.9 r/min. When the load of motor 4 changes suddenly,
the range of MSC is still the largest, 137.4 r/min and
136.9 r/min; the range of ACCC is 51.6 r/min and
51.3 r/min; the range of RCC is 73.1 r/min and 73.3 r/min;
and the range of MDCC is the smallest, 34.9 r/min and
33.9 r/min.

Figure 7 shows the mean deviation curves of the four
control strategies. The orange curve represents the MSC,
the green curve represents the ACCC, the blue curve repre-
sents the RCC, and the red curve represents the MDCC. It
can be seen from Figure 7 that when the load changes sud-
denly, the mean deviation of each control strategy increases
with the increase of the load value. When the load of motor
1 changes suddenly, the RCC has the largest mean deviation,
which is 5.9 r/min and 5.8 r/min; the ACCC has the mean
deviation of 4.3 r/min and 4.2 r/min; the MSC has the mean
deviation of 3.7 r/min and 3.4 r/min; and the MDCC has the
smallest mean deviation, which is 3.0 r/min and 2.9 r/min.
When the load of motor 2 changes suddenly, the mean devia-
tion of the MSC is the largest, being 25.1 r/min and 25.2 r/min,
followed by the mean deviation of the RCC, 11.8 r/min, and
the mean deviation of ACCC is 8.5 r/min and 8.4 r/min; the
mean deviation of the MDCC is the smallest, which is

6.3 r/min and 6.2 r/min. When the load of motor 3 changes
suddenly, the mean deviation of the MSC is still the largest,
which is 38.0 r/min and 38.1 r/min, followed by themean devi-
ation of the RCC, which is 17.6 r/min and 17.8 r/min. The
mean deviation of the ACCC is 12.7 r/min and 12.6 r/min,
and the mean deviation of the MDCC is the smallest, which
is 9.5 r/min and 9.6 r/min. When the load of motor 4 changes
suddenly, the mean deviation of MSC is the largest, which is
68.6 r/min and 68.4 r/min, about three times of the mean devi-
ation of RCC; the mean deviation of ACCC is 16.8 r/min and
16.9 r/min; and the mean deviation of MDCC is the smallest,
which is 13.0 r/min and 12.6 r/min. Table 4 shows the mean
deviation of the four control strategies when the motor load
changes suddenly.

It can be seen from the data that no matter the range or
the average difference, under the same load conditions, the
four-motor system adopting the MDCC can get the mini-
mum range and mean deviation, and it can be seen from
Figures 6 and 7 that the range and mean deviation of the
MDCC converge faster than the other three strategies. The
experimental results show that under the condition of single
motor loading successively, the speed synchronization
degree of multimotor system with MDCC is better.

Figure 8 shows the curve of the real value of the load tor-
que and the observed value obtained by the Luenberger
observer. In Figure 8, the red curve represents the real value
of load torque, and the blue curve represents the observed
value. It can be seen from the figure that the observed value
of load torque can better track the real value. Only when the
load changes suddenly, there is an error between the
observed value and the real value, and the error will con-
verge to zero quickly.

5.2. Step Change or Continuous Change of Load after Starting
under Unbalanced Load. The given speed of each motor is
ωr = 600 r/min, where motor 1 and motor 2 start with no
load, motor 3 starts with a load of 10N·m, and motor 4 starts
with a load of 30N·m. After reaching the given speed, motor
1 loads 10N·m at 1.5 s, until 3 s, the load increases to 30N·m,
and the load drops to 0 at 4 s; motor 2 has a sudden load
increase of 30N·m at 2 s, then a sudden load drop of
10N·m at 3.5 s, and then a sudden drop to 0 at 4.5 s; motor
3 started under a load of 10N·m, and then, from 2.5 s, the
load torque suddenly dropped to 0 when the speed increased

(a) (b)

Figure 3: Four-motor experimental platform: (a) four-motor platform; (b) control platform.

Table 1: Parameters of PMSM.

Symbol Quantity Value

ψf Rotor magnetic flux 0.175Wb

Ld Inductance of d axis 0.835mH

Lq Inductance of q axis 0.835mH

R Stator resistance 2.875Ω

J Rotor inertia 0.003 kg·m2

B Viscous friction coefficient 0.008N·m·s
p Number of pole pairs 4
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Figure 4: Structure block diagram of single motor system.

Table 2: Load size and time period of each motor (N·m).

0—1 s 1—2 s 2—3 s 3—4 s 4—5 s 5—6 s 6—7 s 7—8 s

Motor 1 0 10 0 0 0 0 0 0

Motor 2 0 0 0 20 0 0 0 0

Motor 3 0 0 0 0 0 30 0 0

Motor 4 0 0 0 0 0 0 0 40
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Figure 5: Motor speed curves of the four control strategies.
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to 5 s at a speed of 4 t; motor 4 was started under a load of
30N·m, and then, from 2.5 s, the load torque suddenly
dropped to 0 when the speed decreases to 5 s at a speed of
6 t. Table 5 shows the load of each motor in each time period.

Figure 9 shows the motor speed curves of each control
strategy under this kind of load. The orange curve, green
curve, blue curve, and red curve represent the speed of
motor 1, motor 2, motor 3, and motor 4, respectively.
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Figure 6: The range curves of four motors for the four control strategies.

Table 3: The range of the four control strategies at the moment of the motor load changes suddenly (r/min).

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

MSC 15.0 13.7 66.7 67.0 101.5 101.9 137.4 136.9

ACCC 13.5 13.0 26.0 26.1 39.3 38.6 51.6 51.3

RCC 18.0 18.1 36.4 36.4 54.7 55.1 73.1 73.3

MDCC 8.0 7.7 16.8 16.5 25.6 25.9 34.9 33.9
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Figure 7: The mean deviation curves of the four control strategies.
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It can be seen from Figure 9 that the speed fluctuation of
the motor is the biggest at the two moments when the
load changes the most. The speed fluctuation of the
four-motor system adopting the MSC reaches 100 r/min
at these two moments, while the speed fluctuation of
the four-motor system adopting the MDCC is 38 r/min
at these two moments, and the speed fluctuation values
of the four-motor system adopting ACCC and RCC are
between them, which are 52 r/min and 59 r/min, respec-
tively. Figure 9 also shows that the controller can better
regulate the speed of the motor to keep it in a steady
state during the period of gradual load change of the
motor.

Figure 10 shows the range curve of the four control strat-
egies under the second load form. Due to unbalanced start-
ing, there will be speed difference when the motor starts to
a stable state. It can be seen from Figure 10 that the range
of the MSC at startup is the largest, reaching 110.2 r/min,
followed by the range of the RCC, 49.7 r/min, and the
range of ACCC is 29.1 r/min. The range of the MDCC is
the smallest, which is 24.4 r/min. At 1.5 s, when the load
of motor 1 suddenly increases by 10N·m, the range of
the MSC, ACCC, RCC, and MDCC is 15.0 r/min,
13 r/min, 18.5 r/min, and 8.1 r/min, respectively. At 2 s,
when the load of motor 2 increased by 30N·m, the range
of the MSC is the largest, which is 102.7 r/min, followed

Table 4: The mean deviation of four control strategy when the motor load changes suddenly (r/min).

1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

MSC 3.7 3.4 25.1 25.2 38.0 38.1 68.6 68.4

ACCC 4.3 4.2 8.5 8.4 12.7 12.6 16.9 16.8

RCC 5.9 5.8 11.8 11.8 17.6 17.8 23.7 23.7

MDCC 3.0 2.9 6.3 6.2 9.5 9.6 13.0 12.6
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Figure 8: The curve of actual value and observed value of load torque.
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by the range of the RCC, which is 55.0 r/min. The range of
the ACCC is 38.7 r/min, and the range of the MDCC is
the smallest, which is 25.7 r/min. At 3 s, when the load
of motor 1 increases from 10N·m to 30N·m, the range
of the RCC is the largest, which is 36.5 r/min, and the
range of the MSC is 28.8 r/min, the range of the ACCC
is 26.3 r/min, and the range of the MDCC is the smallest,
which is 17.5 r/min. At 3.5 s, the load of motor 2 dropped
from 30N·m to 10N·m. At this moment, the range of the
MSC is the largest, which is 67.9 r/min, and the range of
the RCC is 36.6 r/min, the range of the ACCC is
26.2 r/min, and the range of the MDCC is 16.6 r/min. At
4 s, when the load of motor 1 suddenly drops from
30N·m to 0, the range of the RCC is the largest at

54.6 r/min, and the range of the MSC is 45.4 r/min. The
range of the ACCC is 39.0 r/min, and the range of the
MDCC is the smallest, which is 25.3 r/min. At 4.5 s, when
the load of motor 2 drops suddenly from 10N·m to 0, the
range of MSC, ACCC, RCC, and MDCC is 35.5 r/min,
13.0 r/min, 18.0 r/min, and 8.3 r/min, respectively. At 5 s,
the load of motor 3 dropped from 20N·m to 0, and the
load of motor 4 dropped from 15N·m to 0. At this
moment, the range of the MSC is the largest, which is
67.7 r/min. The range of the RCC is 28.0 r/min, the range
of the ACCC is 17.1 r/min, and the range of the MDCC is
the smallest, which is 16.9 r/min. Table 6 shows the range
of the four control strategies at the moment of the motor
load changes suddenly.
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Figure 9: Motor speed curves of the four control strategies.

Table 5: The load of each motor in each time period (N·m).

0—1.5 s 1.5—2 s 2—2.5 s 2.5—3 s 3—3.5 s 3.5—4 s 4—4.5 s 4.5—5 s 5—6 s

Motor 1 0 10 30 0

Motor 2 0 30 10 0

Motor 3 10 4 t 0

Motor 4 30 - 6 t + 45 0
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Figure 11 shows the mean deviation curve of the four
control strategies under the second load form. When the
load of motor 1 changes suddenly, among the four control
strategies, the mean deviation of the RCC is the largest;
when the load of other motors changes suddenly, the mean
deviation of the MSC is the largest. Table 7 shows the mean

deviation of the four control strategies when the load of each
motor changes suddenly under this type of load.

It can be seen from Table 7 that when there is a sudden
change in the load of motor 1, the mean deviation of the
RCC is the largest; the order from large to small is as follows:
the mean deviation of RCC, the mean deviation of MSC, the
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Figure 10: The range curve of the four control strategies.

Table 6: The range of four control strategy at the moment of the motor load changes suddenly (r/min).

0 s 1.5 s 2 s 3 s 3.5 s 4 s 4.5 s 5 s

MSC 110.2 15.0 102.7 28.8 67.9 45.4 35.5 67.7

ACCC 29.1 13.0 38.7 26.3 26.2 39.0 13.0 17.1

RCC 49.7 18.5 55.0 36.5 36.6 54.6 18.0 28.0

MDCC 24.4 8.1 25.7 17.5 16.6 25.3 8.3 16.9
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Figure 11: The mean deviation curve of the four control strategies.
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mean deviation of ACCC, and the mean deviation of
MDCC; when there is a sudden change in the load of the
other motors, the mean deviation of the MSC is the largest,
followed by the mean deviation of the RCC, the mean devi-
ation of the MDCC is the smallest, and the mean deviation
of the ACCC is between the mean deviation of RCC and
the MDCC.

Tables 6 and 7 and Figures 10 and 11 show that under
the second load form, the range and mean deviation of the
four-motor system using MDCC are the smallest, and the
time for the range and average difference to converge to 0

are the shortest. The test results show that the multimotor
system using MDCC has the best degree of synchronization
in the case of sudden or gradual changes in load after unbal-
anced startup.

Figure 12 shows the curve of the real value of the load
torque and observed value obtained by the observer. It can
be seen from Figure 12 that no matter the load is abrupt or
gradual, the load torque Luenberger observer can better
track the actual value, and the error between them can
quickly converge to 0. The experimental results show that
the load torque Luenberger observer is effective.

Table 7: The mean deviation of four control strategy at the moment of the motor load changes suddenly (r/min).

0 s 1.5 s 2 s 3 s 3.5 s 4 s 4.5 s 5 s

MSC 43.8 3.6 38.3 7.1 25.2 11.3 12.1 27.2

ACCC 10.6 4.2 12.7 8.6 8.5 12.6 4.3 7.1

RCC 14.7 6.0 17.8 11.9 11.9 17.7 5.8 11.4

MDCC 8.1 3.0 9.5 6.5 6.2 9.4 3.1 7.0
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Figure 12: The curve of actual value and observed value of load torque.

14 Advances in Mathematical Physics



6. Conclusions

This study has successfully proved the effectiveness of the
proposed mean deviation coupling control for the multimo-
tor system via global fast terminal sliding mode control.
First, the mathematical model of the PMSM is established,
which provides a mathematical foundation for the controller
design; secondly, combined with the global fast terminal
sliding mode control algorithm, the multimotor mean devi-
ation coupling synchronous controller is designed, and the
deviation coupling control strategy is optimized. The struc-
ture reduces the calculation amount of the control system
and improves the synchronization accuracy of the system.
In addition, the load torque Luenberger observer is designed
to observe the external load of the motor in real time and
feed it back to the controller. The stability of the controller
is analyzed based on the Lyapunov stability theorem, and it
is concluded that the designed controller is asymptotically
stable. Finally, a four-motor experimental platform was
built. The experimental results show that the load torque
Luenberger observer can better estimate the actual load
value. By comparing with other commonly used multimotor
synchronous control strategies, the result of the proposed
control strategy with higher synchronization accuracy is
obtained, and the effectiveness of the proposed control strat-
egy is verified. The effectiveness of the proposed control
strategy is verified.
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