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For the generalized mCH equation, we construct a 2-peakon solution on both the line and the circle, and we can control the
size of the initial data. The two peaks at different speeds move in the same direction and eventually collide. This phenomenon
is that the solution at the collision time is consistent with another solitary peakon solution. By reversing the time, we get two
new solutions with the same initial value and different values at the rest of the time, which means the nonuniqueness for the
equation in Sobolev spaces Hs is proved for s < 3/2.

1. Introduction

The Camassa-Holm (CH) equation [1–3] is an integrable
system with a bi-Hamiltonian structure, which is derived
by Camassa and Holm using the asymptotic expansion in
the Hamiltonian for Euler’s equation. A special kind of weak
solution for this equation describes the solitary wave at the
peak, called peakons [4, 5], whose wave slope is discontinu-
ous at the peak. The interactions between any number of
peakons were described by the multipeakon solutions [6,
7], in the form of a linear superposition of peakons whose
amplitude and velocity change with time.

In recent years, people’s great interest in the research of
Camassa-Holm (CH) equation has inspired people to
explore the CH-type equation, especially the equations that
admit peakons and mutipeakons. The CH, Degasperis-
Procesi (DP) [8–13], modified CH (mCH) [14–19], and
Novikov (NE) [20–22] equations are all integrable systems
that admit peakons and mutipeakons. Of course, there are
also some nonintegrable systems that admit peakons and
mutipeakons, such as the b-family of equations [23], the
modified b-family of equations [24], and the cubic ab-
family of equations [25]. It is worth noting that the b-
family of equations includes the CH equation and the DP

equation, the modified b-family of equations includes the
NE equation, and the cubic ab-family of equations includes
the mCH equation and the NE equation.

With the development of research, great interest has
been aroused in the uniqueness or posedness of solutions,
setting initial value u0ðxÞ ∈HsðℝÞ. The study of Li and Olver
[26] shows that the CH equation is locally well posed in Hs

for s > 3/2, and Byers [27] proved the ill-posedness for the
CH equation in Hs when s < 3/2. Himonas, Grayshan, and
Holliman [28] studied the ill-posedness for the DP equation.
Himonas and Holliman [29] proved that the NE equation is
well posed in Hs for s > 3/2. Himonas, Kenig, and Holliman
[30] demonstrated the nonuniqueness for the NE equation
in Hs when s < 3/2 by studying the collision of the peakons.
Guo et al. [31] studied the ill-posedness for the CH, DP, and
NE equations in critical spaces. Himonas and Mantzavinos
[32] proved that the FORQ equation (also called mCH) is
well posed in Hs for s > 5/2. The nonuniqueness results of
Himonas and Holliman [33] show that solutions to the Cau-
chy problem for the FORQ equation are not unique in Hs

when s < 3/2. At present, there is no theory to show the
uniqueness for the FORQ equation in Hs when 3/2 ≤ s ≤
5/2. Holmes and Puri [34] discussed the nonuniqueness
for the ab-family of equations. Himonas, Grayshan, and
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Holliman [35] considered the ill-posedness for the b-
family of equations in Hs for s < 3/2 when b > 1. On this
basis, Novruzov [36] studied the ill-posedness for the b-
family of equations when b < 1.

In this paper, we consider the Cauchy problem for a
generalized mCH (gm- CH) equation which has the
following form

mt + u2 − u2x
� �2

m
� �

x
= 0,m = u − uxx , ð1Þ

u x, 0ð Þ = u0 xð Þ ∈Hs, t > 0, x ∈ X =ℝ or T :
ð2Þ

This equation is obtained by Anco and Recio [37], by
extending a Hamiltonian structure of the CH equation.
Substituting m = u − uxx into the first equation of (1), it
infers the following partial differential equation

ut + u4ux +
1
5 u

5
x −

2
3 u

2u3x

� �
− 1 − ∂2x
� �−1 1

5 u
5
x −

2
3 u

2u3x

� �

+ 1 − ∂2x
� �−1∂x 4

5 u
5 −

1
3 uu

4
x + 2u3u2x

� �
= 0:

ð3Þ

The results of Anco and Recio [37] show that the gmCH
equation admits peakon traveling wave solutions and multi-
peakon solutions. They studied the existence of the single
peakon travelling solutions with c ≠ 0 and classification of
2-peakon solutions. Recio and Anco [38] considered the con-
servation laws (energy, momentum, H1-norm, etc.) of the
gmCH equation, by modifying the general multiplier method
combined with some tools from variational calculus. They
also discussed the Hamiltonian structure and solitary travel-
ing waves of the gmCH equation, by using the conservation
laws. One remark is that the Hamiltonian structure for the
family (1) corresponds to an energy conservation law that
has a local density but a nonlocal flux.

Based on the conservation laws in [38], the Cauchy
problem and nonuniqueness of the peakon solutions in this
paper are studied. Under this premise, we obtain our main
result, and its proof is closely related to the conservation of
norms. And based on the existence of peakons in [37], we
conduct the research on the peakon solutions. The difference
is that we obtain the peakon traveling wave solutions by
verifying the weak solution. The peakon traveling wave solu-
tions on the line are given by

u x, tð Þ = ae− x−ctj j, where c = 11
18 a

4: ð4Þ

On the circle, they are given by

u x, tð Þ = b · ch ζð Þ, ζ = π − x − ct½ �p, b4

= c

8/15sh4 πð Þ + 4/3sh2 πð Þ + 1
, ð5Þ

where ½:�p is defined by

x½ �p = x − 2π x
2π
h i

: ð6Þ

On the other hand, the classification of 2-peakon solu-
tions in [37] helps us construct 2-peakon solutions. In con-
trast to this, we construct a special 2-peakon solution
based on the characteristics of the ODE system and study
the collision of peakons. The result is summarized in the
following theorem.

Theorem 1. Solutions to the Cauchy problem for the
gmCH equation (1) are not unique in Sobolev spaces Hs

when s < 3/2.

The rest is organized as follows. In Section 2, we study
the ODE systems that the 2-peakon solutions of the gmCH
Equation (1) need to satisfy. In Section 3, we give the proof
of Theorem 1 on the line by constructing a 2-peakon solu-
tion. In Section 4, we prove Theorem 1 on the circle.

2. 2-Peakon on the Line and the Circle

In [37], Recio and Anco studied the multipeakon solutions
on the line, and they proved the following result.

Theorem 2 (see [37]). The nonperiodic 2-peakon

u x, tð Þ = p1 tð Þe− x−q1 tð Þj j + p2 tð Þe− x−q2 tð Þj j, x, tð Þ ∈ℝ ×ℝ, ð7Þ

is a solution to Equation (1) if its positions q1, q2 and
momenta p1, p2 satisfy

p1 ′ = 0, q1 ′ =
8
15

p21 p21 + 5p1p2e
− q1−q2j j + 10p22e

−2 q1−q2j j
� �

,

p2 ′ = 0, q2 ′ =
8
15

p22 p22 + 5p1p2e
− q1−q2j j + 10p21e

−2 q1−q2j j
� �

:

ð8Þ

Now, we consider the 2-peakon system on the circle, based
on the methods in [25].

Theorem 3. The periodic 2-peakon

u x, tð Þ = p1 tð Þch x − q1 tð Þ½ �p − π
� �

+ p2 tð Þch x − q2 tð Þ½ �p − π
� �

ð9Þ

is a solution to Equation (1) if its positions q1, q2: and
momenta p1, p2 satisfy
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q1 ′ =
4
5
p21 1 + 2

3
sh2 πð Þ

� 	
p21ch

2 πð Þ + 5p1p2ch πð Þch q1 − q2½ �p − π
� �h i

+ 1
5
p41 + p42 + 4p1p

3
2ch πð Þch q1 − q2½ �p − π

� �
+ 2p21p

2
2
8
3
ch2 πð Þch2 q1 − q2½ �p − π

� �
−
2
3
ch2 q1 − q2½ �p − π
� �

+ 1
� 	

,

ð10Þ

q2 ′ =
4
5
p22 1 + 2

3
sh2 πð Þ

� 	
p22ch

2 πð Þ + 5p1p2ch πð Þch q2 − q1½ �p − π
� �h i

+ 1
5
p42 + p41 + 4p31p2ch πð Þch q2 − q1½ �p − π

� �
+ 2p21p

2
2
8
3
ch2 πð Þch2 q2 − q1½ �p − π

� �
−
2
3
ch2 q2 − q1½ �p − π
� �

+ 1
� 	

,

ð11Þ

p1 ′ = 0, p2 ′ = 0, ð12Þ

where ½·�p is defined as in (6).

Proof. We can rewrite the equation (1) as the following
equivalent form

1 − ∂2x
� �

ut + 1 − 1
5 ∂

2
x

� �
∂x u5
� �

+ u5x
� �

+ ∂2x
2
3 u

2u3x

� �

+ ∂x 2u3u2x −
1
3 uu

4
x

� �
− u5x = 0:

ð13Þ

Let φ ∈ C∞ðTÞ be any smooth periodic test function on
T , and

uj x, tð Þ = pj tð Þch x − qj tð Þ
h i

p
− π

� �
, j = 1, 2, ð14Þ

which causes the periodic 2-peakon solution (9) to be
rewritten as uðx, tÞ = u1ðx, tÞ + u2ðx, tÞ. So, we have

1 − ∂2x
� �

ut , φ

 �

= 1 − ∂2x
� �

u1t , φ

 �

+ 1 − ∂2x
� �

u2t , φ

 �

: ð15Þ

Firstly, we calculate h∂xuj, φi. Note that when qj ∈ ð2kπ, 2
ðk + 1ÞπÞ, k ∈ℕ, we have ½qj/2π� = k and ½−qj/2π� = −ðk + 1Þ,
which leads to ½2π − qj/2π� = −k. Letq∗j = qj − 2π½qj/2π�.Obvi-
ously, q∗j ∈ ð0, 2πÞ. Since ½x − qj/2π� = −ðk + 1Þ for 0 < x < q∗j
and ½x − qj/2π� = −k for q∗j < x < 2π, it obtains by integrating
by parts

∂xuj, φ

 �

= −
ðq∗j
0
pjch x − qj + 2k + 1ð Þπ

� �
dφ

−
ð2π
q∗j

pjch x − qj + 2k − 1ð Þπ
� �

dφ

= −pjch πð Þφ q∗j
� �

+ pjch −qj + 2k + 1ð Þπ
� �

φ 0ð Þ
+ pjch −πð Þφ q∗j

� �
− pjch −qj + 2k + 1ð Þπ

� �
φ 2πð Þ

+ pjsh x − qj
h i

p
− π

� �
, φ

� 
:

ð16Þ

Since chðxÞ = chð−xÞ and φðxÞ = φðx + 2πÞ,

∂xuj, φ

 �

= pjsh x − qj
h i

p
− π

� �
, φ

� 
: ð17Þ

On the other hand, when qj = 2kπ, k ∈ℕ, we find ½x − qj/
2π� = −k for x ∈ ð0, 2πÞ. It follows that

∂xuj, φ

 �

= −
ð2π
0
pjch x − qj

h i
p
− π

� �
φ′dx

= pjsh x − qj
h i

p
− π

� �
, φ

� 
,

ð18Þ

along with (17) leads to h∂xuj, φi = hpjshð½x − qj�p − πÞ, φi, for
all qj ≥ 0. Analogously, since shð·Þ is odd, h∂2xuj, φi = −2pj
shðπÞφðq∗j Þ + huj, φi, which means that hð1 − ∂2xÞuj, φi = 2
pjshðπÞφðq∗j Þ. Moreover, we find

1 − ∂2x
� �

ut , φ

 �

= 2sh πð Þ p1 ′φ q∗1ð Þ + p1q1 ′φ′ q∗1ð Þ + p2 ′φ q∗2ð Þ + p2q2 ′φ′ q∗2ð Þ
h i

:

ð19Þ

Now, we conclude h−∂2xðu4uxÞ, φi. We use uðx, tÞ = u1
ðx, tÞ + u2ðx, tÞ to get

−∂2x u4ux
� �

, φ

 �

= − u4ux, φ″
D E

= − u41u1x + 4u31u1xu2 + 6u21u1xu22 + 4u1u1xu32 + u1xu
4
2



+ u42u2x + 4u1u32u2x + 6u21u22u2x + 4u31u2u2x + u41u2x, φ″

�
:

ð20Þ

Since ½−qj/2π� = −ðk + 1Þ for qj ∈ ð2kπ, 2ðk + 1ÞπÞ,
where k ∈ℕ, we find ½0 − qj�p − π = −qj + 2ðk + 1Þπ and

½2π − qj�p − π = −qj + 2ðk + 1Þπ, which combined with inte-

gration by parts give that

3Advances in Mathematical Physics



u41u1x, φ″
D E

= p51ch4 x − q1½ �p − π
� �

sh x − q1½ �p − π
� �

, φ″
D E

= p51

ðq∗1
0
ch4 x − q1 + 2k + 1ð Þπð Þsh x − q1 + 2k + 1ð Þπð Þφ″dx

�

+
ð2π
q∗1

ch4 x − q1 + 2k − 1ð Þπð Þsh x − q1 + 2k − 1ð Þπð Þφ″dx
	

= 2p51ch4 πð Þsh πð Þφ′ q∗1ð Þ
+ 12u21u31x + 12u31u1xu1xx + u41u1xxx , φ

 �

,

u42u2x , φ″
D E

= p52ch4 x − q2½ �p − π
� �

sh x − q2½ �p − π
� �

, φ″
D E

= 2p52ch4 πð Þsh πð Þφ′ q∗2ð Þ
+ 12u22u32x + 12u32u2xu2xx + u42u2xxx , φ

 �

:

ð21Þ

Without loss of generality, we assume q1 ≤ q2. So, we have

4u31u1xu2, φ″
D E

= 4p41p2
ðq∗1
0
+
ðq∗2
q∗1

+
ð2π
q∗2

 !
ch3 x − q1½ �p − π
� �

⋅ sh x − q1½ �p − π
� �

ch x − q2½ �p − π
� �

φ″dx

= 8p41p2sh πð Þ ch3 πð Þch q∗1 − q2½ �p − π
� �

φ′ q∗1ð Þ
h

− ch3 πð Þsh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ

− ch3 q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ
i

+ 24u1u31xu2 + 36u21u1xu1xxu2 + 24u21u21xu2x



+ 8u31u1xxu2x + 4u31u1xu2xx + 4u31u1xxxu2, φ
�
,
ð22Þ

6u21u1xu22, φ″
D E

= 6p31p22
ðq∗1
0
+
ðq∗2
q∗1

+
ð2π
q∗2

 !
ch2 x − q1½ �p − π
� �

⋅ sh x − q1½ �p − π
� �

ch2 x − q2½ �p − π
� �

φ″dx

= 12p31p22sh πð Þ ch2 πð Þch2 q∗1 − q2½ �p − π
� �

φ′ q∗1ð Þ
h

− 2ch2 πð Þch q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ

− 2ch πð Þch2 q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ
i

+ 12u31xu22 + 36u1u1xu1xxu22 + 48u1u21xu2u2x



+ 24u21u1xxu2u2x + 12u21u1xu22x + 12u21u1xu2u2xx
+ 6u21u1xxxu22, φ

�
:

ð23Þ

Similar to (22), we obtain

4u1u1xu32, φ″
D E

= 4p21p32
ðq∗1
0
+
ðq∗2
q∗1

+
ð2π
q∗2

 !
ch x − q1½ �p − π
� �

⋅ sh x − q1½ �p − π
� �

ch3 x − q2½ �p − π
� �

φ″dx

= 8p21p32sh πð Þ ch πð Þch3 q∗1 − q2½ �p − π
� �

φ′ q∗1ð Þ
h

− 3ch πð Þch2 q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ

− 3ch2 πð Þch q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ
i

+ 12u1xu1xxu32 + 24u21xu22u2x + 24u1u1xxu22u2x



+ 24u1u1xu2u22x + 12u1u1xu22u2xx + 4u1u1xxxu32, φ
�
,

u1xu
4
2, φ″

D E
= p1p

4
2

ðq∗1
0
+
ðq∗2
q∗1

+
ð2π
q∗2

 !
sh x − q1½ �p − π
� �

ch4 x − q2½ �p − π
� �

φ″dx

= 2p1p42sh πð Þ ch4 q∗1 − q2½ �p − π
� �

φ′ q∗1ð Þ
h

− 4ch3 q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ

− 4ch3 πð Þsh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ
i

+ u1xxxu
4
2 + 8u1xxu32u2x + 12u1xu22u22x + 4u1xu32u2xx, φ


 �
:

ð24Þ

Although the above calculation is made by assuming
q1 ≤ q2, the result is also valid to any q1 and q2. We next
compute

4u1u32u2x, φ″
D E

= 8p1p42sh πð Þ ch3 πð Þch q∗2 − q1½ �p − π
� �

φ′ q∗2ð Þ
h

− ch3 πð Þsh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ

− ch3 q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ
i

+ 24u1u2u32x + 36u1u22u2xu2xx + 24u1xu22u22x



+ 8u1xu32u2xx + 4u1xxu32u2x + 4u1u32u2xxx, φ
�
,
ð25Þ

6u21u22u2x, φ″
D E

= 12p21p32sh πð Þ ch2 πð Þch2 q∗2 − q1½ �p − π
� �

φ′ q∗2ð Þ
h

− 2ch2 πð Þch q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ

− 2ch πð Þch2 q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ
i

+ 12u21u32x + 36u21u2u2xu2xx + 48u1u1xu2u22x



+ 24u1u1xu22u2xx + 12u21xu22u2x + 12u1u1xxu22u2x
+ 6u21u22u2xxx, φ

�
:

ð26Þ

4u31u2u2x, φ″
D E

= 8p31p22sh πð Þ ch πð Þch3 q∗2 − q1½ �p − π
� �

φ′ q∗2ð Þ
h

− 3ch πð Þch2 q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ

− 3ch2 πð Þch q∗1 − q2½ �p − π
� �

sh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ
i

+ 12u31u2xu2xx + 24u21u1xu22x + 24u21u1xu2u2xx



+ 24u1u21xu2u2x + 12u21u1xxu2u2x + 4u31u2u2xxx, φ
�
,

ð27Þ

u41u2x , φ″
D E

= 2p41p2sh πð Þ ch4 q∗2 − q1½ �p − π
� �

φ′ q∗2ð Þ
h

− 4ch3 q∗2 − q1½ �p − π
� �

sh q∗2 − q1½ �p − π
� �

φ q∗2ð Þ

− 4ch3 πð Þsh q∗1 − q2½ �p − π
� �

φ q∗1ð Þ
i

+ u41u2xxx + 8u31u1xu2xx + 12u21u21xu2x + 4u31u1xxu2x , φ

 �

:

ð28Þ

It follows from (20)-(28) that
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−∂2x u4ux
� �

, φ

 �

= −2p1sh πð Þφ′ q∗1ð Þ p1ch πð Þ + p2ch q∗1 − q2½ �p − π
� �h i4

− 2p2sh πð Þφ′ q∗2ð Þ p2ch πð Þ + p1ch q∗2 − q1½ �p − π
� �h i4

+ 16p1p2sh πð Þφ q∗1ð Þsh q∗1 − q2½ �p − π
� �

� p1ch πð Þ + p2ch q∗1 − q2½ �p − π
� �h i3

+ 16p1p2sh πð Þφ q∗2ð Þsh

q∗2 − q1½ �p − π
� �

p2ch πð Þ + p1ch q∗2 − q1½ �p − π
� �h i3

− u4uxxx + 12u3uxuxx + 12u2u3x, φ

 �

:

ð29Þ

Similar to (29), it infers

−∂2x
1
5 u

5
x

� �
, φ

� 
= −2p1sh πð Þφ′ q∗1ð Þ

� −
4
5 p

4
1sh4 πð Þ + p21sh2 πð Þ + p22sh2 q∗1 − q2½ �p − π

� �h i2� �

− 2p2sh πð Þφ′ q∗2ð Þ −
4
5 p

4
2sh4 πð Þ

�

+ p22sh2 πð Þ + p21sh2 q∗2 − q1½ �p − π
� �h i2�

+ 8p1p2sh πð Þφ q∗1ð Þsh q∗1 − q2½ �p − π
� �

� p1ch πð Þ + p2ch q∗1 − q2½ �p − π
� �h i

⋅ p21sh2 πð Þ + p22sh2 q∗1 − q2½ �p − π
� �h i

+ 8p1p2sh πð Þφ q∗2ð Þsh q∗2 − q1½ �p − π
� �

� p2ch πð Þ + p1ch q∗2 − q1½ �p − π
� �h i

· p22sh2 πð Þ + p21sh2 q∗2 − q1½ �p − π
� �h i

− u4xuxxx + 4u3xu2xx , φ

 �

,

∂2x
2
3 u

2u3x

� �
, φ

� 
= 2p1sh πð Þφ′ q∗1ð Þ

· 2
3 p1ch πð Þ + p2ch q∗1 − q2½ �p − π

� �h i2�

� p21sh2 πð Þ + 3p22sh2 q∗1 − q2½ �p − π
� �h i�

+ 2p2sh πð Þφ′ q∗2ð Þ · 2
3 p2ch πð Þ + p1ch q∗2 − q1½ �p − π

� �h i2�

� p22sh2 πð Þ + 3p21sh2 q∗2 − q1½ �p − π
� �h i�

− 8p1p2sh πð Þφ q∗1ð Þsh q∗1 − q2½ �p − π
� �

� p1ch πð Þ + p2ch q∗1 − q2½ �p − π
� �h i3�

+ 4
3 p1ch πð Þ + p2ch q∗1 − q2½ �p − π

� �h i
� p21sh2 πð Þ + p22sh2 q∗1 − q2½ �p − π

� �h i�

− 8p1p2sh πð Þφ q∗2ð Þsh q∗2 − q1½ �p − π
� �

� p2ch πð Þ + p1ch q∗2 − q1½ �p − π
� �h i3�

+ 4
3 p2ch πð Þ + p1ch q∗2 − q1½ �p − π

� �h i
� p22sh2 πð Þ + p21sh2 q∗2 − q1½ �p − π

� �h i�

+ 4
3 u

5
x +

28
3 uu3xuxx + 2u2u2xuxxx + 4u2uxu2xx , φ

� 

ð30Þ

with

∂x 2u3u2x
� �

, φ

 �

− 8p1p2sh πð Þφ q∗1ð Þsh q∗1 − q2½ �p − π
� �

· p1ch πð Þ + p2ch q∗1 − q2½ �p − π
� �h i3

− 8p1p2sh πð Þφ q∗2ð Þsh q∗2 − q1½ �p − π
� �

p2ch πð Þ + p1ch q∗2 − q1½ �p − π
� �h i3

+ 4u3uxuxx + 6u2u3x , φ

 �

,

ð31Þ

∂x
1
3 uu

4
x

� �
, φ

� 
= 8
3 p1p2sh πð Þφ q∗1ð Þsh q∗1 − q2½ �p − π

� �
� p1ch πð Þ + p2ch q∗1 − q2½ �p − π

� �h i
· p21sh2 πð Þ + p22sh2 q∗1 − q2½ �p − π

� �h i
+ 8
3 p1p2sh πð Þφ q∗2ð Þsh q∗2 − q1½ �p − π

� �
� p2ch πð Þ + p1ch q∗2 − q1½ �p − π

� �h i
· p22sh2 πð Þ + p21sh2 q∗2 − q1½ �p − π

� �h i
−

1
3 u

5
x +

4
3 uu

3
xuxx, φ

� 
:

ð32Þ

Substituting (29)-(32) into the equation (13), also noting
½q∗1 − q2�p = ½q1 − q2�p and ½q∗2 − q1�p = ½q2 − q1�p, which is

caused by the fact that ½q∗j /2π� = 0 for q∗j ∈ ½0, 2πÞ, we obtain
the system (10).

3. Nonuniqueness on the Line

In this section, we use the ODE system (8) to prove Theorem
1 on the line. To do this, we take a 2-peakon solution of the
form (7). From the first two items of the system (8), p1ðtÞ
= p1ð0Þ and p2ðtÞ = p2ð0Þ are obvious. At the same time,
we have q1 ′ = q2 ′ if we take the symmetric initial data, j
p1ð0Þj = jp2ð0Þj. The two peaks move at the same speed
which means there is no collision. Therefore, we choose
the following initial data

p1 0ð Þ = − b + δð Þ, q1 0ð Þ = 0,
p2 0ð Þ = b, q2 0ð Þ = a,

ð33Þ

with a > 0 and b2 + ðb + δÞ2 > 5bðb + δÞ, where b + δ > b
> 0. The selection of these initial data is summarized in
Figure 1.

According to (33), p1ðtÞ = −ðb + δÞ and p2ðtÞ = b are
obtained. We introduce the symbol q to represent the dif-
ference between the positions of the two peakons, in
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other words, q≐q2 − q1. It follows from the ODE system
(8) that

q′ = 8
15 p42 − p41
� �

1 + αe−qð Þ = 8
15 b4 − b + δð Þ4� �

1 + αe−qð Þ < 0,

ð34Þ

where −1 < α = 5p1p2/p21 + p22 = −5bðb + δÞ/b2 + ðb + δÞ2 < 0.
Integrating (34), we calculate

ln eq + α

ea + α
= 8
15 b4 − b + δð Þ4� �

t: ð35Þ

Since q′ < 0 and q0 = q2ð0Þ − q1ð0Þ = a > 0, we obtain a
collision and a positive collision time when qðtÞ = 0.
Using the symbol τ for the collision time, from (35),
we find

τ = 15
8 b4 − b + δð Þ4� � ln 1 + α

ea + α
: ð36Þ

Applying expressions qτ≐ lim
t⟶τ−

q1ðtÞ = lim
t⟶τ−

q2ðtÞ and v

ðxÞ≐−δe−jx−qτj to define the collision location qτ and the
collision function v, we get the following proposition.

Proposition 4. The Hs limit of u as t approaches τ is v, or

lim
t⟶τ−

u tð Þ − vk kHs = 0: ð37Þ

Proof. We compute the Fourier transform of u and v, which
is denoted by

û ξ, tð Þ = 2p1e−iξq1
1 + ξ2

+ 2p2e−iξq2
1 + ξ2

= −2 b + δð Þe−iξq1
1 + ξ2

+ 2be−iξq2
1 + ξ2

,

ð38Þ

v̂ ξð Þ = −2δe−iξqτ
1 + ξ2

: ð39Þ

Combining (38) and (39), we have

lim
t⟶τ−

u tð Þ − vk k2Hs

= lim
t⟶τ−

4
ð
ℝ

1 + ξ2
� �s−2

be−iξq2 − b + δð Þe−iξq1 + δe−iξqτ
��� ���2dξ:

ð40Þ

Notice that the equation inside the absolute value can be
scaled up to

be−iξq2 − b + δð Þe−iξq1 + δe−iξqτ
��� ���

≤ b + δð Þ e−iξq1
��� ��� + b e−iξq2

��� ��� + δ e−iξqτ
��� ��� = 2 b + δð Þ:

ð41Þ

Let f ðξÞ = 4ðb + δÞ2ð1 + ξ2Þs−2. There is no doubt that f
is integrable when s < 3/2, and f dominates the original
integrand, which means, we can apply the dominated con-
vergence theorem and put the limit inside the integral. So,
we get

lim
t⟶τ−

4
ð
ℝ

1 + ξ2
� �s−2

be−iξq2 − b + δð Þe−iξq1 + δe−iξqτ
��� ���2dξ

= 4
ð
ℝ

1 + ξ2
� �s−2

be−iξq2 τð Þ − b + δð Þe−iξq1 τð Þ + δe−iξqτ
��� ���2dξ = 0:

ð42Þ

Proposition 4 is proven.

Proof of Theorem 1. (On the line). In view of the 2-peakon
solution we constructed, we need to construct a traveling
wave solution wðx, tÞ that satisfies

w x, τð Þ = u x, τð Þ = v xð Þ: ð43Þ

Reviewing the system (8), we take the following data

p1 0ð Þ = −δ, q1 0ð Þ = β,
p2 = 0, q2 0ð Þ = 0:

ð44Þ

The system is simplified and easy to be solved as

p1 tð Þ = −δ, q1 tð Þ = 8
15 δ

4t + β: ð45Þ

We introduce the symbol qu1 to represent q1 correspond-
ing to u and qw1 to represent q1 corresponding to w. It
follows from (43) that qu1ðτÞ = qw1 ðτÞ. So, we find β = qu1ðτÞ
− ðδ4/ðb4 − ðb + δÞ4ÞÞ ln ð1 + α/ea + αÞ,which makes the
construction complete. In order to prove the nonuniqueness
of the solution, we define two new solutions ~uðx, tÞ≐uð−x,−
t + τÞ, ~wðx, tÞ≐wð−x,−t + τÞ. Since uðx, tÞ and wðx, tÞ are
two solutions to (1), uð−x,−tÞ and wð−x,−tÞ are also solu-
tions to (1), which can be obtained by reversing time. These
mean ~uðx, tÞ and ~uðx, tÞ solve (1). Moreover, through Prop-
osition 4, we have lim

t⟶0+
~uðx, tÞ = vð−xÞ = lim

t⟶0+
~wðx, tÞ.

q1 (0) = 0
q2 (0) = a x

u0 (a)

u0 (0)

u0

Figure 1: Initial profile u0ðxÞ.
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Finally, we note that the initial data for these nonunique
solutions can be made arbitrarily small. Since the new initial
data is the collision function vðxÞ = −δe−jx−qτj, we have

vk k2Hs = 4μδ2, where μ =
ð
ℝ

1 + ξ2
� �s−2

dξ: ð46Þ

Therefore, for any ε > 0, we can find a δ to make
kvkHs < ε.

4. Nonuniqueness on the Circle

In this section, we use the ODE system (10) to prove the
Theorem 1 on the circle. To do this, we take a 2-peakon
solution of the form (9). From the first two items of the sys-
tem (10), p1ðtÞ = p1ð0Þ and p2ðtÞ = p2ð0Þ are obvious. At the
same time, we have q1 ′ = q2 ′ if we take the symmetric initial
data, jp1ð0Þj = jp2ð0Þj. The two peaks move at the same
speed which means there is no collision. Therefore, we
choose the same initial data as the line case

p1 0ð Þ = − b + δð Þ, q1 0ð Þ = 0,
p2 = b, q2 0ð Þ = a,

ð47Þ

with 0 < a < π and b2 + ðb + δÞ2 > ð10ch2ðπÞ/2ch2ðπÞ + 3Þb
ðb + δÞ, where b + δ > b > 0. The selection of these initial
data is summarized in Figure 2.

According to (47), p1ðtÞ = −ðb + δÞ and p2ðtÞ = b are
obtained. We introduce the symbol q to represent the differ-
ence between the positions of the two peakons, in other
words, q≐q2 − q1. It follows from the ODE system (10) that

q′ = 8
15 p42 − p41
� �

sh2 πð Þ ch2 πð Þ + 3
2

� �
1 + α2ch π − qð Þð Þ

= −
8
15 α1 1 + α2ch π − qð Þð Þ,

ð48Þ

where

α1 = b + δð Þ4 − b4
� �

sh2 πð Þ ch2 πð Þ + 3
2

� �
, ð49Þ

α2 =
5p1p2
p21 + p22

· ch πð Þ
ch2 πð Þ + 3/2

= −5b b + δð Þ
b2 + b + δð Þ2 · ch πð Þ

ch2 πð Þ + 3/2
:

ð50Þ
These are easy to get from (49) and (50) that α1 > 0 and

−1/chðπÞ < α2 < 0. So, we have 1 + α2chðπ − qÞ > 0, which
leads to q′ < 0. Integrating (48), we calculate

g qð Þ − g q0ð Þ = 4
15 α1α2t, ð51Þ

where

g xð Þ = ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
+ 1 + α2e

π−xffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
− 1 − α2eπ−x

: ð52Þ

Differentiating (52), we have

g′ xð Þ = −2α2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
eπ−xffiffiffiffiffiffiffiffiffiffiffiffi

1 − α22
p

+ 1 + α2eπ−x
� � ffiffiffiffiffiffiffiffiffiffiffiffi

1 − α22
p

− 1 − α2eπ−x
� � :

ð53Þ

Since −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
< 1 + α2e

π−x <
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
, we find g′ðxÞ

> 0. It follows that gðxÞ increases in ½0, πÞ. Combined with
q0 = q2ð0Þ − q1ð0Þ = a > 0, we obtain a collision and a posi-
tive collision time when qðtÞ = 0. Using the symbol τ for
the collision time, from (51), we find

τ = 15
4α1α2

ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
+ 1 + α2e

πffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
− 1 − α2eπ

− ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
+ 1 + α2e

π−affiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
− 1 − α2eπ−a

 !
:

ð54Þ

u0

u0 (a)
p1 (0) = 0–2𝜋

p2 (0) = a

u0 (0)

x

2𝜋

Figure 2: Initial profile u0ðxÞ.
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Applying qτ≐ lim
t⟶τ−

q1ðtÞ = lim
t⟶τ−

q2ðtÞ and vðxÞ≐−δ · ch
ð½x − qτðtÞ�p − πÞto define the collision location qτ and the col-
lision function v, we get the following proposition.

Proposition 5. The Hs limit of u as t approaches τ is v, or

lim
t⟶τ−

u tð Þ − vk kHs = 0: ð55Þ

Proof. We compute the Fourier transform of u and v, which
is denoted by

û n, tð Þ = sh πð Þ 2p1e−inq1
1 + n2

+ 2p2e−inq2
1 + n2

� �

= sh πð Þ −2 b + δð Þe−inq1
1 + n2

+ 2be−inq2
1 + n2

 !
,

ð56Þ

v̂ nð Þ = −sh πð Þ · 2δe
−inqτ

1 + n2
: ð57Þ

Combining (56) and (57), we have

lim
t⟶τ−

u tð Þ − vk k2Hs = lim
t⟶τ−

4sh2 πð Þ〠
n∈ℤ

1 + n2
� �s−2

� be−inq2 − b + δð Þe−inq1 + δe−inqτ
�� ��2:

ð58Þ

Notice that the equation inside the absolute value can be
scaled up to

be−inq2 − b + δð Þe−inq1 + δe−inqτ
�� ��

≤ b + δð Þ e−inq1�� �� + b e−inq2
�� �� + δ e−inqτ

�� �� = 2 b + δð Þ:
ð59Þ

Let hðnÞ≐4ðb + δÞ2ð1 + n2Þs−2. h is addable when s < 3/2
and h dominate the original integrand, which means that
we can apply the dominated convergence theorem and put
the limit inside the integral. So, we get

lim
t⟶τ−

4sh2 πð Þ〠
n∈ℤ

1 + n2
� �s−2

be‐inq2 − b + δð Þe−inq1 + δe−inqτ
�� ��2

= 4sh2 πð Þ〠
n∈ℤ

1 + n2
� �s−2

be−inq2 τð Þ − b + δð Þe−inq1 τð Þ + δe‐inqτ
��� ���2 = 0:

ð60Þ

Proof of Theorem 1 (On the circle). In view of the 2-peakon
solution we constructed, we need to construct a traveling
wave solution wðx, tÞ that satisfies

w x, τð Þ = u x, τð Þ = v xð Þ: ð61Þ

Reviewing the system (10), we take the following data

p1 = −δ, q1 0ð Þ = β,
p2 = 0, q2 0ð Þ = 0:

ð62Þ

The system is simplified and easy to be solved as

p1 tð Þ = −δ, q1 tð Þ = 8
15 ch

4 πð Þ + 4
15 ch

2 πð Þ + 1
5

� 	
δ4t + β:

ð63Þ

We introduce the symbol qu1 to represent q1 correspond-
ing to u and qw1 to represent q1 corresponding to w. It
follows from (61) that qu1ðτÞ = qw1 ðτÞ. So, we get

β = qu1 τð Þ − 2δ4
α1α2

ch4 πð Þ + 1
2 ch

2 πð Þ + 3
8

� �

· ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
+ 1 + α2e

πffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
− 1 − α2eπ

− ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
+ 1 + α2e

π−affiffiffiffiffiffiffiffiffiffiffiffi
1 − α22

p
− 1 − α2eπ−a

 !
,

ð64Þ

which makes the construction complete. In order to prove
the nonuniqueness of the solution, we define two new solu-
tions ~uðx, tÞ≐uð−x,−t + τÞ, ~wðx, tÞ≐wð−x,−t + τÞ. Since uðx,
tÞ and wðx, tÞ are two solutions to (1), uð−x,−tÞ and wð−x,
−tÞ are also solutions to (1), which can be obtained by
reversing time. These mean ~uðx, tÞ and ~uðx, tÞ solve (1). In
addition, similar to the line case, through Proposition 5, we
have lim

t⟶0+
~uðx, tÞ = vð−xÞ = lim

t⟶0+
~wðx, tÞ. Finally, we note

that the initial data for these nonunique solutions can be
made arbitrarily small. Since the new initial data is the colli-
sion function vðxÞ = −δ · chð½x − qτðtÞ�p − πÞ, we have

vk k2Hs = 4μδ2sh2 πð Þ, where μ = 〠
n∈ℤ

1 + n2
� �s−2

: ð65Þ

Therefore, for any ε > 0, we can find a δ to make kvkHs < ε.
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