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The present study employs the power series method (PSM) to accurately predict the natural frequencies of eleven offshore wind
turbines (OWT). This prediction is very important as it helps in the quick verification of experimental or finite element results.
This study idealizes the OWT as a stepped Euler-Bernoulli beam carrying a top mass and connected at its bottom to a flexible
foundation. The first part of the beam represents a monopile and the transition piece while its second part is a tower. The
foundation is modeled using three springs (lateral, rotational, and cross-coupling springs). This work’s aim is at improving
therefore the previous researches, in which the whole wind turbine was taken as a single beam, with a tower being tapered and
its wall thickness being negligible compared to its diameter. In order to be closer to real-life OWT, three profiles of the tapered
tower are explored: case 1 considers a tower with constant thickness along its height. Case 2 assumes a tower’s thickness being
negligible compared to its mean diameter, while case 3 describes the tower as a tapered beam with varying thickness along its
height. Next, the calculated natural frequencies are compared to those obtained from measurements. Results reveal that case 2,
used by previous researches, was only accurate for OWT with tower wall thickness lower than 15mm. Frequencies produced
in case 3 are the most accurate as the relative error is up to 0.01%, especially for the OWT with thicknesses higher or equal to
15mm. This case appears to be more realistic as, practically, wall thickness of a wind tower varies with its height. The tower-
to-pile thickness ratio is an important design parameter as it highly has impact on the natural frequency of OWT, and must
therefore be taken into account during the design as well as lateral and rotational coupling springs.

1. Introduction

In the future, the offshore wind turbines are expected to
become a significant contributor to electricity in China and
in the rest of the world. They are generally designed to last
20 to 30 years at least. OWT face two major environmental
forces coming from wind and water waves. The waves thus
produced by sea water act on the OWT’s substructure. The
substructure can be the monopile, gravity-based structure,
space frame structure (tripod, jacket, tripile), or floating
structure. The most widely used substructure is the mono-
pile, with the main advantage of being relatively easy and

cheaper to manufacture and also easy to install. It accounts
for 81% in the OWT manufacture industries up to date [1]
and suitable for water depths of up to 30m. Its design
remains fundamental in the construction of OWT because
it undergoes the soil-structure interaction (SSI) effect [2].

Usually, three models of the soil-pile interaction are
used: these are distributed springs (DS), coupled mode
springs (CS), and apparent fixity (AF) [3].

The CS model represents the mostly used in the dynamic
analysis of the offshore wind turbine as, it is applicable to all
types of wind foundations and also easily implementable in
theory. In this model, the foundation is modelled as a set
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of translational (KL), rotational (KR), and coupled (KLR)
springs positioned at the bottom of the wind turbine. The
values of those springs depend on the geometrical character-
istics of the monopile and on the mechanical characteristics
of the soil. Any change on those springs (soil nature due to
the dynamic environment of the OWT) will have impact
on the natural frequency of the OWT, which means that
the natural frequency of the installed OWT could sometimes
be greater or lower than the designed value and might also
change over time [4]. As an illustration, the work published
by Kallehave and Thilsted [5] has shown that the measured
natural frequencies at the Walney site were reported to be
6–7% higher than the designed values. The natural fre-
quency appears therefore to be an important design calcula-
tion, and its decrease or increase with the time should be
avoided as it may cause either unplanned resonance or
increase the fatigue damage.

The whole OWT system is constituted by the pile, the
tower, and the rotor-nacelle assembly. It could be simplified
as a slender beam carrying a heavy top mass. This simplifica-
tion helps on the quick calculation of the natural frequency
of OWT without resort to the more accurate and expensive
numerical model based on the finite element method. It con-
cretely consists of constructing the mathematical model of
the whole structure with the associated boundary conditions
([6, 7]), by considering the OWT as the Euler-Bernoulli
beam [8] and then solving the obtained equation to get the
natural frequencies. Similarly, Arany et al. [6] have worked
on the analytical model to predict the natural frequency of
offshore wind turbine using the Euler-Bernoulli and Timo-
shenko beam models. Four wind farms were considered,
and the OWT was mathematically modelled as one slender
beam with constant cross-section and constant thickness
along the height. The obtained results were quite far from
the measured values. They have also shown that modelling
the OWT as the Timoshenko beam does not improve the
accuracy of the natural frequency prediction. Later, Arany
et al. [7] have used some simplified formulae to calculate
the natural frequency of the wind turbine with acceptable
accuracy. In fact, the tower was considered a tapered hollow
cylinder with small wall thickness and the mean value of
tower diameter was used. They analyzed the behavior of
the natural frequency of ten wind turbines when the founda-
tion flexibility changes and when the water depth varies.

In the present paper, an attempt is made to provide the
natural frequency of OWT by using the power series method
[9] and considering the system as a stepped Euler-Bernoulli
beam [10–21]. The first part of the structure is constituted
by the monopile and the transition piece, considered as a
hollow cylinder [10] with constant wall thickness carrying
springs at its bottom. The second part is constituted by the
tower and modelled as a hollow cylinder with wall thickness
varying with the height, with the heavy mass at the top.
Three different mathematical formulations of the wall thick-
ness of the tower are considered. The case producing the most
accurate prediction of the natural frequency of the OWT will
be highlighted. Also, the effect of the tower-to-pile wall thick-
ness ratio and lateral and rotational springs on the natural fre-
quencies will be discussed through some plots.

2. The Model Description

The offshore wind turbine system (Figure 1) in this paper is
constituted by a monopile, the tower, and the rotor nacelle
assembly (RNA). The total length of the system is L while
the first part’s (pile + transition piece) length is Lp.

2.1. The Mathematical Model of OWT. Mathematically, the
system is idealized as stepped beams with the first part (1)
being constituted by the monopile and the transition piece
and the second part (2) being constituted by the tower and
the RNA (Figure 2). Real-life OWT might have a pile diam-
eter equal to the tower bottom diameter (Dp =Db), greater
(Dp >Db) or smaller than the tower bottom diameter
(Dp <Db). E, I, and A stand for the Young modulus, inertia,
and cross-sectional area, respectively. h is the wall thickness
and D is the diameter. Subscripts p and t stand for the pile
and tower, respectively. Db and Dt represent the tower bot-
tom and the top diameter, respectively. M and J are the
RNA mass and top mass moment of inertia, respectively. P
ðzÞ is the total axial force acting on the wind turbine
structure.

2.2. The Foundation. The foundation is modelled using the
coupled mode spring model which idealizes the foundation
compliance as a set of translational and rotational coupled
springs located at the mudline. In this analysis, the pile is
slender and the soil is homogeneous. The whole structure
is considered to be very stiff vertically, and consequently,
only three springs are considered: the rotational (KR), trans-
lational (KL), and cross-coupling (KLR) spring. The
approach developed by Gazeta [11] can be used to derive
the values of the spring stiffness of the slender monopile.
Eurocode 8 [12] could also be used when the soil is consid-
ered as homogeneous. Formulae developed by Pender [13]
could apply for calculating the spring stiffness, taking into
account the piles’ Young’s modulus and the bending stiffness
([14]). In matrix form, the three spring models are presented
as follows:

Fx

My

" #
=

KL KLR

KLR KR

" #
w

w′

" #
, ð1Þ

with Fx being the lateral force and My being the fore-aft

moment and w and w′ = ∂w/∂x are the displacement and
the slope, respectively.

2.3. The Axial Load. The tower weight appears to be higher
than the nacelle weight for offshore wind turbines, and
therefore, neglecting the tower mass may lead to erroneous
results [15]. The top mass M is constituted by the rotor-
nacelle assembly with the mass moment of inertia J . The
axial load is defined as the sum of the gravity force and
self-weight of the structure. The value of the axial load
depends on the height z and is expressed through the
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following formula [8]:

P zð Þ =Mg +
ðL
z
ρkAk zð Þdz, ð2Þ

where subscript k = ðp, tÞ.

2.4. The Tapered Beam Profiles of the Tower. Generally, the
tapered tower can be modeled by using three beam profiles
as shown in Figure 3.

Figure 3(a) presents a tapered tower with a constant
inner diameter and varying outer diameter along the height
z [16]. This form is not applied in the present paper as it
requests that the bottom inner diameter should be smaller
than the outer top diameter, but for all the studied wind tur-
bine prototypes, Di >Dt . The useful profiles are one those in
Figures 3(b) and 3(c) summarized in the following three
cases.

2.4.1. Case 1. This case models the wind turbine tower as a
tapered beam with the circular cross-section. The outermost
diameter Do and the innermost Di diameter linearly vary
with respect to z as follows:

Do zð Þ = αo + βozð Þ,
Di = αi + βizð Þ:

ð3Þ

The area and inertia moment are derived as follows:

At zð Þ = π

4 α2o − α2i + 2 αoβo − αiβið Þz + β2
o − β2

i

� �
z2

� �
,

It zð Þ = π

64 α4o − α4i
� �

+ 4 α3oβo − α3i βi

� �
z + 6 α2oβ

2
o − α2i β

2
i

� �
z2

�
+ 4 αoβ

3
o − αiβ

3
i

� �
z3 + β4

o − β4
i

� �
z4
�
,

ð4Þ

where

βo = βi =Db
1 − q
Lp − L

,

α0 =Db

qLp − L

Lp − L
,

αi = α0 − 2ht q = Dt

Db
:

ð5Þ

Here, both the inner and outer diameters vary with z but
the wall thickness remains constant as shown in Figure 3(c).

2.4.2. Case 2. The tower is idealized as a hollow tapered
beam (exactly like case 1) with very small wall thickness.
The thin-walled approximation applies here and the diame-
ters of tower are given as follows:

Do zð Þ =Db α + βzð Þ,
Di =Do − 2ht ,

ð6Þ

followed by the area and inertia moment as follows:

At =
π

4 D2
0 − D0 − 2htð Þ2� �

≈ πDbht α + βzð Þ = Ab α + βzð Þ,

It =
π

64 D4
0 − D0 − 2htð Þ4� �

≈
πD3

bht
8 α + βzð Þ3 = Ib α + βzð Þ3,

ð7Þ
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Figure 1: The offshore wind turbine.
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Figure 2: Mathematical model of the OWT. (a) Dp =Db. (b) Dp

<Db. (c) Dp >Db.
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with

α =
qLp − L

Lp − L
,

β = 1 − q
Lp − L

,

q = Dt

Db
:

ð8Þ

2.4.3. Case 3. This case corresponds to Figure 3(b) where
both the inner and outer diameter profiles are not parallel
(as in Figure 3(c)). The wall thickness changes with the
tower height [17]. This seems to describe more the reality
than the two previous cases as the wind turbine tower is a
sum of the welded tapered semicones with different wall
thicknesses. The diameter, area, and inertia are given by
the following formulae.

Do zð Þ =Db α + βzð Þ,
Di zð Þ = Db − 2htð Þ α + βzð Þ,

At zð Þ = π D2
o zð Þ −D2

i zð Þ� �
4 = Ab α2 + 2αβz + β2z

� �
,

It zð Þ = π D4
o zð Þ −D4

i zð Þ� �
64 = Ib α4 + 4α3βz + 6α2β2z2 + 4αβ3z3 + β4z4

� �
,

ð9Þ

with coefficients α and β given in equation (8).

3. Equations Governing the OWT

The governing equations of the OWT are those of a stepped
Euler-Bernoulli beam. The first line represented the vibra-

tion of part 1, considered as a hollow cylinder with constant
thickness and constant cross-section while the second equa-
tion models the tower as a tapered beam with varying circu-
lar cross-section along its height. The mathematical
formulation is [8–16, 18–21] as follows.

∂2

∂z2
EpIp

∂2w
∂z2

 !
+ ∂
∂z

P zð Þ ∂w∂z
� �

+ ρpAp
∂2w
∂t2

= 0, 0 ≤ z ≤ Lp,

∂2

∂z2
EtIt

∂2w
∂z2

 !
+ ∂
∂z

P zð Þ ∂w∂z
� �

+ ρtAt
∂2w
∂t2

= 0, Lp < z ≤ L,

ð10Þ

where w is the transverse displacement, z is the coordinate
axis along the height of the OWT, and EtIt and EpIp are

L

L
P

z

(a) (b) (c)

Figure 3: Mathematical model of OWT with three different forms of tapered tower.

Table 1: Name and location of the considered offshore wind
turbines.

No. Wind name and location

I Lely offshore farm (Netherlands)

II Irene Vorrink offshore wind farm (Netherlands)

III Blyth offshore wind farm (UK)

IV Kentish Flats offshore wind farm (UK)

V Barrow offshore wind farm (UK)

VI Thanet offshore wind farm (UK)

VII Belwind 1 offshore wind farm (Belgium)

VIII Burbo Bank offshore wind farm (UK)

IX Walney 1 offshore wind farm (UK)

X Gunfleet Sands offshore wind farm (UK)

XI ZJU-P (China)
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the bending stiffness of the tower and monopile, respec-
tively. ρp and ρt are the pile and tower densities, respectively.
The presence of the top mass on the whole structure consid-
ered introduces the following boundary conditions at the top
of the tower (x = L):

EtIt
∂2w
∂z2

+Me
∂2w
∂t2

+ J +Me2
� � ∂2

∂t2
∂w
∂z

" #
z=L

= 0,

∂
∂z

EtIt
∂2w
∂z2

 !
+ P Lð Þ ∂w

∂z
−M

∂2w
∂t2

−Me
∂2

∂t2
∂w
∂z

" #
z=L

= 0:

ð11Þ

Likewise, the three-spring foundation at the bottom of
the structure leads to an additional boundary condition as

follows:

EPIp
∂2w
∂z2

" #
z=0

− KR
∂w
∂z

0, tð Þ − KLRw 0, tð Þ = 0,

∂
∂z

EpIp
∂2w
∂z2

 !
+ P 0ð Þ ∂w∂z

" #
z=0

+ KLw 0, tð Þ + KLR
∂w
∂z

0, tð Þ = 0,

ð12Þ

where Pð0Þ is the axial force at z = 0.

4. Method of Solution

The solution of equation (10) has the following form.

w z, tð Þ =V zð Þ exp jωtð Þ, ð13Þ

where ω is the vibration frequency and VðzÞ stands as the

Table 2: Characteristics of the ZJU-P offshore wind turbine.

Wind parameters Symbols Units ZJU-P (XI)
(1) Rotor-nacelle assembly mass M Ton 218.28

(2) Total height of wind turbine L m 106.67

(3) Tower bottom diameter Db m 3.16

(4) Tower top diameter Dt m 5.5

(5) Tower Young’s modulus Et GPa 210

(6) First part height LP m 28

(7) Tower wall thickness ht mm 75

(8) Monopile diameter Dp m 5.5

(9) Monopile wall thickness hp mm 75

(10) Monopile Young’s modulus Et GPa 210

(11) Lateral stiffness of foundation KL GN/m 0.206

(12) Cross-stiffness of foundation KLR GN −3.08

(13) Rotational stiffness of foundation KR GNm/rad 83.3

Table 3: Natural frequencies and comparisons.

OWT name
Natural frequency (Hz) and error (%)

Measured frequency
Case 1 Case 2 Case 3

Frequency Error Frequency Error Frequency Error

I Lely A2 0.634 0.738 16.53 0.676 6.56 0.727 15.34

II Irene Vorrink 0.546 0.629 15.31 0.562 2.87 0.603 10.51

III Blyth 0.488 0.456 −6.61 0.395 −19.03 0.470 −3.60

IV Kentish flats 0.339 0.348 2.60 0.313 −7.75 0.339 0.01

V Barrow 0.369 0.360 −2.41 0.300 −18.56 0.361 −2.08

VI Thanet 0.370 0.346 −6.57 0.281 −23.97 0.351 −5.19

VII Belwind 0.372 0.378 1.61 0.322 −13.49 0.378 1.34

VIII Burbo Bank 0.292 0.295 0.96 0.2704 −7.39 0.292 0.07

IX Walney 0.350 0.329 −6.08 0.285 −18.54 0.330 −5.68

X Gunfleet Sands 0.314 0.300 −4.42 0.268 −14.52 0.302 −3.82

XI ZJU-P 0.262 0.250 −4.35 0.201 −23.20 0.266 1.45
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mode shape. To determine VðzÞ, the first part with length Lp
has a displacement VpðzÞ and the second part with length
L − Lp is constituted by the tower and modeled as a tapered
beam carrying the RNA at the top with displacement VtðzÞ.
VðzÞ appears then as a piece-defined function along the
structure defined as follows:

V zð Þ =
Vp zð Þ 0 < z < Lp,
Vt zð Þ Lp < z < L:

(
ð14Þ

Then, the previous equation (10) becomes

∂2

∂z2
EpIp

∂2Vp

∂z2

 !
+ ∂
∂z

P zð Þ ∂Vp

∂z

� �
− ρpApω

2Vp = 0, 0 ≤ z ≤ Lp,

∂2

∂z2
EtIt

∂2Vt

∂z2

 !
+ ∂
∂z

P zð Þ ∂Vt

∂z

� �
− ρtAtω

2Vt = 0, Lp < z ≤ L:

ð15Þ

The boundary conditions at z = 0 is rewritten as follows:

EPIp
∂2Vp

∂z2

" #
z=0

− KR

∂Vp

∂z
0, tð Þ − KLRVp 0, tð Þ = 0,

∂
∂z

EpIp
∂2Vp

∂z2

 !
+ P 0ð Þ ∂Vp

∂z

" #
z=0

+ KLVp 0, tð Þ + KLR

∂Vp

∂z
0, tð Þ = 0:

ð16Þ

The top boundary condition becomes

EtIt
∂2Vt

∂z2
−Meω2Vt + J +Me2

� �
ω2 ∂Vt

∂z

" #
z=L

= 0,

∂
∂z

EtIt
∂2Vt

∂z2

 !
+ P Lð Þ ∂Vt

∂z
−Mω2Vt −Meω2 ∂Vt

∂z

" #
z=L

= 0:

ð17Þ

Next, the power series method is employed to solve
equations (15)–(17) [9–12]. It consists on choosing Vp and
Vt as follows [18]:

Vp zð Þ = F1V1p zð Þ + F2V2p zð Þ + F3V3p zð Þ + F4V4p zð Þ, 0 ≤ z ≤ Lp,
ð18Þ

Vt zð Þ = T1V1t zð Þ + T2V2t zð Þ + T3V3t zð Þ + T4V4t zð Þ, Lp ≤ z ≤ L,
ð19Þ

where Fn and Tn (n = 1, 2, 3, 4) stand for the constants and
Vnf and Vnt are four linearly independent fundamental
solutions, defined as follows.

Vnp zð Þ = 〠
∞

i=0
aniz

i = an0 + an1z + an2z
2 + an3z

3+,⋯ , ð20Þ

Vnt zð Þ = 〠
∞

i=0
bniz

i = bn0 + bn1z + bn2z
2 + bn3z

3+,⋯ ,

ð21Þ
with ani and bni being coefficients to be determined. Solu-
tions (18)–(19) have eight unknowns Fn and Tn, but only
the following four boundary conditions are available. The
power series formulations of the four boundary conditions
(16)–(17) are obtained by introducing equations (18) and
(19) into (17) considering equations (20)–(21) as follows:

2EIpan,2 − KRan,1 − KLRan,0 = 0,

6EIpan,3 + P 0ð Þ + KLRð Þan,1 + KLan,0 = 0,

EIt Lð Þ〠
∞

i=0
i + 1ð Þ i + 2ð ÞLibn,i+2 − J +Me2

� �
ω2 〠

∞

i=0
i + 1ð ÞLibn,i+1

−Meω2 〠
∞

i=0
Libn,i = 0,

EIt Lð Þ〠
∞

i=0
i + 1ð Þ i + 2ð Þ i + 3ð ÞLibn,i+3 + EIt ′ Lð Þ〠

∞

i=0
i + 1ð Þ i + 2ð ÞLibn,i+2

+ P Lð Þ +Meω2� �
〠
∞

i=0
i + 1ð ÞLibn,i+1 + ω2M〠

∞

i=0
Libn,i = 0,

ð22Þ

where It ′ðzÞ = dIt/dz.
Four additional boundary conditions are needed and will

be obtained from the continuity relations at the separation
zone between the two parts (i.e., at z = Lp). That continuity
concerns the deflection (V), the slope (φ), moment (M),
and shear force (Q).

Table 4: Comparison of case 3 data and results from Arany et al.
[7].

OWT name
Natural frequency (Hz) and error (%)

Measured
Case
3

Error
Arany et al.

[8]
Error

I Lely A2 0.634 0.727 15.34 0.643 1.36

II Irene Vorrink 0.546 0.603 10.51 0.552-0.555 −1.10

III Blyth 0.488 0.470 −3.60 0.489 0.12

IV Kentish
Flats

0.339 0.339 0.01 0.339 0.01

V Barrow 0.369 0.361 −2.08 0.367 −0.54

VI Thanet 0.370 0.351 −5.19 0.382 3.08

VII Belwind 0.372 0.378 1.34 0.380 2.12

VIII Burbo
Bank

0.292 0.292 0.07 0.295 1.05

IX Walney 0.350 0.330 −5.68 0.349 −0.40

X Gunfleet
Sands

0.314 0.302 −3.82 0.315 0.31

XI ZJU-P 0.262 0.266 1.45
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The power series formulations of those four continuity
relations are given as follows:

Vp Lp
� �

=Vt Lp
� �

, i:e:, 〠
∞

i=0
aniLp

i − 〠
∞

i=0
bniLp

i = 0,

φp Lp
� �

= φt Lp
� �

, i:e:, 〠
∞

i=0
i i + 1ð Þan,i+1Lpi − 〠

∞

i=0
i i + 1ð Þbn,i+1Lpi = 0,

Mp Lp
� �

=Mt Lp
� �

, i:e:, EIp 〠
∞

i=0
i i + 1ð Þ i + 2ð Þan,i+2Lpi

− EIt Lp
� �

〠
∞

i=0
i i + 1ð Þ i + 2ð Þbn,i+2Lpi = 0,

Qp Lp
� �

=Qt Lp
� �

, 

i:e:, EIp 〠
∞

i=0
i + 1ð Þ i + 2ð Þ i + 3ð Þan,i+3Lpi + P Lp

� �
〠
∞

i=0
i + 1ð Þan,i+1Lpi

" #

− EIt Lp
� �

〠
∞

i=0
i + 1ð Þ i + 2ð Þ i + 3ð Þbn,i+3rli

"

+ EIt ′ Lp
� �

〠
∞

i=0
i + 1ð Þ i + 2ð Þbn,i+2Lpi + P Lp

� �
〠
∞

i=0
i + 1ð Þbn,i+1Lpi

#
= 0:

ð23Þ

From equations (22) and (23) the 8 × 8 matrix will be
obtained. Setting the determinant of that matrix to zero will
provide us with the natural frequency of the system.

an,i and bn,i are recursive relations after introducing
equations (18) and (19) into (15) considering equations
(20)–(21). These recursive relations depend on the taper
profile and are presented in details in the appendix.

5. Results and Discussion

In order to test the accuracy of the PSM on predicting the
natural frequency of OWT, considered as the stepped
Euler-Bernoulli beam, a total of eleven real-world wind tur-
bine will be analyzed. This paper will provide the data of one
wind turbine only. The data of the remaining ten OWT are
presented in [7].

5.1. The Considered Parameters. The parameters considered
in this paper are characteristics of ten OWT from different
wind farms as described in [7]. Their numberings go from
I to X. The one supplementary data will be added, provided
by our Zhejiang University Lab (ZJU-P), and will be identi-
fied by number XI, as shown in Table 1 as follows.

Next, the characteristics of OWT XI is presented in
Table 2 as follows:

5.2. Result and Discussion. In order to test the accuracy of
the power series method on predicting the natural frequen-
cies of several wind turbines, three types of tapered tower
were considered. The whole structure is considered as made
by steel, and the first part of the structure is a hollow uni-
form cylinder. For each case, the PSM is implemented using
N = 22 terms in the series. The results from the three cases

are compared with the measured values as shown in
Table 3. For each case, the relative error is calculated in
order the appreciate the degree of accuracy.

For case 1, the profiles of the variation of the tower’s
inner and outermost diameters vary linearly along the height
z and remain parallel to each other. This implies that the
wall thickness remains unchanged with the height z. When
compared to the measured values, Lely A2 and Irene Vor-
rink show the very large discrepancy with the measured
values. The relative errors for Blyth, Walney, and Thanet
are about 6%. The rest of OWT present an accuracy of about
4% at most.

For case 2, the tower is considered as having thin walls,
and thus, its thickness can be neglected when compared to
the bottom diameter (ht ≪Db). The errors obtained for Lely
A2 and Irene Vorrink OWT are 6.56% and 2.87%, respec-
tively, smaller, compared to 16.53% and 15.31%, respec-
tively, in case 1. The rest of nine OWT show errors from
6.56 to 23.97%. This approach appears as suitable only for
I and II.

Case 3 supposes the thickness change along the tower
height z as well as outermost and innermost diameters.
The obtained natural frequencies are quite close to those
obtained by measurement except the frequencies of Lely
A2 (15.34%) and Irene Vorrink (10.51%). This case
increases the accuracy of all the frequencies, compared to
those of case 1.

Table 4 compares the case 3 results with those obtained
by Arany et al. [7], and it is observable that the natural fre-
quency of at Kentish Flats OWT is similar with measured
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Figure 4: Natural frequency as a function of tower-to-pile
thickness ratio.
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value and the one obtained by Arany et al. [7]. Also, the
present calculated Burbo Bank and Belwind natural frequen-
cies are closer to the measured frequencies than those pro-
duced by Arany et al. [7]. For the rest, the discrepancy
between the present results and measured results is that
some thin-walled wind tower properties are not taken into
account in the calculations. Also, the soil flexibility and
water depth and added mass are not considered in our
approach. The mass moment of inertia or the system damp-
ing was also not taken into account.

The natural frequencies of OWT appear to be highly
sensitive to wall thickness, and this is the reason why
Figure 4 was plotted, showing the frequency as a function
of tower-to-pile thickness for three different configurations
of the offshore wind turbine. ZJU-P (Db =Dp), Blyth
(Db <Dp), and Walney I (Db >Dp) were chosen for the pur-
pose, and the main observation is that the natural frequency
increases with the tower-to-pile thickness ratio ht/hp, then
reaches a maximum value, and starts decreasing. The maxi-
mum frequency is observed when ht/hp = 0:8 for ZJU-P and
ht/hp = 1 for Blyth and Walney I. The decrease is slow for all
three cases with the percentage around 11%.

The behavior of frequency with lateral and rotational
thickness was also examined in Figure 5 for different values
of the cross-coupling spring for ZJU-P. Its observed in
Figure 5(a) that independently to a chosenKLR, the natural
frequency of the structure increases whenKLincreases and
then reaches an asymptotic value where the natural fre-
quency becomes constant with whenKLRincreases, the
asymptotic frequency decreases.

In Figure 5(b), the rotational spring appears to really
have impact on the natural frequency as we observe a rapid
increase of the natural frequency when KR increases. Then,

an asymptotic frequency is reached earlier when KLR
increases. KR has impact more on the natural frequency of
OWT than KL, as previously concluded in Arany et al. [7]

6. Conclusion

For the first time ever, the natural frequency of the offshore
wind turbine is accurately predicted by considering the
whole structure as a stepped Euler-Bernoulli beam and
employing the power series (exact) method. It should be
noted that the choice of the Euler-Bernoulli beam theories
is because, as said at the introduction, the other beam theo-
ries have not improved the accuracy of the natural
frequencies.

The wind turbine structure is divided into two parts. The
first part, constituted by the monopile and the transition
piece, is taken as a hollow cylinder with constant cross-
section and constant thickness, carrying three springs at its
bottom. The second part is a tower considered as a hollow
semicone with variable cross-section which carries a heavy
top mass. This consideration is the first novelty of this work
as previous attempts have approximated the beam-like part
of the OWT structure (monopile, transition piece, and
tower) as a single beam, although these parts have different
geometrical characteristics. We came therefore to the follow-
ing conclusions:

(i) In the case 1 approach, where the tower wall thick-
ness varies with its height, the obtained natural fre-
quencies have the maximum error of 16.53% and
the minimum of 0.96%. These errors are greater
than those of case 2, except for OWT with thick-
nesses greater or equal to 15mm
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Figure 5: Natural frequency as a function of (a) lateral stiffness and (b) rotational stiffness.
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(ii) The case 2 approach is suitable for modeling Lely
A1 and Irene Vorrink wind turbines as their tower
thickness is negligible when compared to their bot-
tom diameters

(iii) The case 3 approach tends to accurately calculate
the natural frequency of OWT for tower thicknesses
greater or equal to 15mm, with the maximum error
range of about 5.7% and the minimum of about
0.01%. This approach is quite close to the real wind
tower because, in practice, the tower is constituted
by multiple hollow semicones with different thick-
nesses which are welded to produce a whole
structure

The present results are important and constitute a nov-
elty because we have been able to show that case 2 is more
indicated for an offshore wind turbine with a tower thick-
ness lower than 15mm. Case 3, where the tower thickness
wall varies with its height, must be used for finding the nat-
ural frequencies of OWT when it comes to structures with
big wall thickness, if we need results with high precision.

(iv) -Tower-pile thickness and rotational spring are
important parameters in the design as they highly
have impact on the natural frequency

(v) This new and more complete approach is indicated
to accurately predict the natural frequency of
OWT when we have just few information about soil
properties and environment conditions surrounding
the site where the OWT is erected

Appendix

A.1. The Power Series Method for Determining
the Eigenfrequencies for Three Types of
Tapered Towers

The power series method is explained here for the second
part (tower) of the stepped structure only. The first part’s
coefficients could be derived accordingly. The power series
coefficients for all three cases are given as follows.

A.1. Case 1. The power series coefficients are given by the
following recursive relations.

i = o,

c4bn,4 = −
c3
2 bn,3 −

2c21 + c22ð Þ
12 bn,2 −

c12
24 bn,1 −

c03
24 bn,0,

i = 1,

c4bn,5 = −
3c3
5 bn,4 −

6c21 + c22ð Þ
20 bn,3 −

3c11 + c12ð Þ
30 bn,2

−
2c02 + c03ð Þ

120 bn,1 −
c−12
120 bn,0,

i ≥ 2,

bn,i+4 = −r3bn,i+3 − r2bn,i+2 − r1bn,i+1 − r0bn,i − r−1bn,i−1 − r−2bn,i−2,

κ = c4 i + 1ð Þ i + 2ð Þ i + 3ð Þ i + 4ð Þ,

r3 =
i + 1ð Þ i + 2ð Þ2 i + 3ð Þc3

κ
,

r2 =
i + 1ð Þ i + 2ð Þ i + 1ð Þ i + 2ð Þc21 + c22½ �

κ
,

r1 =
i + 1ð Þ2 i i + 2ð Þc11 + c12½ �

κ
,

r0 =
i − 1ð Þi i + 1ð Þ i + 2ð Þc01 + i i + 1ð Þc02 + c03½ �

κ
,

r−1 =
i − 1ð Þ i + 1ð Þc−11 + c−12½ �

κ
,

r−2 =
c−2
κ
, ðA:1Þ

where

c4 =
Eπ
64 α4o − α4i
� �

,

c3 =
Eπ
16 α3oβo − α3i βi

� �
,

c21 =
3Eπ
32 α2oβ

2
o − α2i β

2
i

� �
,

c22 = P 0ð Þ,

c11 =
Eπ
16 β3

oαo − β3
i αi

� �
,

c12 =
ρgπ
4 α2i − α2o
� �

,

c01 = E
π

64 β4
o − β4

i

� �
,

c02 =
ρgπ
4 βiαi − β0αoð Þ,

c03 = −ω2 ρπ

4 α2o − α2i
� �

,

c−11 =
ρgπ
12 β2

i − β2
o

� �
,

c−12 = −ω2 ρπ

2 βoαo − βiαið Þ,

P zð Þ =Mg + ρg
4 π α2o − α2i

� �
L + αoβo − αiβið ÞL2�

+ β2
o − β2

i

� �
L3

3 − α2i − α2o
� �

z − αiβi − αoβoð Þz2 − β2
i − β2

o

� �
3 z3

#
:

ðA:2Þ

A.2. Case 2. The power series coefficients are given by the
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following recursive relations.

i = o,

c4bn,4 = −
c3
2 bn,3 −

2c21 + c22ð Þ
12 bn,2 −

c12
24 bn,1 −

c01
24 bn,0

i ≥ 1
bn,i+4 = −r3bn,i+3 − r2bn,i+2 − r1bn,i+1 − r0bn,i − r−1bn,i−1

κ = c4 i + 1ð Þ i + 2ð Þ i + 3ð Þ i + 4ð Þ

r3 =
i + 1ð Þ i + 2ð Þ2 i + 3ð Þc3

κ
,

r2 =
i + 1ð Þ i + 2ð Þ i + 1ð Þ i + 2ð Þc21 + c22½ �

κ
,

r1 =
i + 1ð Þ2 i i + 2ð Þc11 + c12½ �

κ
,

r0 =
i i + 1ð Þc02 + c01½ �

κ
,

r−1 =
c−1
κ
,

ðA:3Þ

where

c4 = EIbα
3,

c3 = 3EIbα2β,
c21 = 3EIbαβ2,
c22 = P 0ð Þ,
c11 = EIbβ

3,
c12 = −ρgAbα,
c01 = −ρAbω

2α,

c02 =
−ρgAbβ

2 ,

c−1 = −ρAbω
2β,

P zð Þ =Mg + ρgAb αL + βL2

2 − αz −
βz2

2

� �
:

ðA:4Þ

A.3. Case 3. The power series coefficients are given by the
following recursive relations.

i = o,

c4bn,4 = −
c3
2 bn,3 −

2c21 + c22ð Þ
12 bn,2 −

c12
24 bn,1 −

c03
24 bn,0,

i = 1,

c4bn,5 = −
3c3
5 bn,4 −

6c21 + c22ð Þ
20 bn,3 −

3c11 + c12ð Þ
30 bn,2

−
2c02 + c03ð Þ

120 bn,1 −
c−12
120 bn,0,

i ≥ 2,

bn,i+4 = −r3bn,i+3 − r2bn,i+2 − r1bn,i+1 − r0bn,i − r−1bn,i−1 − r−2bn,i−2,

κ = c4 i + 1ð Þ i + 2ð Þ i + 3ð Þ i + 4ð Þ,

r3 =
i + 1ð Þ i + 2ð Þ2 i + 3ð Þc3

κ
,

r2 =
i + 1ð Þ i + 2ð Þ i + 1ð Þ i + 2ð Þc21 + c22½ �

κ
,

r1 =
i + 1ð Þ2 i i + 2ð Þc11 + c12½ �

κ
,

r1 =
i − 1ð Þi i + 1ð Þ i + 2ð Þc01 + i i + 1ð Þc02 + c03½ �

κ
,

r−1 =
i − 1ð Þ i + 1ð Þc−11 + c−12½ �

κ
,

r−2 =
c−2
κ
, ðA:5Þ

where

c21 = 6EIbα2β2,
c22 = P 0ð Þ,

c11 = 4EIbβ3α,
c12 = ρgAbα

2,
c01 = EIbβ

4,
c02 = Abρgβα,
c03 = −ω2ρAbα

2,

c−11 =
ρgAb

3 β2,

c−12 = −2ω2ρAbβα,
c−2 = −ω2ρAbβ

2,

α =
qLp − L

Lp − L
,

c4 = EIbα
4,

c3 = 4EIbα3β,

P zð Þ =Mg + ρgAb α2L + αβL2 + β2L3

3 − α2z − αβz2 −
β2

3 z3
" #

:

ðA:6Þ

Data Availability

The data supporting the results can be found in the refer-
ences mentioned inside the main text.
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