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We investigate the stability of solutions of perturbed set differential equations with causal operators in regard to their corresponding
unperturbed ones considering the difference in initial conditions (time and position) by utilizing Lyapunov functions and
Lyapunov functionals.

1. Introduction

Set differential equations (SDEs) have received a lot of atten-
tion in recent decades, emerging as an independent disci-
pline. The unifying approach of the SDEs [1–4] is one of
their significant points, which is also considered as an advan-
tage. It has been observed that SDEs are generalized forms of
vector and nonlinear ordinary differential equations (ODEs)
[5–7] and that ODEs can be considered as special cases of
SDEs while studying its stability properties in a semilinear
metric space. Moreover, SDEs can play an important role in
examining multivalued differential equations and inclusions
[2] and also in fuzzy equations [8]. Furthermore, causal oper-
ators [9–11] encompass a wide range of ODEs and integral
[12] and integro-differential equations [13]. Thus, SDEs
involving causal operators [14] give a comprehensive form
of diverse classes of equations as they embrace the aforemen-
tioned special cases of differential equations.

On other hand, stability analysis [12, 14–21] can be useful
for determining the qualitative properties, which in its turn
leads to a more perceptive behavioral look of the differential
equation’s solutions, even when they are unknown explicitly
[5, 6].

In real-life problems, the solutions of differential equa-
tions may differ in initial conditions (time or position). To

deal with such cases, initial time difference (ITD) stability
analysis [15–17, 22–27] compares the behavioral properties
of the solutions considering the change in initial conditions
[22, 24–27].

Such generalized approach of stability plays an important
role in the qualitative theory of differential equations in ana-
lysing the stability and other behavioral properties of its solu-
tions using a more realistic manner that considers the
difference in time and position in the initial state.

Diverse forms of ITD stability have been investigated in
analysing the solutions for many forms of differential equa-
tions (such as, ordinary, fractional, and fuzzy).

In this work, we study ITD stability results for SDEs
involving causal operators, by employing Lyapunov func-
tions and functionals. We give sufficient conditions to ITD
stability and ITD asymptotic stability.

We laid the foundations in Section 2, by investigating the
basic definitions and results regarding ITD stability and sta-
bility of null solution of SDE with causal operator. In Section
3, we present the difficulties we face when we try to infer ITD
stability properties from those of null solution, by comparing
both classical and ITD notions of stability of the solution of
the SDE with causal operator. In Section 4, we establish the
comparison theorems for initial time difference that resolve
the complications regarding the classical notion stability. In
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Section 5, we present an approach that resolve the difficulties
allowing us to infer stability properties for solution of the
perturbed form of SDE involving causal operator corre-
sponding to the unperturbed one, by using a suitable com-
parison system.

2. Preliminaries

Let KðℝnÞ denotes all compact nonempty subsets of ℝn and
KcðℝnÞ denotes all compact and convex nonempty subsets of
ℝn: The Hausdorff metric between any bounded sets A1 and
A2 in ℝn is defined by

D A1, A2ð Þ =max sup
a2∈A2

d a2, A1ð Þ, sup
a1∈A1

d a1, A2ð Þ
" #

, ð1Þ

where

d a2, A1ð Þ = inf d a2, a1ð Þ: a1 ∈ A1f g: ð2Þ

Each of ðKðℝnÞ,DÞ and ðKcðℝnÞ,DÞ forms a complete
metric space. KcðℝnÞ with ordinary addition and nonnega-
tive scalar multiplication is a semilinear metric space that
can be regarded as a cone in an appropriate Banach space.

Some properties of D can be stated as follows:

1ð ÞD A1, A2ð Þ =D A2, A1ð Þ,
2ð ÞD A1 + C,A2 + Cð Þ =D A1, A2ð Þ,
3ð ÞD kA1, kA2ð Þ = kD A1, A2ð Þ,
4ð ÞD A1, A2ð Þ ≤D A1, Cð Þ +D C, A2ð Þ,

ð3Þ

for any A1, A2, C ∈ KcðℝnÞ and k ∈ℝ+, where A1 + C
denotes fa1 + c : a1 ∈ A1, c ∈ Cg and the scalar multiplica-
tion kA1 denotes fka1 : a1 ∈ A1g. If k = −1, we get −A1 =
ð−1ÞA1 = f−a1 : a1 ∈ A1g.

In general, A1 + ð−A1Þ ≠ f0g (unless A1 = fag is a single-
ton). To overcome with this implication of Minkowski differ-
ence, i.e.,

A1 + −1ð ÞA2 = a1 − a2 : a1 ∈ A1, a2 ∈ A2f g: ð4Þ

Hukuhara difference between A1, A2 ∈ KcðℝnÞ is intro-
duced as follows:

If there is a C ∈ KcðℝnÞ where C + A2 = A1, then Huku-
hara difference exists and it is denoted by A1⊝A2, or simply
A1 − A2 when there is no confusion with Minkowski differ-
ence, i.e., A1⊝A2 = C⟺ C + A2 = A1:

Hukuhara difference has an important property, Min-
kowski difference does not have (in general), which is A1 −
A1 = f0g, for any compact and convex nonempty subset A1
of ℝn.

Let U : I ⟶ KcðℝnÞ be a given multifunction, where I
denotes a real-number interval. U is said to be Hukuhara dif-
ferentiable at t0 ∈ I, if we ensure the existence of DHUðt0Þ ∈
KcðℝnÞ so

lim
ε⟶0+

U t0 + εð Þ −U t0ð Þ
ε

and lim
ε⟶0+

U t0ð Þ −U t0 − εð Þ
ε

, ð5Þ

both exist in KcðℝnÞ and have the same value as DHUðt0Þ:
The existence of Uðt0 + εÞ −Uðt0Þ andUðt0Þ −Uðt0 − εÞ,

for a sufficiently small ε > 0, is implicit inDHUðt0Þ definition.
By considering KcðℝnÞ as a complete cone, and embed-

ding it in an appropriate Banach space, with the properties
of Bochner integral, it is seen that if

G tð Þ =G t0ð Þ +
ðt
t0

F sð Þds, t ∈ I, ð6Þ

where F : I ⟶ KcðℝnÞ is integrable in Bochner sense, then
G is Hukuhara differentiable, i.e., DHGðtÞ exits, and DHGðtÞ
= FðtÞ holds almost everywhere on I.

The Hukuhara integral of F, over a compact set I ⊂ℝ+, is
defined as the integral of a continuous selector f of F over I.ð

I
F tð Þdt =

ð
I
f tð Þdt

� �
: ð7Þ

Considering the null element θ of ℝn as a point set, let us
define k:k on the space E = C½½t0,∞Þ, KcðℝnÞ� as

Uk k = sup
s∈ t0,∞½ Þ

D U sð Þ, θ½ �
h sð Þ <∞, ð8Þ

where U ∈ E and h : ½t0,∞Þ⟶ℝ+ is a continuous map.
Then, ðE, k:kÞ is a complete normed space.

The operator Q ∈ C½E, E� is called causal if U1ðsÞ =U2ðsÞ,
for U1,U2 ∈ E, and s ∈ ½t0, t� implies

QU1ð Þ sð Þ = QU2ð Þ sð Þ, s ∈ t0, t½ �: ð9Þ

Consider the following equations:

DHU = QUð Þ tð Þ,U t0ð Þ =U0,
 forU0 ∈ Kc ℝ

nð Þ and t ≥ t0 ≥ 0,
ð10Þ

DHU = QUð Þ tð Þ,U τ0ð Þ =V0,
 forV0 ∈ Kc ℝ

nð Þ and t ≥ τ0 ≥ 0,
ð11Þ

DHV = PVð Þ tð Þ, V τ0ð Þ =V0,
 forV0 ∈ Kc ℝ

nð Þ and t ≥ τ0,
ð12Þ

DHW = SWð Þ tð Þ,W τ0ð Þ =V0 −U0,
 forW τ0ð Þ =W0 ∈ Kc ℝ

nð Þ and t ≥ τ0,
ð13Þ

where (10) and (11) are different in initial time and position,
(12) is the perturbed form corresponding to the unperturbed
system (11), and where Q, P, S : E⟶ E are causal operators
and Sρ = fU ∈ KcðℝnÞ: D½U , ~0� < ρ <∞g:
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A special case of (12) is

PVð Þ tð Þ = QVð Þ tð Þ + RVð Þ tð Þ, ð14Þ

where ðRVÞðtÞ is the perturbation term.
Assume that ðQ~0ÞðtÞ ≡ ~0 for t ≥ 0, and assume the neces-

sary smoothness of P,Q, and R to guarantee the existence and
uniqueness of the solution UðtÞ =Uðt, t0,U0Þ of (10)
through ðt0,U0Þ for t ≥ t0 and those of the solution VðtÞ =
Vðt, τ0, V0Þ of (12) through ðτ0, V0Þ for t ≥ τ0, in addition
to their continuous dependence on initial conditions.

If U ∈ C1½ J1, KcðℝnÞ� on J1 = ½t0, t0 + T1�, then it is said
to be a solution of (10) on J1 if (10) holds with this U for
all t ∈ J1. If U , V , andW ∈ C1½ J2, KcðℝnÞ� on J2 = ½t0, t0 +
T2�, then these are said to be solutions of (11), (12), and
(13) on J2 provided that they satisfy (11), (12), and (13) on
J2, respectively.

The continuously differentiability ofUðtÞ, VðtÞ andWðtÞ
enables us to write

U tð Þ =U0 +
ðt
t0

DHU sð Þds, U0 ∈ Kc ℝ
nð Þ and t ∈ J1,

U tð Þ =U0 +
ðt
τ0

DHU sð Þds, U0 ∈ Kc ℝ
nð Þ and t ∈ J2,

V tð Þ =V0 +
ðt
τ0

DHV sð Þds, V0 ∈ Kc ℝ
nð Þ and t ∈ J2,

W tð Þ =W0 +
ðt
τ0

DHW sð Þds, W0 ∈ Kc ℝ
nð Þ and t ∈ J2:

ð15Þ

Thus, the corresponding equations with the initial value
problems (IVPs) of (10), (11), (12), and (13) are the follow-
ings, respectively.

U tð Þ =U0 +
ðt
t0

QU sð Þð Þ sð Þds, U0 ∈ Kc ℝ
nð Þ and t ∈ J1,

ð16Þ

U tð Þ =U0 +
ðt
τ0

QU sð Þð Þ sð Þds, U0 ∈ Kc ℝ
nð Þ and t ∈ J2,

ð17Þ

V tð Þ =V0 +
ðt
τ0

P V sð Þð Þ sð Þds, V0 ∈ Kc ℝ
nð Þ and t ∈ J2,

ð18Þ

W tð Þ =W0 +
ðt
τ0

SW sð Þð Þ sð Þds, W0 ∈ Kc ℝ
nð Þ and t ∈ J2,

ð19Þ
where the integrals are the Hukuhara integrals.

Note that UðtÞ and also UðtÞ, VðtÞ, and WðtÞ are solu-
tions of (10) and (11), (12), and (13) if and only if they satisfy
(16) on J1 and (17), (18), and (19) on J2, respectively.

Furthermore, to resemble the behavioral properties of
solution of (10) with these of solution of an ordinary corre-
spondent one, we assume that U0 = Z0 +U∗

0 to ensure the
existence of the Hukuhara difference U∗

0 =U0 − Z0. Accord-
ingly, we have the solution Uðt, t0,U0 − Z0Þ =Uðt, t0,U∗

0 Þ
and the corresponding equation

DHU = QUð Þ tð Þ,U t0ð Þ =U∗
0 ,

 forU∗
0 ∈ Kc ℝ

nð Þ and t ≥ t0 ≥ 0:
ð20Þ

We also assume that V0 = S0 +V∗
0 so that the Hukuhara

difference V∗
0 =V0 − S0 exists. Consequently, we have the

solution Vðt, t0, V0 − S0Þ =Uðt, t0, V∗
0 Þ and the correspond-

ing equation

DHU = QUð Þ tð Þ,U τ0ð Þ =V∗
0 ,

 forV∗
0 ∈ Kc ℝ

nð Þ and t ≥ τ0 ≥ 0,
ð21Þ

and the corresponding perturbed system of (21)

DHV = PVð Þ tð Þ, V τ0ð Þ =V∗
0 ,

 forV∗
0 ∈ Kc ℝ

nð Þ and t ≥ τ0 ≥ 0:
ð22Þ

If we ensure the existence of aforementioned Hukuhara
differences and there is no ambiguity in the context, we
may omit the asterisk symbols in (20), (21), and (22) and
continue with the familiar notation as in (10), (11), and (12).

Before establishing the comparison theorems and criteria
for ITD stability for SDEs involving causal operators, let us
present the following basic definitions for ITD stability.

Definition 1. Let ~Uðt, τ0,U0Þ =Uðt − η, t0,U0Þ, where Uðt,
t0,U0Þ solves (10) for t ≥ τ0, τ0 = η + t0 and t0, τ0 ∈ℝ+. The
solution Vðt, τ0, V0Þ of (12) for t ≥ τ0, τ0 ∈ℝ+ with the initial
conditions ðτ0, V0Þ is called

(S1) An ITD stable solution w.r.t. the solution ~Uðt, τ0,
U0Þ if and only if for any given ε > 0, we can designate two
positive values δ1 = δ1ðε, τ0Þ and δ2 = ðε, τ0Þ which give us
the following inequality:

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
< ε, ð23Þ

whenever D½V0 −U0, ~0� < δ1 and ds½τ0 − t0, 0� < δ2 for t ≥ τ0:
(S2) An ITD uniformly stable solution w.r.t. the solution

~Uðt, τ0,U0Þ if both δ1, δ2 in (S1) are independent of τ0 ∈ℝ
(S3) An ITD attractive solution w.r.t. the solution ~Uðt,

τ0,U0Þ if and only if for any ε, τ0 > 0, we can designate two
positive values δ1 = δ1ðτ0Þ, δ2 = δ2ðτ0Þ and a T = Tðε, τ0Þ
which give us the following inequality:

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
< ε, ð24Þ

provided thatD½V0 −U0, ~0� < δ1 and ds½τ0 − t0, 0� < δ2 for t
≥ τ0 + T
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(S4) An ITD uniformly attractive solution w.r.t. the solu-
tion ~Uðt, τ0,U0Þ if and only if all δ1 > 0,δ2 > 0, and T > 0 in
(S3) are independent of τ0 ∈ℝ+

(S5) An ITD asymptotically stable solution w.r.t. the
solution ~Uðt, τ0,U0Þ if and only if (S1) and (S3) hold all
together, or equivalently if (S1) holds and there exist γ1ðτ0Þ
> 0 and γ2ðτ0Þ > 0 so that

lim
t⟶∞

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
= 0, ð25Þ

for any Vðt, τ0, V0Þ and Uðt − η, t0,U0Þ with

D V0 −U0, ~0
� �

< γ1, and ds τ0 − t0, 0½ � < γ2, for t ≥ τ0:

ð26Þ

(S6) An ITD uniformly asymptotically stable solution
w.r.t. the solution ~Uðt, τ0,U0Þ if and only if (S2) and (S4)
hold all together, or equivalently if in addition to (S2) we
can designate, for any given ε > 0, two positive values γ1 =
γ1ðεÞ and γ2 = γ2ðεÞ and a TðεÞ > 0 so

D V t, τ0,V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
< ε, ð27Þ

provided that D½V0 −U0, ~0� < γ1 and ds½τ0 − t0, 0� < γ2 for
each t ≥ τ0 + TðεÞ ; or if γ1 and γ2 in (S5) are independent
of τ0 ∈ℝ+:

(S7) An ITD exponentially asymptotically stable solution
w.r.t. the solution ~Uðt, τ0,U0Þ if and only if there exists a
constant α > 0 such that

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
≤D V0 −U0, ~0

� �
exp −α t − τ0ð Þ½ �,

ð28Þ

for t ≥ τ0 ∈ℝ+:

Definition 2. The function σ ∈ C½½0, ρÞ,ℝ+� is said to be from
the class K, or simply written as σ ∈K, if and only if it asso-
ciates zero to zero and σðλÞ is strictly increasing in λ. If ρ
=∞ and σðλÞ⟶∞ as λ⟶∞, then it is said to be from
the class K∞, or simply written as σ ∈K∞.

Definition 3. Let L ∈ C½ℝ+ × KcðℝnÞ,ℝ+�,

(a) The Dini derivatives of L are defined as

D+L t, Vð Þ = lim
ε⟶0+

sup 1
ε

L t + ε, V + ε QVð Þ tð Þð Þ − L t, Vð Þ½ �,

D−L t, Vð Þ = lim
ε⟶0−

inf 1
ε

L t + ε, V + ε QVð Þ tð Þð Þ − L t, Vð Þ½ �,
ð29Þ

for ðt, VÞ ∈ℝ+ × KcðℝnÞ:

(b) The generalized (Dini-like) derivatives of L are
defined as

D+
∗L t, V − ~U
� �
= lim

ε⟶0+
sup 1

ε

h
L
�
t + ε, V − ~U

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V − ~U
� �i

,

D∗−L t, V − ~U
� �

= lim
ε⟶0−

inf 1
ε

h
L
�
t + ε, V − ~U

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V − ~U
� �i

,

ð30Þ

where Vðt, τ0, V0Þ solves (12) and ~Uðt, τ0,U0Þ =
Uðt − η, t0,U0Þ and Uðt, t0,U0Þ solve (10) for t ≥
τ0, t0, τ0 ∈ℝ+, where τ0 = η + t0:

(c) The generalized derivatives of a Lyapunov functional
Lðt,WÞ ∈ C½ℝ+ × E,ℝ+� are defined as

D+L t,V tð Þ − ~U tð Þ� �
= lim

ε⟶0+
sup 1

ε
L t + ε, V t + ε, t, Vð Þð½

− ~U t + ε, t, ~U
� ��

− L t, V tð Þ − ~U tð Þ� ��,
D−L t,V tð Þ − ~U tð Þ� �

= lim
ε⟶0−

inf 1
ε

L t + ε, V t + ε, t, Vð Þð½
− ~U t + ε, t, ~U

� ��
− L t, V tð Þ − ~U tð Þ� ��,

ð31Þ

where Vðt + ε, t,VÞ solves (12) and ~Uðt + ε, t, ~UÞ
solves (10). Furthermore, ~UðtÞ =Uðt − ηÞ, where
UðtÞ =Uðt, t0,U0Þ solves (10) for t ≥ τ0:

In the following section, let us present a comparative
analysis on how we can infer the stability properties from
those of the null solution of the SDE with causal operator
in the classical sense of stability, whereas there is incompati-
bility in using the same manner in the context of ITD
stability.

3. Classical vs. ITD Stability of SDE with
Causal Operator

3.1. Classical Notion of Stability of SDE with Causal Operator.
Consider the following SDE with causal operator

DHV = QVð Þ tð Þ, V τ0ð Þ = V0,
 forV0 ∈ Kc ℝ

nð Þ and t ≥ τ0, τ0 ∈ℝ+,
ð32Þ

where Q : E⟶ E and Sρ = fV ∈ KcðℝnÞ: D½V , ~0� < ρ <∞g:
Let Vðt, t0, V0Þ be any solution of (32) and assume that

ðQ~0ÞðtÞ = ~0, t ∈ℝ+ so that the null solution V ≡ 0 solves
(32) with the initial conditions ðt0, 0Þ:
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Definition 4. The null solution V = 0 of (32) is called
(S1) A stable solution if and only if given any ε > 0, τ0

∈ℝ+, we can designate two positive functions δ1 = δ1ðε, τ0Þ
and δ2 = δ2ðε, τ0Þ, which are continuous in τ0 for each ε,
and which give us

D V t, τ0, V0ð Þ, ~0� �
< ε, ð33Þ

for t ≥ τ0, given that D½V0, ~0� < δ1 and ds½τ0, 0� < 0:
(S2) A uniformly stable solution if additionally δ1 and δ2

are independent of τ0
(S3) A quasiequiasymptotically stable solution if and only

if given any positive ε, t0 we can designate δ0 = δ0ðt0Þ and
T = Tðt0, εÞ so

D V t, τ0, V0ð Þ, ~0� �
< ε, ð34Þ

for t ≥ t0 + T provided that D½V0, ~0� < δ0.
(S4) A quasiuniformly asymptotically stable solution if

additionally each of δ0 and T in (S3) is independent of t0
(S5) An equiasymptotically stable solution if and only if

both (S1) and (S3) are verified
(S6) A uniformly asymptotically stable solution if and

only if both (S2) and (S4) are verified
(S7) A quasiequiasymptotically stable solution if and only

if given any positive values ε, α, t0, we can designate T =
Tðt0, ε, αÞ > 0 which gives us

D V t, τ0,V0ð Þ, θ½ � < ε, ð35Þ

for t ≥ t0 + T , provided that D½V0, ~0� ≤ α.
(S8) A quasiuniformly asymptotically stable solution if

and only if (S7) is verified with T being independent of t0
additionally

(S9) A completely stable solution if and only if (S1) holds
and (S7) is verified given any α, 0 ≤ α <∞

(S10) A uniformly completely stable solution if and only
if (S2) holds and (S8) is verified for all α, 0 ≤ α <∞

(S11) an unstable solution if and only if (S1) fails to hold.

Definition 5. The solution Vðt, τ0, V0Þ of (32) with the initial
conditions ðτ0, V0Þ is called a stable solution w.r.t. the solu-
tion Vðt, τ0,U0Þ of (32) for t ≥ t0 ≥ 0 if and only if for each
ε > 0, we can designate δ1 = δ1ðε, τ0Þ and δ2 = δ2ðε, τ0Þwhich
are positive and continuous in τ0 for each ε so

D V t, τ0, V0ð Þ −V t, τ0,U0ð Þ, ~0� �
< ε, ð36Þ

provided that D½V0 −U0, ~0� < δ1 and ds½τ0, 0� < δ2 for t ≥ τ0:

Additionally, if each of δ1 and δ2 is independent of τ0 ∈
ℝ+, then the solution Vðt, τ0, V0Þ of (32) is called a uni-
formly stable solution w.r.t. the solution Vðt, τ0,U0Þ:

Remark 6. Let Vðt, t0, V0Þ be a given solution of (32). We can
use the following change of variable to study the stability of
this solution.

For t ≥ t0, set

Ω t, t0, V0 −U0ð Þ = V t, t0, V0ð Þ −V t, t0,U0ð Þ: ð37Þ

Then,

DHΩ t, t0, V0 −U0ð Þ =DHV t, t0, V0ð Þ −DHV t, t0,U0ð Þ,
ð38Þ

DHΩ t, t0, V0 −U0ð Þ
= QΩ t, t0, V0 −U0ð Þð Þ tð Þ

+ QV t, t0,U0ð Þð Þ tð Þ − QV t, t0,U0ð Þð Þ tð Þ
= Q Ω t, t0, V0 −U0ð Þ +V t, t0,U0ð Þð Þð Þ

� tð Þ − QV t, t0,U0ð Þð Þ tð Þ
= ~QΩ t, t0, V0 −U0ð Þ
� 	

tð Þ:

ð39Þ

IfV0 −U0 = ~0, we can ascertain thatΩðt, t0, V0 −U0Þ ≡ ~0
solves the transformed SDE. Hence, it indicates that ðQ~0Þ
ðtÞ = ~0 for t ≥ t0 ≥ 0:

Since DHΩ = ~0 and Ωðt, t0, ~0Þ = ~0, the solution Vðt, t0,
U0Þ of (32) corresponds to the identically null solution of
DHΩ = ð~QΩÞðtÞ where

~QΩ t, t0,V0 −U0ð Þ
� 	

tð Þ
= Q Ω t, t0, V0 −U0ð Þ +V t, t0,U0ð Þð Þð Þ

� tð Þ − QV t, t0,U0ð Þð Þ tð Þ:
ð40Þ

Hence, without loss of generality, it is enough to consider
the stability of the null solution Vðt, t0,U0Þ ≡ ~0 of (32).
Unfortunately, such procedure is not feasible for ITD stabil-
ity analysis.

3.2. ITD Stability of SDE with Causal Operator. Assume Uðt,
τ0, V0Þ solves (11) and let ~Uðt, τ0,U0Þ =Uðt − η, t0,U0Þ
where Uðt, t0,U0Þ solves (10) for t ≥ τ0 ≥ 0: Let us go through
a similar procedure as in (39) by setting

Ω t, τ0, V0 −U0ð Þ =U t, τ0, V0ð Þ
−U t − η, t0,U0ð Þ, for t ≥ τ0:

ð41Þ

Then,

DHΩ t, τ0, V0 −U0ð Þ =DHU t, τ0, V0ð Þ −DHU t − η, t0,U0ð Þ,
DHΩ t, τ0, V0 −U0ð Þ = ~QΩ t, τ0, V0 −U0ð Þ

� 	
η ; tð Þ:

ð42Þ

Considering that even whenV0 =U0,Ωðt, τ0, ~0Þ is neither
zero nor it solves the transformed differential system; also, U
ðt − η, t0,U0Þ is not the exactly null solution of DHΩ = ð~QΩÞ
ðη ; tÞ: Consequently, it is not an option to infer ITD stability
properties using stability properties of the null solution.
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This motivates us to search for other different approaches
in studying such behavioral properties.

4. Comparison Theorems for ITD Stability of
SDEs with Causal Operators

Based on our previous analysis and other’s studies [5, 7, 10],
due to the differences between the ITD notion of stability and
the classical one, it is seen that the behavioral analysis of the
zero solution cannot be utilized in ITD stability. In what fol-
lows, we present an approach that resolves those complica-
tions and enables us to infer the stability properties of the
solution Vðt, τ0,V0Þ of (12) w.r.t. ~UðtÞ =Uðt − η, t0,U0Þ
where Uðt, t0,U0Þ solves (10).

Theorem 7. Let

(i) Lðt,WÞ ∈ C½ℝ+ × KcðℝnÞ,ℝ+� be locally Lipschit-
zian in W; i.e.,

L t,W1ð Þ − L t,W2ð Þj j ≤ KD W1 −W2, ~0
� �

: ð43Þ

(ii) For ðt, VÞ, ðt, ~UÞ ∈ℝ+ × KcðℝnÞ and G ∈ C½ℝ+ ×
ℝ+,ℝ+�, it is considered

D+
∗L t, V − ~U
� �

≤G t, L t, V tð Þ − ~U tð Þ� �� �
,  t ≥ τ0,

ð44Þ

where

U ∈ E1 = Ω ∈ Kc ℝ
nð Þ: L s,Ω sð Þð Þ ≤ L t,Ω tð Þð Þ, t0 ≤ s ≤ tf g,

ð45Þ

and

D+
∗L t, V tð Þ − ~U tð Þ� �
= lim

ε⟶0+
sup 1

ε

h
L
�
t + ε,V tð Þ − ~U tð Þ

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �i
:

ð46Þ

(iii) rðtÞ = rðt, τ0, z0Þ is the maximal solution for

z′ =G t, zð Þ, z τ0ð Þ = z0 ≥ 0, for t ≥ τ0, ð47Þ

existing on ½τ0,∞Þ:

And let ~UðtÞ =Uðt − η, t0,U0Þ, τ0 = η + t0, where UðtÞ
= ðt, t0,U0Þ solves (10) and VðtÞ =Vðt, τ0, V0Þ solves (12)
for t ≥ τ0, and assume Lðτ0, V0 −U0Þ ≤ z0; then,

L t, V tð Þ − ~U tð Þ� �
≤ r tð Þ, for t ≥ τ0: ð48Þ

Proof. Let

m tð Þ = L t, V tð Þ − ~U tð Þ� �
, for t ≥ τ0: ð49Þ

For t ≥ τ0, let us show the inequality mðtÞ ≤ rðtÞ.
As a matter of fact,

~U τ0ð Þ =U τ0 − η, t0,U0ð Þ, τ0 = η + t0: ð50Þ

Substituting the last statement inmðτ0Þ together with the
theorem’s assumptions gives us

m τ0ð Þ = L τ0, V τ0ð Þ − ~U τ0ð Þ� �
= L τ0, V0 −U τ0 − η, t0,U0ð Þð Þ
= L τ0, V0 −U t0, t0,U0ð Þð Þ
= L τ0, V0 −U0ð Þ ≤ z0:

ð51Þ

Let ε > 0 be sufficiently small, and let us consider

z′ =G t, zð Þ + ε, z τ0ð Þ = z0 + ε, for t ≥ τ0, ð52Þ

whose we ensure the existence of its solutions zðt, εÞ = zðt,
τ0, z0, εÞ up to rðtÞ:

Let us conclude this proof by showing

m tð Þ < z t, εð Þ, for t ≥ τ0: ð53Þ

To do so, let us suppose on the contrary that there is a
t∗ ≥ τ0 where

m tð Þ < z t, εð Þ, for t∗ > t ≥ τ0,m t∗ð Þ = z t∗, εð Þ: ð54Þ

Thus, it follows that

D+m t∗ð Þ ≥m′ t∗ð Þ = z′ t∗,εð Þ =G t∗, z t∗,εð Þð Þ + ε: ð55Þ

Taking into consideration the proposition regarding G
and since Gðt, zÞ ≥ 0, we conclude that the solutions zðt, εÞ
are nondecreasing in t:

As mðsÞ = Lðs, VðsÞ − ~UðsÞÞ for s ≥ τ0, we obtain

L s, V sð Þ − ~U sð Þ� �
≤ z t∗, εð Þ, for t∗ ≥ s ≥ τ0: ð56Þ

Consequently, V − ~U ∈ E1:
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For sufficiently small enough δ > 0, we have

m t + δð Þ −m tð Þ
= L t + δ, V t + δð Þ − ~U t + δð Þ� �

− L t, V tð Þ − ~U tð Þ� �
≤ L t + δ, V t + δð Þ − ~U t + δð Þ� �

− L
�
t + δ,V tð Þ

− ~U tð Þ + δ PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

+ L
�
t + δ, V tð Þ

− ~U tð Þ + δ PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �
≤ KD

h
V t + δð Þ − V tð Þ½ � − ~U t + δð Þ − ~U tð Þ� �

− δ PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 	

, ~0
i
+ L

�
t + δ, V tð Þ − ~U tð Þ

+ δ PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �
:

ð57Þ

Hence, with considering the assumptions in (i) regarding
the locally Lipschitzity of Lðt,WÞ in W, it is seen

m t + δð Þ −m tð Þ ≤ K ε1 δð Þ − ε2 δð Þ½ � + L
�
t + δ, V tð Þ

− ~U tð Þ + δ PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �
,

ð58Þ

where ε1 and ε2stand for errors.

This gives us the following estimation regarding the Dini
derivative of mðtÞ

D+m tð Þ ≤ lim
δ⟶0+

sup 1
δ
K ε1 δð Þ − ε2 δð Þ½ �

+ lim
δ⟶0+

sup 1
δ

h
L
�
t + δ, V tð Þ − ~U tð Þ

+ δ PVð Þ tð Þ − gQ~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �i
≤G t, L t, V tð Þ − ~U tð Þ� �� �

= G t,m tð Þð Þ,
ð59Þ

for τ0 ≤ t ≤ t∗ <∞:
Since limδ⟶0ðð ε1ðδÞ − ε2ðδÞÞ/δÞ = 0, when t = t∗, we

have

D+m t∗ð Þ ≤D+
∗L t∗, V t∗ð Þ − ~U t∗ð Þ� �

≤G t∗, L t, V t∗ð Þ − ~U t∗ð Þ� �� �
=G t∗,m t∗ð Þð Þ <G t∗, z t∗, εð Þð Þ + ε,

ð60Þ

which contradicts (55).

Consequently, we havemðtÞ < zðt, εÞ, which in its turn, as
ε⟶ 0, gives us the desired estimation

m tð Þ ≤ r t, τ0, z0ð Þ, for t ≥ τ0: ð61Þ

☐

Corollary 8. Assume that L in Theorem 7 satisfies the afore-
mentioned conditions in addition to that Gðt, zÞ ≡ 0 and

U ∈ E1 = Ω ∈ Kc ℝ
nð Þ: L s,Ω sð Þð Þ ≤ L t,Ω tð Þð Þ, t0 ≤ s ≤ tf g:

ð62Þ

Then, UðtÞ and VðtÞ solve (10) and (11), respectively.
Equivalently, for τ0 ≤ t∗ ≤ t∗∗ <∞, we have

L t∗∗,V t∗∗ð Þ −U~ t∗∗ð ÞÞ < L t∗, V t∗ð Þ − ~U t∗ð Þ� �
:

� ð63Þ

Theorem 9. Let

(i) Lðt,WÞ ∈ C½ℝ+ × KcðℝnÞ,ℝ+� be locally Lipschit-
zian in W; i.e.,

L t,W1ð Þ − L t,W2ð Þj j ≤ KD W1 −W2, ~0
� �

: ð64Þ

(ii) For ðt, VÞ, ðt, ~UÞ ∈ℝ+ × KcðℝnÞ and G ∈ C½ℝ+ ×
ℝ+,ℝ+�, we have

A tð ÞD+
∗L t, V tð Þ − ~U tð Þ� �

+ L t, V tð Þ − ~U tð Þ� �
A′ tð Þ

≤G t, L t,V tð Þ − ~U tð Þ� �
A tð Þ� �

,
ð65Þ

for t ≥ τ0 and U ∈ EA where

EA = Ω ∈ Kc ℝ
nð Þ: L s,Ω sð Þð ÞA sð Þf

≤ L t,Ω tð Þð ÞA tð Þ, t0 ≤ s ≤ tg, ð66Þ

and

D+
∗L t, V tð Þ − ~U tð Þ� �
= lim

ε⟶0+
sup 1

ε

h
L
�
t + ε, V tð Þ − ~U tð Þ

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �i
:

ð67Þ

(iii) rðtÞ = rðt, τ0, z0Þ is the maximal solution of

z′ =G t, zð Þ, z τ0ð Þ = z0 ≥ 0, for t ≥ τ0, ð68Þ

existing on ½τ0,∞Þ:
And let ~UðtÞ =Uðt − η, t0,U0Þ, τ0 = η + t0, where UðtÞ =

Uðt, t0,U0Þ solves (10) and VðtÞ = Vðt, τ0,V0Þ solves (12)
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for t ≥ τ0, and assume

A τ0ð Þ L τ0,V0 −U0ð Þ ≤ z0: ð69Þ

Then,

L t, V tð Þ − ~U tð Þ� �
A tð Þ ≤ r tð Þ, for t ≥ τ0: ð70Þ

Proof. Let

M t, V tð Þ − ~U tð Þ� �
= L t, V tð Þ − ~U tð Þ� �

A tð Þ, ð71Þ

for t ≥ τ0, and assumeUðtÞ ∈ EA. Then, in view of the the-
orem’s assumptions, we obtain

D+M t, V tð Þ − ~U tð Þ� �
≤ A tð ÞD+

∗L t, V tð Þ − ~U tð Þ� �
+ L t, V tð Þ − ~U tð Þ� �

A′ tð Þ
≤G t, L t, V tð Þ − ~U tð Þ� �

A tð Þ� �
=G t,M t, V tð Þ − ~U tð Þ� �� �

:

ð72Þ

The utilization of Theorem 7, in its turns, gives us the
desired estimation

L t, V tð Þ − ~U tð Þ� �
A tð Þ =M t,V tð Þ − ~U tð Þ� �

≤ r tð Þ, ð73Þ

for t ≥ τ0: ☐

After presenting the previous comparison theorems for
ITD stability of SDE with causal operators, we can now
employ them in proofing the following theorems regarding
ITD stability, ITD asymptotic stability, and ITD uniformly
asymptotic stability of the solution UðtÞ =Uðt, t0,U0Þ of
the SDE (10).

5. ITD Stability of SDEs with Causal Operators

5.1. ITD Stability of SDEs with Causal Operators via
Lyapunov Functions. Let us present sufficient conditions for
stability of the solutionUðtÞ =Uðt, t0,U0Þ of (10), using Lya-
punov functions, and assuming the existence and uniqueness
of this solution for t ≥ τ0.

Theorem 10. Let

(i) Lðt,WÞ ∈ C½ℝ+ × SðρÞ,ℝ+� be be locally Lipschitzian
in W; i.e.,

L t,W1ð Þ − L t,W2ð Þj j ≤ KD W1 −W2, ~0
� �

: ð74Þ

(ii) For ðt, VÞ, ðt, ~UÞ ∈ℝ+ × SðρÞ and for t ≥ τ0, and U
∈ E1

D+
∗L t, V − ~U
� �

≤ 0, ð75Þ

where

D+
∗L t, V tð Þ − ~U tð Þ� �
= lim

ε⟶0+
sup 1

ε

h
L
�
t + ε, V tð Þ − ~U tð Þ

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �i
:

ð76Þ

(iii) Lðt,WÞ is positive definite and decrescent on ℝ+ × S
ðρÞ; i.e., there exists two functions a, b from the class
K such that

a D W, ~0
� �� �

≤ L t,Wð Þ ≤ b D W, ~0
� �� �

, t,Wð Þ ∈ℝ+ × S ρð Þ:
ð77Þ

Then, the solution Vðt, τ0, V0Þ of (12) is ITD stable
w.r.t. the solution ~Uðt, τ0,U0Þ =Uðt − η, t0,U0Þ of (10),
where Uðt, t0,U0Þ solves (10), for t ≥ τ0.

Proof. Given a sufficiently small ε > 0 and t ≥ τ0, let us desig-
nate δ1ðε, τ0Þ > 0 and δ2ðε, τ0Þ > 0, with the aim that bðδÞ <
aðεÞ holds, where

δ ε, τ0ð Þ =max δ1 ε, τ0ð Þ, δ2 ε, τ0ð Þf g > 0: ð78Þ

Then, with this δ, we shall prove the stability of the solu-
tion Uðt, t0,U0Þ of (10) for t ≥ t0.

If we suppose the opposite, then there would exist solu-
tions Vðt, τ0, V0Þ of (12) and ~Uðt, τ0,U0Þ of (10), on ½τ0,∞
Þ, and t∗∗ > t∗ > τ0 so

D V t∗ð Þ − ~U t∗ð Þ, ~0� �
= δ,

D V t∗∗ð Þ − ~U t∗∗ð Þ, ~0� �
= ε,

δ ≤D V tð Þ − ~U tð Þ, ~0� �
≤ ε, for t∗ ≤ t ≤ t∗∗:

ð79Þ

By the assumption (ii) and Corollary 8 we obtain the fol-
lowing estimation

L t∗∗,V t∗∗ð Þ − ~U t∗∗ð Þ� �
≤ L t∗, V t∗ð Þ − ~U t∗ð Þ� �

, for t∗ ≤ t ≤ t∗∗ <∞:
ð80Þ

Hence, employing the previous assumptions, especially
(79), (80), and (iii), together with the choice of δ, gives us that

a εð Þ = a D V t∗∗ð Þ − ~U t∗∗ð Þ, ~0� �� �
≤ L t∗∗,V t∗∗ð Þ − ~U t∗∗ð Þ� �
≤ L t∗, V t∗ð Þ − ~U t∗ð Þ� �
≤ b D V t∗ð Þ − ~U t∗ð Þ, ~0� �� �

= b δð Þ < a εð Þ,

ð81Þ

which is a contradiction.
Therefore, we conclude the stability of the solution Uðt,

t0,U0Þ of (10) for t ≥ t0: Hence, the solution Vðt, τ0, V0Þ of
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(12) is ITD stable w.r.t. the solution ~Uðt, τ0,U0Þ =Uðt − η,
t0,U0Þ of (10), assuming Uðt, t0,U0Þ solves (10), for t ≥ τ0.

If additionally both δ1 = δ1ðε, τ0Þ and δ2 = δ2ðε, τ0Þ are
independent of τ0, then the solution Uðt, t0,U0Þ of (10) is
uniformly stable for t ≥ t0. ☐

Theorem 11. Let

(i) Lðt,WÞ ∈ C½ℝ+, SðρÞ,ℝ+� be locally Lipschitzian in
W; i.e.,

L t,W1ð Þ − L t,W2ð Þj j ≤ KD W1 −W2, ~0
� �

: ð82Þ

(ii) For ðt, VÞ, ðt, ~UÞ ∈ℝ+ × SðρÞ and for t ≥ τ0, and U
∈ EA where

EA = Ω ∈ Kc ℝ
nð Þ: L s,Ω sð Þð ÞA sð Þf

≤ L t,Ω tð Þð ÞA tð Þ, t0 ≤ s ≤ tg, ð83Þ

the following inequality holds

D+
∗L t, V tð Þ − ~U tð Þ� �

A tð Þ + L t, V tð Þ − ~U tð Þ� �
A′ tð Þ ≤ 0,

ð84Þ

where

D+
∗L t, V tð Þ − ~U tð Þ� �
= lim

ε⟶0+
sup 1

ε

h
L
�
t + ε,V tð Þ − ~U tð Þ

+ ε PVð Þ tð Þ − ~Q~U
� 	

tð Þ
� 		

− L t, V tð Þ − ~U tð Þ� �i
:

ð85Þ

Additionally, Aðτ0Þ = 1, A′ðtÞ is continuous for t ≥
τ0, AðtÞ ≥ 1, and limt⟶∞AðtÞ =∞, and

(iii) Lðt,WÞ is positive definite and decrescent on ℝ+ × S
ðρÞ; i.e., there exists two functions a, b from the class
K such that

a D W, ~0
� �� �

≤ L t,Wð Þ ≤ b D W, ~0
� �� �

, t,Wð Þ ∈ℝ+ × S ρð Þ:
ð86Þ

Then, the solution Vðt, τ0, V0Þ of (12) is ITD asymptoti-
cally stable w.r.t. the solution ~Uðt, τ0,U0Þ =Uðt − η, t0,U0Þ
of (10) where Uðt, t0,U0Þ solves (10), for t ≥ τ0:

Proof. Theorem 9 yields

L t, V tð Þ − ~U tð Þ� �
A tð Þ ≤ L τ0, V0 −U0ð Þ for t ≥ τ0: ð87Þ

Furthermore, by Theorem 10, we have the stability of the
solution Uðt, t0,U0Þ of (10) for t ≥ t0: Therefore, it is suffi-

cient to prove its quasiasymptotic stability property. To do
this, let ε = ρ so that

δ0 = δ ρ, τ0ð Þ =max δ1 ρ, τ0ð Þ, δ2 ρ, τ0ð Þf g > 0: ð88Þ

Choose D½V0 −U0, ~0� < δ0 and ds½τ0 − t0, 0� < δ2. Then,
by using (ii), (iii), and (87), and since limt⟶∞AðtÞ =∞,
i.e., limt⟶∞A−1ðtÞ = 0, it follows that given an ε > 0 and τ0
≥ 0, a positive T = Tðε, τ0Þ can be designated in order to sat-
isfy

a D V tð Þ − ~U tð Þ, ~0� �� �
≤ L t, V tð Þ − ~U tð Þ� �
≤ L τ0, V0 −U0ð ÞA−1 tð Þ
≤ b D V0 −U0, ~0

� �� �
A−1 tð Þ

< b δ0ð ÞA−1 tð Þ < ε,

ð89Þ

given that D½V0 −U0, ~0� < δ0 for t ≥ τ0 + T .
Therefore, the solution Uðt, t0,U0Þ of (10) is a quasia-

symptotically stable solution for t ≥ t0: Hence, the solution
Vðt, τ0, V0Þ of (12) is ITD asymptotically stable w.r.t. the
solution ~Uðt, τ0,U0Þ =Uðt − η, t0,U0Þ of (10), or the solu-
tion Uðt, t0,U0Þ of (10) is an asymptotically stable solution
for t ≥ t0.

If additionally δ1ðε, τ0Þ, δ2ðε, τ0Þ and Tðε, τ0Þ are all
independent of τ0, then the solution Uðt, t0,U0Þ of (10) is
uniformly asymptotically stable for t ≥ t0. ☐

5.2. ITD Stability of SDEs with Causal Operators via
Lyapunov Functionals. In the following, we present sufficient
conditions for ITD uniformly asymptotic stability for SDEs
with causal operators, in correspondence to Lyapunov sec-
ond method, by using Lyapunov functional.

Theorem 12. Let

(i) Lðt,WÞ ∈ C½ℝ+ × E,ℝ+� and satisfies the following
estimation

D+L t, V tð Þ − ~U tð Þ� �
≤ −c D V tð Þ − ~U tð Þ, ~0� �� �

, c ∈K:

ð90Þ

(ii) Lðt,WÞ is positive definite and decrescent on ℝ+ × E;
i.e., there exists two functions a, b from the class K
such that

a D W, ~0
� �� �

≤ L t,Wð Þ ≤ b D W, ~0
� �� �

, t,Wð Þ ∈ℝ+ × E: ð91Þ

Then, the solution Vðt, τ0, V0Þ of (12) is ITD uniformly
asymptotically stable w.r.t. the solution ~Uðt, τ0,U0Þ =Uðt −
η, t0,U0Þ of (10) where Uðt, t0,U0Þ solves (10), for t ≥ τ0.
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Proof. Given a sufficiently small ε > 0 and t ≥ τ0, let us desig-
nate δ1ðε, τ0Þ = δ1ðεÞ > 0 and δ2ðε, τ0Þ = δ2ðεÞ > 0 so

b δð Þ < a εð Þ, ð92Þ

where δðεÞ =max fδ1ðεÞ, δ2ðεÞg > 0.
Then, with this δ and ε, we shall prove the stability of the

solution Uðt, t0,U0Þ of (10) for t ≥ t0:
If we suppose the opposite, then there would exist solu-

tions Vðt, τ0, V0Þ of (12) and ~Uðt, τ0,U0Þ of (10) for t ≥ τ0,
and t1 > τ0 so

D V t1, τ0, V0ð Þ − ~U t1, τ0,U0ð Þ, ~0� �
= ε,

D V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ, ~0� �
≤ ε,  τ0 ≤ t ≤ t1:

ð93Þ

Then, the assumption (ii) and Corollary 8 give us the fol-
lowing estimate

L t,V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ� �
≤ L τ0, V0 −U0ð Þ, ð94Þ

for τ0 ≤ t ≤ t1 <∞:
Hence, in view of (92), (93), (94), and (ii), in addition to

the assumptions on δ, we have the following statement

a εð Þ = a D V t1, τ0, V0ð Þ − ~U t1, τ0,U0ð Þ, ~0� �� �
≤ L t1, V t1, τ0, V0ð Þ − ~U t1, τ0,U0ð Þ� �
≤ L τ0, V0 −U0ð Þ ≤ b D V0 −U0, ~0

� �� �
= b δð Þ < a εð Þ,

ð95Þ

which is a contradiction. This yields that the solution Uðt,
t0,U0Þ of the unperturbed differential system (10) is uni-
formly stable for t ≥ t0:

To complete the proof, let us prove the uniformly asymp-
totic stability. Assume ε = ρ and let δ0 = δðρÞ such that D½
V0 −U0, ~0� < δ0, ds½τ0 − t0, 0� < δ0 gives us

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
< ρ for t ≥ τ0: ð96Þ

Taking into consideration the uniform stability, it follows
the existence of such t∗ that satisfies for τ0 < t∗ < τ0 + T ,

D V0 −U0, ~0
� �

< δ0 andD V t∗, τ0, V0ð Þ½
− ~U t∗, τ0,U0ð Þ, ~0� < δ εð Þ,

ð97Þ

with δ = δðεÞ > 0 corresponds to ε > 0 for uniform stability.
If we assume that it is not true, let

δ ≤D V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ, ~0� �
, t ∈ τ0, τ0 + T½ �: ð98Þ

Then, in view of (i), it leads to

D+L t, V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ� �
≤ −c D V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ, ~0� �� �

:
ð99Þ

Hence, for t ∈ ½τ0, τ0 + T�, we obtain

L t, V t, τ0, V0ð Þ − ~U t, τ0,U0ð Þ� �
≤ L τ0,V0 −U0ð Þ −

ðt
τ0

c V s, τ0, V0ð Þ − ~U s, τ0,U0ð Þ� �
ds:

ð100Þ

Since b ∈K, i.e., b associates zero to zero and bðλÞ is
strictly increasing in λ, and considering D½V0 −U0, ~0� < δ0
we obtain that

b D V0 −U0, ~0
� �� �

≤ b δ0ð Þ: ð101Þ

By substituting each t by τ0 + T in the inequality (100)
and by choosing

T = 1 + b δ0ð Þ
c δð Þ , ð102Þ

with the above assumptions, we have

0 ≤ L τ0 + T , V τ0 + T , τ0,V0ð Þ − ~U τ0 + T , τ0,U0ð Þ� �
≤ L τ0, V0 −U0ð Þ −

ðτ0+T
τ0

c V s, τ0, V0ð Þ − ~U s, τ0,U0ð Þ� �
ds

≤ b D V0 −U0, ~0
� �� �

−
ðτ0+T
τ0

c V s, τ0,V0ð Þ − ~U s, τ0,U0ð Þ� �
ds

≤ b δ0ð Þ − c δð ÞT = b δ0ð Þ − c δð Þ 1 + b δ0ð Þ
c δð Þ


 �
= b δ0ð Þ − c δð Þ − b δ0ð Þ = −c δð Þ < 0,

ð103Þ

giving us a contradiction. Hence, there exists a t∗ > τ0 such
that

D V t∗, τ0, V0ð Þ −U t∗ − η, t0,U0ð Þ, ~0� �
< δ, ð104Þ

which in its turn, by the stability property, gives us that

D V t, τ0, V0ð Þ −U t − η, t0,U0ð Þ, ~0� �
< ε, ð105Þ

for t ≥ τ0 + T , given that

D V0 −U0, ~0
� �

< δ and ds τ0 − t0, 0½ � < δ: ð106Þ

☐
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6. Conclusion

Despite the obstacles we faced when trying to infer ITD sta-
bility properties from those ones concerning the classical
notion of stability of the null solution, using a change-of-
variable approach, we managed to resolve those difficulties
via comparison theorems for ITD stability of SDEs with
causal operators, that take into consideration the change in
initial conditions regarding time and position.

In this manuscript, Lyapunov functions and Lyapunov
functionals are utilized to predict ITD stability, ITD asymp-
totic stability, and ITD uniformly asymptotic stability of the
solutions of perturbed forms of SDEs involving causal oper-
ators corresponding to unperturbed systems, in light of the
classical stability properties of the trivial solution of suitable
comparison systems.
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