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The prime numbers have attracted mathematicians and other researchers to study their interesting qualitative properties as it
opens the door to some interesting questions to be answered. In this paper, the Random Matrix Theory (RMT) within
superstatistics and the method of the Nearest Neighbor Spacing Distribution (NNSD) are used to investigate the statistical
proprieties of the spacings between adjacent prime numbers. We used the inverse χ2 distribution and the Brody distribution
for investigating the regular-chaos mixed systems. The distributions are made up of sequences of prime numbers from one
hundred to three hundred and fifty million prime numbers. The prime numbers are treated as eigenvalues of a quantum
physical system. We found that the system of prime numbers may be considered regular-chaos mixed system and it becomes
more regular as the value of the prime numbers largely increases with periodic behavior at logarithmic scale.

1. Introduction

Prime numbers are usually considered a mathematical tool
for investigating mathematical and physical ideas. Prime
numbers play an important role in number theory and cryp-
tography. Because of this unique nature of prime numbers,
they are mainly used in many Wireless Sensor Networks
and Internet of Things applications such as security [1–7].
The distribution of prime numbers is considered to be
directly related to the statistical distribution of the nontrivial
zeros of the Riemann Zeta function that closely resembles
the energy levels of atomic nuclei [8–11]. Nuclear spectra
and the Zeta function zeros are therefore correlated through
their statistical distribution since both spacings between the
energy levels of a heavy atomic nucleus and the zeros of the
Riemann Zeta function behave like spacings between eigen-
values of a random matrix [9, 10]. The prime-number

sequence, viewed as the spectrum of eigenvalues of random
matrices, is found to be quasichaotic. Although chaotic, the
distribution of prime numbers has a deterministic chaotic
behavior, with symmetries and harmonics, that follows the
classical path to chaos, i.e., from periodic to quasiperiodic to
chaotic [12]. Over the last three decades, it has appeared in
various fields of science including quantum chaos [13, 14],
cryptology [15], and biology [16, 17].

One of the most attractive features of prime numbers is
their distribution among the natural numbers. On a small
scale, the distribution of prime numbers appears random;
however, when considered on a large scale, it appears to have
a pattern that is not fully understood. If we consider the
frequency distribution of prime numbers up to a number,
say n, even though it is difficult to detect a pattern on a small
scale, the graph appears to have a much smoother curve as
the value of n becomes larger [18]. However, the unique
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pattern and properties of prime numbers make it challeng-
ing to take a clear decision about the nature of the spacings
between prime numbers at very large values. At the same
time, it is of great importance to study and analyze the
nature of the spacings between the prime numbers at very
large values because of their mysterious characteristics and
advantages for applications in various routines, for example,
in cryptography-related fields and other applications. More-
over, the search for a deterministic formula that can quickly
generate large numbers that are guaranteed to be prime is
still being explored. The research in finding answers to the
interesting issues surrounding the prime numbers and their
properties is still ongoing.

The problem of the prime numbers sequence being reg-
ular or chaotic is one of the axial problems nowadays. On a
small scale, the distribution of prime numbers appears ran-
dom; however, when considered on a large scale, it appears
to have a pattern that is not fully understood. This interplay
between regular and chaotic behaviors has motivated
researchers for a detailed study in this area that could pos-
sibly be signatures of more fundamental mathematical
properties and features [19]. The statistical properties of
prime numbers are one way of investigating their behavior
and characteristics. In general, several attempts to investi-
gate the use of level-spacing distributions of quantum
systems belonging to different classes related to the symme-
try properties of the Hamiltonian, such as the Poisson
distribution (for systems with underlying regular classical
dynamics), Wigner-Dyson distribution (Hamiltonians
invariant under time reversal), and Gaussian Unitary
Ensemble (variant under time reversal), were conducted
in analyzing the spacing distribution between adjacent
prime numbers [20, 21]. Even though there exist several
reviews on this topic and several authors have investigated
the statistical properties of the spacings between adjacent
prime numbers [21–32], there still remains some confusion
regarding the proper statistics of the spacings between con-
secutive prime numbers.

In this paper, we perform a new study on the statistical
properties of prime numbers using the superstatistical Ran-
dom Matrix Theory (RMT) [33–36]. The superstatistical
theory was first introduced by Beck and Cohen to describe
the deviation of a thermodynamic system from equilibrium
[37, 38], and we are inspired by the success of the supersta-
tistical RMT in describing the transition of mixed system’s
behavior between regular and chaotic [33–36, 39]. In this
paper, we use the RMT and the method of the Nearest
Neighbor Spacing Distribution (NNSD) to investigate the
statistical properties of the spacings between adjacent prime
numbers, where the prime numbers are treated as energy
levels of physical quantum system [21, 28]. For analysis,
we have used the inverse χ2 distribution [33–36, 39] and
the Brody distribution which is a popular and powerful tool
for investigating the regular-chaos mixed systems [40–44].
We conducted analysis on every million prime numbers
separately, up to three hundred and fifty million prime num-
bers. Next, the distribution was made into sequences of first
N prime numbers from one hundred to three hundred and
fifty million prime numbers.

The remainder of the paper is organized as follows: Sec-
tion 2 gives the related research, and Section 3 discusses the
background details on the level spacing statistics and RMT.
The proposed study is provided in Section 4. The results
and discussion are provided in Section 5. Section 6 con-
cludes the paper.

2. Related Research

The topic of distribution of prime numbers, or more pre-
cisely, the spacing distribution between consecutive prime
numbers, has attracted much attention recently. Moreover,
the mysterious distribution behavior of prime numbers and
their unexpected role in multiple contexts such as cryptogra-
phy, quantum chaos, and biology have appealed for further
investigation into their features [13–17, 45]. This has made
prime numbers into a prime object of interest to mathema-
ticians and other researchers. Even after centuries of
research, there still remain open challenges to be solved to
reveal the exact details on the distribution and spacing
between prime numbers.

In recent years, different methods have been applied to
study prime numbers and their distribution. Some prob-
lems related to the gaps between prime numbers are well
known, for example, Legendreâ’s conjecture (which states
that there is a prime number between n2 and ðn + 1Þ2 for
every positive integer n) and the famous twin prime num-
ber conjecture [46].

While the multifractality of prime numbers was studied
in [47], some appropriately defined Lyapunov exponents
were calculated numerically for studying the distribution of
prime numbers in [25], where Gamba et al. studied the dif-
ference between the prime counting function (πðxÞ) and its
analytical approximation (RðxÞ). They studied 63950 prime
numbers through 8 × 105 natural numbers and claimed the
chaotic behavior of the prime numbers [26]. In [27], the
author studied the first unfolded 104 prime numbers and
the prime numbers in the range between 1012 and 1012 +
104 without unfolding; while the latter follow the Poissonian
behavior, the first 104 prime numbers did not match very
well and concluded the Poissonian behavior for the first N
prime numbers as it approaches infinity.

In [28], the authors studied the prime numbers in the
first million primes, increasing the steps by an order of mag-
nitude starting from 102 to 106, and then studied the million
after 107, 108, …, 1012th prime numbers. They also studied
the variance for the same sequence of prime numbers and
concluded the regularity and the Poissonian behavior of
the prime numbers as the size of the prime numbers is
largely increased. In [29], Liboff and Wong studied the
NNSD for three sequences of unfolded first N prime num-
bers at 5 × 104, 106, and 107 prime numbers. They found that
the sequences had a level repulsion with nearly chaotic
behavior and a rough fit to Wigner distribution.

In [21], Wolf studied the NNSD for the first N sequence
of prime numbers up to very large prime numbers. The work
studied 762939111 prime numbers as one sequence with
three different bin sizes (see Figure 4 in Ref. [21]). The prime
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numbers are regarded as energy levels and physical methods
used to study spectra of quantum systems were applied to
the description of distribution of prime numbers. A presen-
tation of heuristic arguments and computer results to sup-
port the hypothesis, namely, that the statistics of gaps
between consecutive prime numbers follow the Poisson
behavior after appropriate rescaling, is also provided. The
scaling transformation removes the oscillations in the NNSD
of prime numbers. The author also studied the spectral
rigidity for different sets of prime numbers and derived the
same conclusion.

In [12], the author showed that fractal theory can be uti-
lized to analyze the distribution of prime numbers. Based on
the similarities between the distribution of powers of prime
numbers for each natural number and generalized Cantor’s
sets, some symmetric properties were analyzed and used to
propose a set of discrete dynamics for visualizing the recur-
sive and symmetric properties of prime numbers. This leads
to the derivation of an approximation of a fractal version of
the distribution function of prime numbers. Then, using this
discrete dynamics set, they proposed a prime number’s sieve
algorithm which is analogous to the growth of a fractal.
Their findings suggest that the fractal and chaotic behavior
on the distribution of prime numbers emerges from the
symmetry break due to the exponential growth of the length
of the symmetries with respect to the domain of applicability
of each discrete dynamics. Hence, they derived a conclusion
that the prime number distribution exhibits deterministic
chaotic behavior with symmetries and harmonics.

In [48], the authors studied and analyzed the large spac-
ing between adjacent prime numbers. Their study gives the
relation of the size of the largest gap between consecutive
prime numbers less than X on a function f ðXÞ that tends
to infinity with X. Their work relies on the research that
claims the existence and distribution of long arithmetic pro-
gressions consisting entirely of prime numbers, and their
proof combines the existing arguments with a random con-
struction covering a set of prime numbers by arithmetic pro-
gressions as well.

In [19], a simple representation of prime numbers in 2D
is introduced that may lead to important avenues in the field
of research on prime numbers. The proposed numerical rep-
resentation yielded an interesting visual structure that
depicts an oscillating plot, which ascends and descends
according to the distribution of prime numbers. As the struc-
ture resembles a ladder, it was referred to as Jacob’s ladder
(JðnÞ). Even though the zeroes in the structure grow in an
unpredictable manner, the gaps between them exhibit a
remarkable and fascinating property which is a clear exponen-
tial decay in the frequency of gaps versus the gap size. The
smaller the gaps, themore frequently they appear. This impor-
tant result represents an unexpected correlation between the
apparently chaotic sequence, the zeroes in JðnÞ, and the prime
number distribution. Additionally, the sequence of zeroes,
despite being nonconsecutive numbers, contains a number
of prime numbers approximately equal to n/log n, where n
refers to the number of terms in the sequence.

In [49], the authors aimed to derive heuristic formulas to
predict the growth trend of the maximal spacing between

adjacent prime numbers. They performed an extensive study
on the maximal gaps between prime k-tuples in residue clas-
ses (mod q). Their findings suggest that almost all the max-
imal gaps satisfy a generalized strong form of Cramer’s
conjecture.

In most of the previous studies, the authors took only
small or separate regions of the prime numbers stream,
except in [21], where the author studied a single very large
sequence. However, no clear decision has been made regard-
ing the nature of the spacings between prime numbers
through the first N sequences up to humongous large prime
values. In this work, we study the spacing distribution
between adjacent prime numbers using NNSD for a contin-
uous stream of prime numbers up to three hundred and fifty
million prime values, where the prime numbers were treated
as eigenvalues of a quantum physical system of a simple one-
dimensional Hamiltonian [21, 27–29]. We applied the
methods of RMT within superstatistics [33–37, 39, 50, 51]
and Brody distribution [40] in this study.

3. Background: Level Spacing Statistics
and RMT

Integrable and chaotic physical systems are very rare in
nature. Most of the real physical systems are mixed, and
the statistical properties of many quantum physical systems
can be modeled by random matrices. Such a system is gener-
ally a many-particle system whose interaction is so complex
that the Hamiltonian representing the system should behave
like a large random matrix. This can mean that the Hamilto-
nian of such systems is mixed where it contains parts of reg-
ular and chaotic motion dynamics together. Furthermore,
simple one-particle quantum systems may also exhibit ran-
dom matrix statistics if the classical limit of the system is
chaotic. A major aspect of quantum chaos theory is that dis-
tributions of properly normalized distances between neigh-
boring energy eigenvalues for a quantum system can
behave as a good indicator of the system properties and
behavior [20, 33–36].

Usually, the eigenvalues of quantum systems whose
classical counterparts are regular have the Poisson level
spacing distributions, whereas the eigenvalues of quantum
systems with chaotic classical counterparts have random
matrix level spacing distributions [52–54]. In addition, a
classical system that undergoes a transition from regular
motion to chaos as some parameter is varied should have
a quantum counterpart whose eigenvalues undergo a transi-
tion from the Poisson to random matrix statistics for the
same variation of the parameter. This gives the indication
that Random Matrix Theory (RMT) can provide a success-
ful model for quantum systems, whose classical counterpart
has chaotic dynamics [20, 55, 56].

The uncorrelatedness property of random numbers can
be utilized to determine the distribution of gaps between
the nearest neighbors in an ordered random number
sequence. Moreover, in regular or nearly ordered systems,
mixing of quantum states belonging to adjacent levels can
be ignored and the energy levels are uncorrelated [33, 56–
58]. The sequence of prime numbers being statistically
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similar to a sequence of random numbers, and the imaginary
parts of the nontrivial zeros of the Riemann Zeta function
(numbers that are intimately tied to the detailed distribution
of prime numbers) have statistical properties that fit the
predictions of RMT [10, 47]. Consider a numberNin the
sequence; the probabilityppðsÞ · dsthat the next number in
the sequence lies betweenðN + sÞandðN + s + dsÞis propor-
tional to the probability that there is no level between N
and ðN + sÞ. This indicates that the Nearest Neighbor Spac-
ing Distribution for random numbers is the Poisson distri-
bution. More specifically, the distances between energy
eigenvalues for a generic integrable system are distributed
as for points randomly thrown on a line, which can be
expressed by the Poisson distribution. That means, such a
system can be described by the Poisson distribution given
as follows:

pp sð Þ = e −sð Þ, ð1Þ

where ppðsÞ has been properly normalized so that the mean
spacing is one. Note that the Poisson distribution has the
peak value at s = 0, indicating that small gaps are very likely
in a sequence of random numbers. This tendency of random
numbers to clump together is referred to as level clustering
[56, 59]. At the same time, the level spacings of a chaotic sys-
tem are expected to obey the same statistics as the eigen-
values of an ensemble of real symmetric random matrices
with independent identically distributed entries [20, 55,
56]. Wigner recognized the importance of eigenvalue statis-
tics when he studied the distribution of spacings between
energy levels of highly excited nuclei, where he found that
the nuclear energy levels were statistically similar to the
eigenvalues of a random matrix, and their behavior mimics
that of a random matrix. The experiments shown are found
to fit the predictions of RMT [27]. Moreover, the NNSD sta-
tistics of mixed quantum systems are likely to execute a
Poisson-to-Wigner transition as the underlying classical
dynamics monotonically change from being completely inte-
grable to being completely chaotic.

The chaotic phase of a system can therefore be described
using the Wigner-Dyson distribution given by

pw sð Þ = π

2 se
− π/4ð Þs2ð Þ: ð2Þ

Numerous interpolation formulas describing the inter-
mediate situations between the complete integrability and
chaos have been considered in [33–36, 39, 40, 55, 56, 60].
On the derivation of a formula for mixed systems by gener-
alizing RMT, Abul-Magd derived a formula which was car-
ried out using the superstatistics to RMT [33–36, 39]. He
suggested using the idea of superstatistics that the mixed sys-
tem is constructed from many microscopic cells that are
momentarily in a chaotic phase. Every cell is sufficiently
large to follow the essential statistics of RMT but with differ-
ent distribution parameter η related to it, due to a probability
density f ðηÞ.

Hence, the Random-Matrix ensemble within superstatis-
tics that represents the mixed system is a combination of
Gaussian ensembles [33–37, 39, 51, 61, 62]. Then, by apply-
ing the method of the inverse χ2 distribution of the supersta-
tistical random matrix, the formula for the NNSD can be
obtained:

pinvchi2 v, sð Þ = 2η0s
Γ v/2ð Þ

ffiffiffiffiffiffiffiffiffiffi
η0vs2

p
/2

� �v/2
Kv/2

ffiffiffiffiffiffiffiffiffiffi
η0vs2

p� �
, ð3Þ

where KmðxÞ is the modified Bessel function [63] and η0 is
determined by the requirement that the mean level spacing
hsi must equals unity:

η0 =
4π
v3

Γ v + 3ð Þ/2ð Þ
Γ v/2ð Þ

� �2
: ð4Þ

Therefore, the assumption that the inverse square of the
variance of matrix elements as an inverse χ2 variable allows
one to model the regular-chaos mixed systems is applied
[33–36, 39]. The distribution tends to the Poisson distribu-
tion as υ⟶−1 and to the Wigner-Dyson distribution if
υ⟶∞. In other words, as the values of υ increase from
−1 to∞, the chaoticity of the system increases. It is interest-
ing to note that as υ⟶ 1, it yields the semi-Poisson distri-
bution which can describe the spectra of pseudointegrable
systems [64] (a more detailed discussion about Equation
(3) can be found in Ref. [39]).

4. Proposed Study

The statistical properties of number sequences have helped
to elucidate some interesting challenges in number theory,
especially in the study of prime numbers [27, 33–36], moti-
vated by the success of the superstatistical RMT in describ-
ing the transition of mixed system’s behavior between
regular and chaotic [36, 39]. We propose a new study on
the statistical properties of the prime numbers using the
superstatistical RMT; we use RMT within superstatistics
and apply the method of NNSD to investigate the statistical
properties of the spacing between adjacent prime numbers
[20, 22, 33–38, 51, 55, 56]. The prime numbers are treated
as energy levels of physical quantum systems [21, 28]. For
analysis, we have used the inverse χ2 distribution [33–36,
39] and Brody distribution [40–44].

One of the reasons for using the superstatistical RMT in
describing the mixed systems can be found in [36]; the
authors considered two billiards with mushroom-shaped
boundaries as representatives of systems with mixed
regular-chaotic dynamics and three with the shape of Lima-
con billiards; one is chaotic dynamics and two are mixed
dynamics. In all cases, the experimental data are found in
better agreement with inverse-χ2 superstatistics than all the
other considered distributions. Moreover, the inverse-χ2 dis-
tribution is employed in describing the symmetry breaking
of acoustic resonances in quartz blocks which agrees well
with experimental spectra of acoustic resonances than other
distributions such as log-normal and χ2 distributions [39].
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Prime numbers are known to be distributed randomly
among the integers, and their NNSD provides evidence that
prime numbers are statistically random. The idea behind
NNSD is to analyze how the gaps between adjacent num-
bers in a number sequence fluctuate around the average
spacing [59]. For this, a well-defined average spacing is
required. But the average spacing (averaged over many suc-
cessive spacings, but not over the entire sequence) may not
be uniform throughout the sequence. If this local average
changes significantly on the scale of a single spacing, then
there is no hope of separating the large-scale variation in

the spacings from the local fluctuations. However, if the
local average varies only on scales that are large compared
to a single spacing, then the effects of this variation can
be separated from the local fluctuations using a process
called unfolding. Therefore, the sequence of prime numbers
must be unfolded before the NNSD for prime numbers are
estimated [27, 56].

One way to avoid the problem of unfolding is by using
the idea of the ratio of two consecutive level spacings which
is independent of the local density of states, and it does not
require unfolding [44, 65–69].
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As mentioned above, to use RMT in the analysis, the
spacing between the consecutive prime numbers must be
unfolded. Unfolding is a standard procedure for single long
spectrum [20, 55, 56]. For this work, it is done using the
unfolding formula stated in [21], given by Equations (5)
and (6) as follows:

dn = pn+1 − pn, ð5Þ

Dn =
dn

Ln pnð Þ + dn/pnð Þ : ð6Þ

Here, dn is the difference between any two successive
primes and Dn is the unfolded difference between any two
successive primes; even for very large prime number Pn,
we used the same equations, although in [21] the author
ignored the term for large primes. Because the average dis-
tance between primes (pn − pn−1) is LnðpnÞ, we have from
Equation (6) the unfolded spacings which have a mean value
equal to unity. The unfolded specimen is then arranged and
treated using the inverse χ2 distribution (3) and the Brody
distribution (Equation (7)) [33–36, 39, 40, 50, 60].

The resulting NNSD of the mixed system, given by
Equation (3), is used to study the statistical properties of
the prime numbers where the prime numbers can be treated
as energy levels of one-dimensional quantum systems [21,
28]. As discussed in [20, 36, 56, 70, 71], the NNSD of ran-
dom numbers on a line can be given by the Poisson distribu-
tion (Equation (1)), whereas the NNSD of random numbers
on a plane can be given by the Wigner surmise for Gaussian
Orthogonal Ensemble (GOE) in Equation (2). Exploiting

this, there arises the possibility of describing the NNSD sta-
tistics of mixed systems as they exhibit transition between
the Poisson and Wigner statistics as the underlying dynamic
change occurs. The intermediate statistics can be described
successfully by the Brody distribution. In this study, for
comparison, we have used this popular distribution in the
description of the mixed systems [10, 40–44]:

PBrody ω, sð Þ = ω + 1ð Þaωsωe−aωs
ω+1 , aω = Γω+1 ω + 2

ω + 1

� �
:

ð7Þ

The Brody distribution yields the Wigner-Dyson distri-
bution if ω = 1, which indicates a fully chaotic case and leads
to the Poisson distribution if ω = 0, for an integrable system.
If ω takes any value between these two limiting values, we
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Table 1: The fit parameters and absolute average deviation for the
25th to 27th million prime while the last three rows for 104 primes
around from 2:561 × 107 to 2:563 × 107.

Pn υ Δ ω Δ

2:50 × 107 0.1733 0.0021 0.3722 0.0105

2:60 × 107 −0.1579 0.0205 0.2886 0.0231

2:70 × 107 −0.5753 0.0214 0.1572 0.0243

2:561 × 107 0.2021 0.0332 0.3777 0.0375

2:562 × 107 −0.2567 0.0199 0.2591 0.0248

2:563 × 107 −0.5610 0.0233 0.1601 0.0265
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say that the system is mixed and the chaoticity of the system
increases as ω increases from 0 to 1 [40].

5. Results and Discussion

This section discusses the analysis and the results of the pro-
posed study. We have considered the sequences of the prime
numbers as eigenvalues of a quantum physical system, and
we used the NNSD of mixed systems to investigate the
statistical properties of the spacing between adjacent prime

numbers. The inverse χ2 distribution and the Brody distri-
bution are considered for analysis.

We conducted the analysis for subsequences of every
million prime separately, starting from the 1st million to
three hundred and fifty million primes. Figure 1 shows the
relation between the prime numbers and the chaoticity
parameters υ and ω. We notice that at small values starting
from the 1st million, the behavior is hardly following the
Poisson statistics. As we go further, the chaoticity of every
individual million prime increases until the 25th million,
where it reaches maximum; then a sudden enhancement in
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the best fit calculated using the inverse χ2 distribution Equation (3) and the Brody distribution Equation (7). For reason of comparison the
Poisson and GOE curves are also included.
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regularity is reached in the 26th and 27th million regions. The
calculated parameters for the 27th million primes are
υ = −0:5753 and ω = 0:1572 for the inverse χ2 distribution
and Brody distribution which showed the most regular
region of the entire tested data. The rest of the data shows
the Poissonian-like behavior with tendency to increase the
chaoticity very slowly as shown in Figure 1.

The same behavior is shown in Figure 2; as we plotted
the same data with logarithmic prime scale, the graphs show

sudden decrease in chaoticity parameters at the 25th–27th

million region which may mean that the gaps between adja-
cent prime numbers in these regions become smaller for
large number of primes. Furthermore, Figure 3 shows the
NNSD for subsequence of unfolded primes for 25th, 26th,
and 27th million regions together with the best fit using
Equations (3) and (7). Figure 3 clearly shows the transition
from nearly chaotic at 25th million region to nearly regular
27th million region. We quantify the quality of the fits by

Table 2: The calculated parameters for the inverse χ2 distribution (υ) and Brody distribution (ω) starting from 100 to 1.3 million primes.

Prime no. υ ω Prime no. υ ω Prime no. υ ω

1:00 × 102 204.95 0.9899 8:00 × 103 0.3412 0.4086 2:00 × 105 0.2845 0.3921

2:00 × 102 22.8189 0.9267 9:00 × 103 0.2633 0.3944 2:10 × 105 0.2970 0.3945

3:00 × 102 3.9174 0.7850 1:00 × 104 0.1943 0.3817 2:20 × 105 0.3046 0.3960

4:00 × 102 2.4857 0.7171 1:10 × 104 0.1565 0.3751 2:26 × 105 0.3076 0.3965

5:00 × 102 2.0600 0.6783 1:20 × 104 0.1386 0.3724 2:27 × 105 0.3078 0.3965

6:00 × 102 1.9258 0.6623 1:30 × 104 0.1182 0.3686 2:28 × 105 0.3091 0.3965

7:00 × 102 1.8687 0.6515 1:40 × 104 0.1059 0.3669 2:29 × 105 0.3106 0.3970

8:00 × 102 1.9348 0.6553 1:50 × 104 0.0884 0.3641 2:30 × 105 0.3104 0.3970

9:00 × 102 2.0103 0.6622 1:60 × 104 0.1005 0.3667 2:31 × 105 0.3101 0.3969

1:00 × 103 2.1030 0.6706 1:70 × 104 0.0753 0.3612 2:32 × 105 0.3101 0.3970

1:10 × 103 2.2225 0.6822 1:80 × 104 0.0789 0.3615 2:33 × 105 0.3107 0.3971

1:20 × 103 2.2450 0.6850 1:85 × 104 0.0762 0.3612 2:34 × 105 0.3131 0.3975

1:30 × 103 2.2664 0.6872 1:88 × 104 0.0728 0.3605 2:35 × 105 0.3127 0.3975

1:40 × 103 2.3222 0.6909 1:89 × 104 0.0721 0.3603 2:36 × 105 0.3085 0.3967

1:50 × 103 2.3555 0.6937 1:90 × 104 0.0712 0.3602 2:37 × 105 0.3045 0.3960

1:60 × 103 2.5208 0.7074 1:92 × 104 0.0823 0.3626 2:38 × 105 0.2995 0.3951

1:70 × 103 2.4542 0.7011 2:00 × 104 0.0837 0.3628 2:39 × 105 0.2957 0.3945

1:80 × 103 2.5981 0.7136 3:00 × 104 0.0906 0.3620 2:40 × 105 0.2931 0.3940

1:90 × 103 2.5815 0.7120 4:00 × 104 0.1372 0.3706 2:50 × 105 0.2547 0.3872

2:00 × 103 2.5828 0.7107 5:00 × 104 0.1562 0.3738 2:60 × 105 0.2193 0.3805

2:10 × 103 2.5046 0.7046 6:00 × 104 0.1661 0.3738 2:70 × 105 0.1874 0.3742

2:20 × 103 2.5471 0.7075 7:00 × 104 0.1732 0.3736 2:80 × 105 0.1593 0.3684

2:30 × 103 2.6387 0.7151 8:00 × 104 0.1757 0.3736 2:90 × 105 0.1375 0.3639

2:40 × 103 2.5775 0.7099 9:00 × 104 0.1716 0.3725 3:00 × 105 0.1179 0.3596

2:50 × 103 2.4920 0.7023 1:00 × 105 0.1831 0.3739 4:00 × 105 0.0029 0.3325

2:60 × 103 2.3515 0.6863 1:10 × 105 0.1941 0.3758 5:00 × 105 -0.0485 0.3195

2:70 × 103 2.1900 0.6699 1:20 × 105 0.1996 0.3761 6:00 × 105 -0.0777 0.3120

2:80 × 103 2.11638 0.6613 1:30 × 105 0.2045 0.3767 7:00 × 105 -0.0903 0.3084

2:90 × 103 2.0298 0.6515 1:40 × 105 0.2171 0.3793 8:00 × 105 -0.0964 0.3066

3:00 × 103 1.9260 0.6389 1:50 × 105 0.2339 0.3827 9:00 × 105 -0.0996 0.3059

4:00 × 103 1.1293 0.5348 1:60 × 105 0.2454 0.3848 1:00 × 106 -0.1033 0.3050

5:00 × 103 0.8284 0.4898 1:70 × 105 0.2581 0.3872 1:10 × 106 -0.1054 0.3047

6:00 × 103 0.5543 0.4454 1:80 × 105 0.2712 0.3898 1:20 × 106 -0.1107 0.3024

7:00 × 103 0.4416 0.4260 1:90 × 105 0.2816 0.3917 1:30 × 106 -0.1148 0.3005
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their absolute average deviation:

Δ = 1
NL

〠 Pcal − PFitj j, ð8Þ

where Pcal, PFit, and NL are the calculated NNSD, the best-fit
using Equations (3) and (7), and the number of values mea-
sured, respectively. The best-fit values of the parameters
together with their absolute average deviation Δ are given
in Table 1.

Table 3: The calculated parameters for the inverse χ2 distribution (υ) and Brody distribution (ω) starting from 1.4 million primes to 350
million primes (continued).

Prime no. υ ω Prime no. υ ω Prime no. υ ω

1:40 × 106 -0.1176 0.2991 3:50 × 107 -0.1121 0.2982 1:85 × 108 -0.4193 0.2164

1:50 × 106 -0.1206 0.2978 4:00 × 107 -0.1741 0.2816 1:90 × 108 -0.4193 0.2165

1:60 × 106 -0.1231 0.2966 4:50 × 107 -0.2204 0.2689 1:95 × 108 -0.4193 0.2166

1:70 × 106 -0.1242 0.2960 5:00 × 107 -0.2558 0.2590 2:00 × 108 -0.4193 0.2167

1:80 × 106 -0.1244 0.2957 5:50 × 107 -0.2838 0.2512 2:05 × 108 -0.4192 0.2169

1:90 × 106 -0.1233 0.2959 6:00 × 107 -0.3063 0.2448 2:10 × 108 -0.4190 0.2170

2:00 × 106 -0.1225 0.2960 6:50 × 107 -0.3248 0.2396 2:15 × 108 -0.4188 0.2172

3:00 × 106 -0.1096 0.2980 7:00 × 107 -0.3398 0.2354 2:20 × 108 -0.4185 0.2174

4:00 × 106 -0.0961 0.3005 7:50 × 107 -0.3525 0.2319 2:25 × 108 -0.4182 0.2176

5:00 × 106 -0.0779 0.3039 8:00 × 107 -0.3631 0.2290 2:30 × 108 -0.4180 0.2177

6:00 × 106 -0.0617 0.3074 8:50 × 107 -0.3723 0.2265 2:35 × 108 -0.4177 0.2179

7:00 × 106 -0.0465 0.3110 9:00 × 107 -0.3800 0.2244 2:40 × 108 -0.4174 0.2181

8:00 × 106 -0.0328 0.3143 9:50 × 107 -0.3868 0.2226 2:45 × 108 -0.4171 0.2183

9:00 × 106 -0.0182 0.3182 1:00 × 108 -0.3924 0.2212 2:50 × 108 -0.4168 0.2185

1:00 × 107 -0.0055 0.3217 1:05 × 108 -0.3964 0.2203 2:55 × 108 -0.4165 0.2187

1:10 × 107 0.0058 0.3249 1:10 × 108 -0.4000 0.2195 2:60 × 108 -0.4162 0.2189

1:20 × 107 0.0156 0.3277 1:15 × 108 -0.4032 0.2187 2:65 × 108 -0.4158 0.2191

1:30 × 107 0.0247 0.3303 1:20 × 108 -0.4062 0.2181 2:70 × 108 -0.4155 0.2193

1:40 × 107 0.0324 0.3326 1:25 × 108 -0.4087 0.2176 2:75 × 108 -0.4151 0.2195

1:50 × 107 0.0397 0.3347 1:30 × 108 -0.4105 0.2172 2:80 × 108 -0.4146 0.2196

1:60 × 107 0.0458 0.3364 1:35 × 108 -0.4121 0.2169 2:85 × 108 -0.4137 0.2198

1:70 × 107 0.0516 0.3381 1:40 × 108 -0.4136 0.2167 2:90 × 108 -0.4130 0.2200

1:80 × 107 0.0567 0.3396 1:45 × 108 -0.4148 0.2165 2:95 × 108 -0.4123 0.2201

1:90 × 107 0.0618 0.3410 1:50 × 108 -0.4160 0.2164 3:00 × 108 -0.4116 0.2203

2:00 × 107 0.0664 0.3424 1:55 × 108 -0.4169 0.2163 3:05 × 108 -0.4109 0.2204

2:10 × 107 0.0706 0.3436 1:60 × 108 -0.4177 0.2162 3:10 × 108 -0.4102 0.2205

2:20 × 107 0.0746 0.3447 1:65 × 108 -0.4185 0.2162 3:15 × 108 -0.4095 0.2207

2:30 × 107 0.0784 0.3458 1:70 × 108 -0.4192 0.2161 3:20 × 108 -0.4089 0.2208

2:40 × 107 0.0818 0.3468 1:71 × 108 -0.4193 0.2161 3:25 × 108 -0.4082 0.2210

2:50 × 107 0.0852 0.3478 1:72 × 108 -0.4193 0.2161 3:30 × 108 -0.4076 0.2211

2:60 × 107 0.0756 0.3456 1:73 × 108 -0.4193 0.2162 3:35 × 108 -0.4070 0.2213

2:70 × 107 0.0471 0.3387 1:74 × 108 -0.4193 0.2162 3:40 × 108 -0.4064 0.2214

2:80 × 107 0.0212 0.3323 1:75 × 108 -0.4193 0.2162 3:45 × 108 -0.4057 0.2216

2:90 × 107 -0.0026 0.3263 1:76 × 108 -0.4193 0.2162 3:50 × 108 -0.4051 0.2217

3:00 × 107 -0.0246 0.3208 1:80 × 108 -0.4194 0.2163
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To investigate precisely where there are sudden increases
in the regularity in the 25th−27th million region, we con-
ducted analysis and calculate the chaoticity parameters for
smaller subsequences of every 104 primes separately, starting
from the 24th million to 27th million primes. Figure 4 shows
the relation between prime numbers and the chaoticity
parameters υ and ω using a logarithmic scale. We can clearly
locate the region of sudden transfer between large chaoticity
at 2:561 × 107 and high regularity at 2:563 × 107.

Figure 5 shows the NNSD histogram for subsequence of
104 unfolded primes at (a) 2:561 × 107, at (b) 2:562 × 107,
and at (c) 2:563 × 107 together with the best fit using Equa-
tions (3) and (7), and for the reason of comparison, we include
the Poisson and GOE curves. Figure 5 clearly shows the tran-
sition from nearly chaotic at prime number 2:561 × 107 region

to nearly regular at 2:563 × 107 region. Table 1 shows the
values of the chaoticity parameters υ and ω and the absolute
average deviation Δ between calculated NNSD and the fitted
values. We can notice that the two distributions can fit the cal-
culatedNNSD, but inverse-χ2 superstatistics distribution gives
better agreement with the investigated prime than the Brody
distribution.

Next, the distribution was made up of sequences of the
first N prime numbers from one hundred to three hundred
and fifty million prime numbers, where the size of the spec-
imen is increased in steps. During the calculation of the
parameters of the 1st and 2nd million, we take steps as low
as 100 prime increment and as large as 105 prime numbers.
The choice was made according to the region of the prime
numbers. It was taken around the minima and maxima (that
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appeared during the calculations) in smaller steps to deter-
mine it accurately.

Starting from the beginning of the 3rd million of the
prime numbers, the increments are taken to be one million
due to the small change in the values of the calculated
parameters of Equations (3) and (7). After thirty million
prime numbers, the steps were made at every 5 million
except at 170 million prime number regions as shown in
Tables 2 and 3 and Figures 6 and 7. In all the sequences,
we take the bin size of the calculated data to be 0.2.

Our studies of the NNSD of the difference between con-
secutive primes showed that the system of the prime num-
bers becomes more regular as the number of the primes
increases and hardly becomes out of chaos at 700 primes
(first minima); at 100 primes, the system is fully chaotic
and can be described by Equation (2); this can be repre-
sented graphically by Figure 8(a) for 100 primes and
Figure 6(b) for 700 primes. Further increase in the prime
numbers made the system more chaotic and reaches the first
maxima at prime number 2300 (see Figure 6(c)). This
behavior repeated several times through the tested data as
shown in Figure 7 and Tables 2 and 3. A number of succes-
sive minima and maxima were found during the calcula-
tions. Figures 8(b)–8(h) show histograms with best fit
using Equations (3) and (7) for this successive minima and
maxima; for the reason of comparison, we present the 100
primes and the 350 million primes in the same figure. Also,
Table 4 shows the fit parameters υ and ω and absolute aver-
age deviation Δ for the same accumulated prime distribu-
tions in Figure 8.

We can notice that the system of prime numbers
becomes more regular and approaches the Poissonian distri-

bution as the number of the primes largely increased. The
relation between the logarithmic prime numbers and the
inverse χ2 distribution (Figure 7(a)) and the Brody distribu-
tion parameters (Figure 7(b)) shows this behavior of succes-
sive minima and maxima more clearly.

One of the most prominent features of this work is the
big change in the values of the chaoticity permeates around
the 25th−27th million region. In addition to the study of
every separate 104 primes at this region (see Figure 4 and
Table 1), we conduct another analysis for accumulated size
of the prime number from 24 million to 27 million primes
with increasing steps ranging between 104 around the peak
at 2:561 × 107 to 105 far from it. Figures 9 and 10 show this
study with normal and logarithmic scales. We notice a
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Figure 8: (NNSD) for continuous sequences of unfolded primes using (a) 100 primes, (b) 700 primes, (c) 2300 primes, (d) 1:90 × 104
primes, (e) 2:34 × 105 primes, (f) 1:80 × 106 primes, (g) 2:561 × 107 primes, (h) 1:71 × 108 primes, and 3:50 × 108 primes. The curves
show the best fit calculated using the inverse χ2 distribution Equation (3) and the Brody distribution Equation (7).

Table 4: The fit parameters and absolute average deviation for the
accumulated prime sequences shown in Figure 8.

Pn υ Δ ω Δ

102 204.7 0.0592 0.9899 0.0592

7:00 × 102 1.8687 0.0385 0.6515 0.0452

2:30 × 103 2.6387 0.0410 0.7151 0.0489

1:90 × 104 0.07116 0.0255 0.3602 0.0258

2:34 × 105 0.3131 0.0454 0.3975 0.0441

1:8 × 106 −0.1244 0.0279 0.2957 0.0314

2:561 × 107 0.0852 0.0266 0.3478 0.0311

1:71 × 108 −0.4193 0.0131 0.2161 0.0180

3:50 × 108 −0.4051 0.0120 0.2217 0.0163
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smooth and slow change around the peak. The change in the
fit parameters is very slow for large accumulated size of the
prime numbers than for small size of the prime numbers.

The logarithmic period between two successive minima
or maxima can be calculated using the logarithmic difference
between any of them (except the 1st minima), as shown in
Table 5. This difference for minima is ΔLnðPn minÞ = 4:553
on average (for the last two periods). This enables us to pre-
dict the region of the next minima. We can roughly calculate
it as LnðPn minÞ = 23:513⟶ Pn min = 1:6277 × 1010. Also,

the logarithmic difference between two successive maxima
ΔLnðPn maxÞ = 4:659 on average. Hence, the next maxima
can roughly be calculated as LnðPn maxÞ = 21:717 which
yields Pn max = 2:7013 × 109.

An alternative way for predicting the next minima and
maxima by plotting the values of minima and maxima with
respect to its number (m) and linearly fit them as shown in
Figure 11, the 1st minima is omitted in the lower curve 11-b.
The linear fitting equations are given by Equation (9) for
maxima and Equation (10) for minima.
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LnPn min mð Þ = 4:5540 ± 0:0035ð Þm + 0:7420 ± 0:0108ð Þ,
ð9Þ

LnPn max mð Þ = 4:6589 ± 0:0211ð Þm + 3:0696 ± 0:0455ð Þ:
ð10Þ

We can use the last two equations to calculate all the
minima andmaxima (see Table 5). The 5th minima can be cal-

culated by puttingm = 5 in Equation (9): LnPn minð5Þ = 23:54
which yields Pn minð5Þ = 1:6722 × 1010. The 4th maxima can be
calculated by putting m = 4 in Equation (10); so LnPn maxð4Þ
= 21:835 which yields Pn maxð4Þ = 3:0396 × 109.

Hence, we can expect the 4th maxima in the prime range
between 2:7024 × 109 and 3:0396 × 109 and the 5th minima
in the prime range between 1:6277 × 1010 and 1:6722 × 1010.
This will be the subject of future work to calculate as many
primes as to locate the next minima and maxima.
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Figure 11: (a) The relation between the maxima, its maxima number (m), and its corresponding liner fit. (b) The relation between the
minima and its minima number and its corresponding liner fit.
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In an attempt to find an empirical equation for the
results in Tables 2 and 3 and Figure 7, we proposed the
following formula:

In the two pervious formulas, we consider x = LnPn. The
fitted values using the two equations compared to the calcu-
lated values of ν and ω are plotted in Figure 12(a) for ν and
Figure 12(b) for ω. The two equations showed accepted
behavior and reproduced most of the minima and maxima
fairly. We can notice that the fitted curve in Figure 12(a)
using Equation (11) gives better agreement with the calcu-
lated data than that of the fitted curve in Figure 12(b) using
Equation (12).

In Table 5, we present a comparison between the calcu-
lated and theoretical values of prime numbers minima and
maxima. The theoretical values are in good agreement with
the calculated values especially at the logarithmic scale.

In Equation (11), as x = LnPn ⟶∞,ν = −0:6056, while
for Equation (12) as x = LnPn ⟶∞,ω = 0.

This may verify our assumption of the Poissonian behav-
ior of the prime numbers at very large values.

6. Conclusion

We have considered the sequences of prime numbers as
eigenvalues of a quantum physical system, and we used the
NNSD of mixed systems to investigate the statistical proper-
ties of the spacing between adjacent prime numbers. We
used the inverse χ2 distribution and the Brody distribution,
which are powerful tools for investigating the regular-
chaos mixed systems. We found that the system of prime
numbers is a mixed system that tends to become a Poisso-
nian as the prime numbers become very large.

This conclusion may be considered a first step, and it will
be further examined in a future work using an extensive and
detailed study for a wider range of prime numbers using the
same method and other methods like the idea of the ratio of
two consecutive level spacings. Also the longer-range statis-
tics, i.e., the spectral rigidity and level number variance, will
be one of the major metrics.
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