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The Plateau-Bézier problem with shifted knots is to find the surface of minimal area amongst all the Bézier surfaces with shifted
knots spanned by the admitted boundary. Instead of variational minimization of usual area functional, the quasi-minimal Bézier
surface with shifted knots is obtained as the solution of variational minimization of Dirichlet functional that turns up as the sum
of two integrals and the vanishing condition gives us the system of linear algebraic constraints on the control points. The
coefficients of these control points bear symmetry for the pair of summation indices as well as for the pair of free indices. These
linear constraints are then solved for unknown interior control points in terms of given boundary control points to get quasi-
minimal Bézier surface with shifted knots. The functional gradient of the surface gives possible candidate functions as the
minimizers of the aforementioned Dirichlet functional; when solved for unknown interior control points, it results in a surface
of minimal area called quasi-minimal Bézier surface. In particular, it is implemented on a biquadratic Bézier surface by
expressing the unknown control point P11 as the linear combination of the known control points in this case. This can be
implemented to Bézier surfaces with shifted knots of higher degree, as well if desired.

1. Introduction

We observe that the nature behaves in a way that certain
quantity is either a maximum or a minimum of some quan-
tity, in various phenomena occurring in our universe. For
example, the shortest distance between two points is a
straight line in the case of no constraint; otherwise, it is said
to be a geodesic in the case of some given constraint that
may be in differential or in integral form. It is well known
that a light ray takes its shortest path while moving with con-
stant speed in the shortest possible time. This is in confor-
mity with the well-known principle called the Fermat’s
principle which states that a light ray will follow the path that
requires the least possible time. Fermat’s principle is applica-
ble only to behaviour of light. Other phenomena in which
principle of minima are applicable are, e.g., a rubber balloon
when blown up takes a spherical shape, and similar is true
about a soap bubble. In fact, amongst all the surfaces contain-

ing the same volume, a sphere has the least area. Another
example is that of Brachistochrone problem, which is related
to finding the shape of the curve along which an object slides
down from rest to another point in the least possible time.
This phenomenon is related to the broader discipline of
mathematics, the optimization theory, which encompasses
the minimization of some principle given in the form of
energy functional, linear programming, network analysis,
and so on. The optimization problem, in its simplest form,
seeks for a function that maximizes or minimizes a given
constraint usually given in the form of an integral. The func-
tion itself is called the objective function that maximizes or
minimizes the given functional. Such phenomena are studied
in the variational calculus. The goal of variational calculus is
to study the conditions for an objective function in a given
domainΩ in which we can find a solution of an optimization
problem and to study the characteristics of the extreme
values that correspond to the solution. One of the active areas

Hindawi
Advances in Mathematical Physics
Volume 2021, Article ID 9978633, 14 pages
https://doi.org/10.1155/2021/9978633

https://orcid.org/0000-0003-0966-8237
https://orcid.org/0000-0002-2056-9371
https://orcid.org/0000-0002-1240-4761
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9978633


of research is to seek for variational improvement in an
objective function that means to find quasi-minimal func-
tions that are closer to the minimal objective functions [1,
2]. These minimization principles are helpful in constructing
mathematical models describing some symmetry structure of
a given physical system in the fields of solid and fluid
mechanics, electromagnetism, and many more. The basic
idea behind a variational technique is to minimize an objec-
tive function subject to given boundary constraints. Its target
is to find the value (s) of a parameter (s) by the vanishing
condition of gradient of a certain functional based on some
constraints. This vanishing condition then can be used to
find solution of a system of constraints obtained in this
way. The scheme of the constraints may be in the form of
an integral, a differential, or an algebraic condition.

In surface modeling, a relevant problem is the Plateau
problem [3], which was presented by a Belgian physicist
named Joseph Plateau. Plateau demonstrated the minimal
surfaces related to soap films. In 1849, he showed that a wire
frame dipped in soapy water behaves as the boundary of the
spanned surface. In differential geometry, its use is to con-
struct surfaces of minimal area, a surface called a minimal
surface. A minimal surface is a surface whose mean curvature
vanishes at its every point for all of its possible parameteriza-
tions. The minimal surface theory combines the objects being
studied, their origin, and their relation to the physical world.
Minimal surfaces find their applications in different branches
of mathematics like computer science, operations research,
economics, and its affiliated disciplines. The availability of
computer graphics has increased the visual understanding
of these surfaces. The importance of the Plateau problem
was soon realized by Douglas who minimized a quantity
which is now known as Dirichlet integral [4]. The theory of
minimal surfaces [5, 6] arose from an attempt made by
Lagrange (1762) to find a surface z = zðu, vÞ of minimal area
spanned by a given curve by minimizing the area functional,
which resulted in an equation now known as the Euler-
Lagrange equation. He obtained the solution only in the form
of plane. In 1776, Meusnier showed that the only ruled sur-
faces that are minimal and satisfy the Euler-Lagrange equa-
tion are the catenoid and the helicoid. However, he was
able to show that the corresponding Euler-Lagrange equation
for these surfaces reduces to twice of the mean curvature of
the surface. He inferred that the minimal surfaces are the sur-
faces for which the mean curvature is zero everywhere on the
surface. The vanishing condition of the mean curvature of a
surface given in the form z = zðu, vÞ reduces to the Euler-
Lagrange equation ð1 + z2vÞzuu − 2zuzvzuv + ð1 + z2uÞzvv = 0.
The Euler-Lagrange equation is a partial differential equation
of second order, and its general solution z = zðu, vÞ does exist
only for some particular cases. A variety of minimal surfaces
can be seen in literature starting from the minimal surfaces
spanned by simple closed contours to a boundary comprising
a finite number of curves, polygonal, or smooth regular
curves. This includes the work of Gaspard Monge and Legen-
dre (1795) who found the representation formulas for their
solution surfaces, the Heinrich Scherk surfaces (1830), Doug-
las’s work [4], the American mathematician, who found a

form of solution by minimizing a quantity now known as
Douglas integral, the Hungarian Radó [7] found a form of
solution by minimizing an energy integral. The significant
work in this field of minimal surfaces can be seen by other
mathematicians like McShane [8], Tonelli [9], Shiffman
[10], Courant [11, 12], Tompkins [13], Morrey [14, 15],
Osserman [16], Gulliver [17], and Karcher [18]. For a com-
prehensive survey of the minimal surfaces, the work of Osser-
man. [16] and Nitsche [6] is important. Other work, whose
importance though was realized later, was due to Bernstein
[19] whose innovative approach to partial differential equa-
tions led to his famous Bernstein’s theorem which helped to
study a wider class of surfaces for higher dimensions, now
known as Bézier surfaces.

The applications of minimal surfaces are found in the
emerging disciplines of the computer-aided geometric
design, computer graphics, computer-aided design, and geo-
metric modeling. Séquin’s studies [20–22] are based on a
variety of applications of these minimal surfaces in con-
structing, for example, for motor vehicles, the interactive
CAD tools can be used for engineering purpose. The minimal
surfaces can be built through a variational technique by find-
ing solution of vanishing condition of gradient of a constraint
usually in the form of an integral having the property of min-
imizing something, for example, minimizing an energy inte-
gral. These variational techniques are advantageous for a
class of surfaces, better known as Bézier surfaces admitting
useful properties appropriate for applications in CAGD.
The Bézier surfaces are based on the Bernstein polynomials
[23] Bm

j ðuÞ and Bn
kðvÞ of degree m and n, where

Bm
j uð Þ =

m

j

 !
uj 1 − uð Þm−j,

Bn
k vð Þ =

n

k

 !
vk 1 − vð Þn−k,

ð1Þ

m

j

 !
and

n

k

 !
being the binomial coefficients. These

polynomials are named after his creator, Sergei Natanovich
Bernstein, and the so called the Bernstein polynomial is a lin-
ear combination of exponents of a variable as mentioned
above, in a form called the Bernstein form. For a given con-
trol net of points Pjk, a Bézier surface is defined as

x u, vð Þ = 〠
m

j=0
〠
n

k=0
Bm
j uð ÞBn

k vð ÞPjk: ð2Þ

Bézier surfaces, first described by the French engineer
Pierre Bézier (in 1962), used these surfaces in automobile
industry. These surfaces justify their importance in CAGD;
one of the instances is the designing of freedom surfaces
which are constructed using the patches of triangular and
rectangular Bézier surfaces. These freedom surfaces are used
as the surface fitting tools in CAGD, CAD, and CAID. In
CAGD, the Plateau problem is one of the fundamental
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surface design problems. For prescribed boundary, we can
have arbitrary number of surfaces stretched over the given
boundary; one of these surfaces is of minimal area. The
search for such a surface of minimal area is called the so-
called Plateau problem. An interconnected problem is the
Plateau-Bézier problem which is related to search for a Bézier
surface of minimal area amongst all the possible Bézier sur-
faces spanned by the same boundary. Cosín and Monterde
[24] dealt with minimal surfaces as the solution in Bézier sur-
face form; further, they analysed the properties of these sur-
faces associated with control point mesh. In particular, in
bicubicle case, for an affine transformation, they show the
Bézier form of solution for the minimal surfaces as the
pieces of the Enneper surface. For given prescribed border
as the control points for a Bézier surface, we can find the
gradient of the constraint integral (area integral or some
energy integral) and the vanishing condition of the gradient
of the functional gives system of linear algebraic equations
expressing the unknown interior control points in terms
of known boundary control points. Monterde [25] worked
out the Plateau-Bézier problem by replacing the usual area
integral by Dirichlet energy functional and found the Bézier
solution as the extremal of Dirichlet energy functional.
Monterde and Ugail [26] extremize general quadratic func-
tional to obtain the Euler-Lagrange equation for Bézier sur-
faces as its solution, utilizing the boundary information
from a general fourth order PDE. The Plateau-Bézier prob-
lem for triangular Bézier patches was studied by Arnal et al.
[27]. Hao et al. [28, 29] dealt with the quasi-Plateau-Bézier
problem for a broader variety of boundaries consisting of
polynomial boundary curves obtaining Bézier surfaces as
the solution of the extremal of Dirichlet functional, the har-
monic and biharmonic functionals, and Multiresolution
Analysis (MRA) employing B-splines. The properties
related to the minimal surfaces spanned by a boundary
with quintic form of parametric polynomials can be seen
in Xu and Wang’s study [30]. Chen et al. [31] discuss the
Plateau-Bézier problem in context to minimization of
extended Dirichlet functional (by estimating suitable value
of (Equation (4) in Section 2.2) and extended bending
energy functional by estimating suitable value of (Equation
(19) in Section 3). The authors find out the value of λ (in
the case of extended Dirichlet functional) and α (in the case
of the extended energy functional) rather than minimizing
the functional itself. The idea may be extended to more
generalized surfaces called toric Bézier surfaces. Ahmad
and Naeem [32] obtained the toric Bézier surfaces as the
extremal of quasi-harmonic energy functional. The algo-
rithms proposed by Ahmad and Masud [33–35] for gener-
ating quasi-minimal surfaces spanned by a finite number of
boundary curves as the variational minimization of curva-
ture can be used for further surface topography; for an
application, see Zhu et al.’s study [36]. The geometric
shapes can be used for informative visualization in engi-
neering by the adjustment of control points or the weights
for another approach for controlling the shape [37–39].

As mentioned above, one of the widely used restrictions
is to find the Bézier surface as the extremal of an energy func-
tional depending on the desired characteristics of a surface,

which is done by investigating the vanishing condition of
gradient of such a functional. In return, the vanishing condi-
tion of the gradient of the deliberately chosen functional
reduces to an algebraic system of linear constraints. We con-
sider a class of surfaces called the Bézier surfaces with shifted
knots which generalize the classic Bézier surfaces and give the
intertwined quantities of differential geometry for these sur-
faces. The modification of bases of Bernstein polynomials
have been used to study these surfaces. Bernstein operator
with different modifications is an active area of research in
approximation theory useful in CAGD as well. In 2010, Gad-
jiev and Gorbanalizadeh [40] introduced Bernstein-Stancu-
type polynomials with shifted knots.

Khan et al. [41] study Bézier curves and surfaces based on
modified Bernstein basis functions with shifted knots for t
∈ ½α/n + β, n + α/n + β�with the parameters α and β enabling
the authors to shift Bernstein basis functions over subinter-
vals of [0,1]. Khan and Lobiyal [42] deal with the extension
of rational Lupaş Bernstein functions, Lupaş Bézier curves,
and surfaces involving ðp, qÞ-integers for p > 0 and q > 0.
Motivated by the work of Khan et al. [41] and Mursaleen
et al. [43], Nisar et al. [44] find Lupaş q-Bernstein basis func-
tions (blending functions with shifted knots) for ðt ∈ ½a/½μ�q
+ b, ½μ�q + a/½μ�q + b�Þ to construct Bernstein Bézier curves
and surfaces with shifted knots and study various properties
of these functions. As mentioned above, one of these modifi-
cations is to construct Bézier surfaces with shifted knots as
the extremal of a suitable energy functional.

The energy functional deliberately chosen is the Dirichlet
functional instead of the usual vexing area functional which
involves square root in its integrand and is inconvenient to
manage. This functional can be used to generate a surface
of least area to reflect the properties of a minimal surface,
the so called quasi-minimal Bézier surface. As for any candi-
date functional, we can find the quasi-minimal Bézier surface
with shifted knots by solving the vanishing condition of the
gradient of Dirichlet functional for Bézier surface with
shifted knots for unknown control points. The vanishing
condition of the gradient of the Dirichlet condition reduces
to an algebraic system of equations for these unknown con-
trol points. Bézier surface with shifted knots appears quite
frequent in the mathematical models of surface formation
in CAGD and other disciplines of mathematics. The func-
tional gradient of a surface xðu, vÞ gives us the possible can-
didate functions as the minimizers of the proposed
functional; the analogue of this technique in calculus of sev-
eral variables finds the extremal points of a function of sev-
eral variables by equating its gradient to zero. The
vanishing condition of a functional gradient generates a sys-
tem of algebraic constraints that can be solved for the interior
control points to be determined as the linear combination of
accepted boundary control points. We shall term the surface
as the quasi-minimal Bézier surface with shifted knots. These
surfaces have applications in the field of engineering, in anal-
ysis of objects in physics, and mechanism for cellular mate-
rials. The related Plateau-Bézier surface with shifted knot
problem comprises of identifying the shifted knots Bézier
surfaces of minimal area amongst all the shifted knots Bézier
surfaces with accepted boundary.
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2. Preliminaries

It is well-recognized that the Bernstein polynomial Bnð f ; uÞ
converges uniformly to every continuous function f ðuÞ in
the interval [0,1]. In 1968, Stancu [45] introduced the follow-
ing generalization of the Bernstein polynomials.

Pn,η,λ f ; uð Þ = 〠
n

k=0
f

k + η

n + λ

� � n

k

 !
uk 1 − uð Þn−k, ð3Þ

and the polynomials Pn,η,λð f ; uÞ converge uniformly to the
continuous function f ðuÞ in [0,1], where 0 ≤ u ≤ 1 and 0 ≤ η
≤ λ. In 2010, Gadjiev and Gorbanalizadeh [40] introduced
the Stancu-type polynomials for one and two variables, given
by

Sn,η,λ f ; uð Þ = n + λ2
n

� �2
〠
n

k=0

n

k

 !
u −

η2

n + λ2

� �k

� n + η2
n + λ2

− u
� �n−k

f
k + η1
n + λ1

� �
,

ð4Þ

where η2/n + λ2 ≤ u ≤ n + η2/n + λ2 and ηk, λkðk = 1, 2Þ are
positive real numbers provided that 0 ≤ η1 ≤ η2 ≤ λ1 ≤ λ2. It
is to be noted that these Stancu-type polynomials reduce to
Bernstein-Stancu-type polynomials for η2 = λ2 = 0. However,
for η1 = λ1 = η2 = λ2 = 0, these polynomials become classical
Bernstein polynomials. Recently, Khalid et al. [41] intro-
duced Bézier surfaces based on one of the modified Bernstein
basis functions, the blending functions with shifted knots in
the following form:

B u, vð Þ = 〠
m,n

j,k=0
Gj
m,η,λ uð ÞGk

n,η,λ vð ÞPjk, ð5Þ

in which the Bernstein functions Gj
m,η,λðuÞ and Gk

n,η,λðvÞ with
shifted knots are of degree m and n, respectively, and

Gj
m,η,λ uð Þ =

m

j

 !
m + λ

m

� �m

u −
η

m + λ

� �j m + η

m + λ
− u

� �m−j
:

ð6Þ

Pjk = fxajkgnj,k=1 ðfor a = 1, 2, 3Þ, control points of Bézier

surface with shifted knots. Khalid et al. [41] established the
following properties of Bernstein functions with shifted
knots, in comparison with the properties satisfied by classical
Bernstein polynomials, and these are as follows:

(1) The Bernstein functions are nonnegative, and the
same is true when they are of shifted knots for all u
∈ ½η/n + λ, n + η/n + λ�. This can be readily seen from
Equation (6) that each Bernstein polynomial with
shifted knots Gj

m,η,λðuÞ ≥ 0 for j = 0, 1, 2,⋯, n and t
∈ ½η/m + λ,m + η/m + λ�

(2) The collection of all the Bernstein functions with
shifted knots Gj

m,η,λðuÞ for j = 0, 1, 2,⋯,m and u ∈ ½
η/m + λ,m + η/m + λ� set up a partition of unity, that
is, when the Bernstein functions are summed up for
shifted knots for j = 0, 1, 2,⋯,m and u ∈ ½η/m + λ,
m + η/m + λ�, they equate to 1. In notation, it appears
as

〠
m

j=0
Gj
m,η,λ uð Þ = 1, u ∈ η

m + λ
, m + η

m + λ

h i
: ð7Þ

Likewise, the sum of product of Bernstein polynomials
forms a partition of unity, which can be shown by writing

〠
m,n

i,j=0
Gi
m,η,λ uð ÞGj

n,η,λ vð Þ = 1, ð8Þ

and Bézier surface with shifted knots Bðu, vÞ (Equation (5))
represents an affine combination in terms of its own control
points. Thus, the Bézier surface with shifted knots Bðu, vÞ
lies within the convex hull of its own points and represents
a convex combination of its own control points Pjk.

(3) The Bernstein polynomials with shifted knots Gj
m,η,λ

ðuÞ obey the reducibility property that for η = λ = 0,
Equation (6) reduces to the classical Bernstein poly-
nomial over [0,1], and this means that

Gi
m,0,0 uð Þ =

m

j

 !
uð Þj 1 − uð Þm−j = Bj

m uð Þ: ð9Þ

As noted above, the Bernstein polynomials with shifted
knots reduce to the classical Bernstein polynomials of the
same degree for η = λ = 0; thus, the Bézier surface with
shifted knots (Equation (5)) reduces to the classical Bézier
surface with shifted knots for η = λ = 0, which can be estab-
lished easily from Equations (5) and (6), that

B u, vð Þ = 〠
m,n

j,k=0
Gi
m,0,0 vð ÞPjk = 〠

m,n

j,k=0
Bj
m uð ÞBk

n vð ÞPjk = x u, vð Þ:

ð10Þ

(4) The Bernstein polynomials with shifted knots satisfy
the following end-point interpolation property that
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Gk
n,η,λ

η

n + λ

� �
=

1, k = 0,
0, k ≠ 0,

(

Gk
n,η,λ

n + η

n + λ

� �
=

1, k = n,
0, k ≠ n:

( ð11Þ

(5) An n degree Bernstein function with shifted knots can
be expressed as the linear combination of two n + 1
degree Bernstein functions with shifted knots or two n
− 1 degree Bernstein functions, with shifted knots,
which is analogous to writing a classical Bernstein poly-
nomial as the two Bernstein functions linearly com-
bined together, of higher degree or lower degree. This
helps to write the Bézier curves or surfaces in more use-
ful form by determining a new set for its control points
for the same curve or a surface as the convex combina-
tion for its old set of points. With the help of Equation
(6), we note that the following identities are satisfied

u −
η

m + λ

� �
Gi
m,η,λ uð Þ = i + 1

m + 1

� �
m

m + λ

� �
Gi+1
m+1,η,λ uð Þ,

m + η

m + λ
− u

� �
Gi
m,η,λ uð Þ = m + 1 − i

m + 1

� �
m

m + λ

� �
Gi
m+1,η,λ uð Þ:

ð12Þ

(6) A Bernstein polynomial with shifted knots of degree
m can be written as a linear combination of the two
Bernstein polynomials with shifted knots of degree
m + 1, and the relation is given by

Gi
m,η,λ uð Þ = m + 1 − i

m + 1

� �
Gi
m+1,η,λ uð Þ + i + 1

m + 1

� �
Gi+1
m+1,η,λ uð Þ,

ð13Þ

where η/m + λ ≤ u ≤m + η/m + λ and η, λ are posi-
tive real numbers fulfilling 0 ≤ η ≤ λ.

(7) A Bernstein polynomial with shifted knots of degree
m can be expressed as a linear combination of the
two Bernstein polynomials with shifted knots of
degree m − 1, and the relation can be written as

Gi
m,η,λ uð Þ = m + λ

m
u −

η

m + λ

� �
Gi−1
m−1,η,λ uð Þ

+ m + λ

m
m + η

m + λ
− u

� �
Gi
m−1,η,λ uð Þ,

ð14Þ

where η/m + λ ≤ u ≤m + η/m + λ and η, λ are posi-
tive real numbers with 0 ≤ η ≤ λ (see Khalid et al.
[41], for further related properties and discussion).

Motivated by the work [25] and the geometry explored in
the work [41] of Bézier surfaces with shifted knots, in the fol-

lowing sections, we apply a variational technique to the
Bézier surfaces depending on the Bernstein blending func-
tions with shifted knots. We call the problem of finding the
quasi-minimal surface in this way as the Plateau-Bézier prob-
lem with shifted knots. This can be done by replacing the
usual area functional by the Dirichlet functional, and the
solution of the vanishing condition for the gradient of the
Dirichlet functional appears as the algebraic system of linear
constraints on the unknown control points.

3. The Integral of the Bernstein-Like
Functions with Shifted Knots

Bernstein function with shifted knots are given above in
Equation (6), where η/m + λ ≤ u ≤m + η/n + λ and η, λ for
0 ≤ η ≤ λ are positive real numbers. Taking the derivative of
both sides of the Bernstein functions with shifted knots
(Equation (6)) and denote this derivative by ðGj

m,η,λðuÞÞu, it
follows that

Gj
m,η,λ uð Þ

� �
u
= j

m

j

 !
m + λ

m

� �m

u −
η

m + λ

� �j−1

� m + η

m + λ
− u

� �m−j
− m − jð Þ

m

j

 !
m + λ

m

� �m

× u −
η

m + λ

� �j m + η

m + λ
− u

� �m−j−1
,

ð15Þ

where the binomial coefficients can be written in the form

j
m

j

 !
=m

m − 1
j − 1

 !
,

m − jð Þ
m

j

 !
=m

m − 1
j

 !
:

ð16Þ

Equation (15) together with (16) reduces to the following
expression:

Gj
m,η,λ uð Þ

� �
u
= m + λð Þ

m − 1ð Þ
j + 1ð Þ

 !
m + λ

m

� �m−1
 "

� u −
η

m + λ

� �j−1 m + η

m + λ
− u

� � m−1ð Þ− j+1ð Þ�

−
m − 1

j

 !
m + λ

m

� �m−1
u −

η

m + λ

� �j
 

� m + η

m + λ
− u

� �m−1−j�#
:

ð17Þ
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Equation (17) can be written in terms of Bernstein-like
functions Hj−1

m−1,η,λðuÞ and Hj
m−1,η,λðuÞ,

Gj
m,η,λ uð Þ

� �
u
= m + λð Þ Hj−1

m−1,η,λ uð Þ −Hj
m−1,η,λ uð Þ

� �
, ð18Þ

and the derivative of Bernstein function Gj
n,η,λðvÞ with shifted

knotsw:r:t:v can be written in the similar notation as follows:

Gk
n,η,λ vð Þ

� �
v
= n + λð Þ Hk−1

n−1,η,λ vð Þ −Hk
n−1,η,λ vð Þ

� �
, ð19Þ

where the Bernstein-like function Hj
m−1,η,λðuÞ is

Hj
m−1,η,λ uð Þ =

m − 1

j

 !
m + λ

m

� �m−1
u −

η

m + λ

� �

�j m + η

m + λ
− u

� �m−1−j
:

ð20Þ

In Section 4 below, we shall need the integral of product
of these Bernstein-like polynomials, and we denote the prod-

uct of these Bernstein-like polynomials by Hj,k
m−1,m−1,η,λðuÞ

where

Hj,k
m−1,m−1,η,λ uð Þ =Hj

m−1,η,λ uð ÞHk
m−1,η,λ uð Þ: ð21Þ

By virtue of Equation (20), the product Hj,k
m−1,m−1,η,λðuÞ of

Bernstein-like polynomials (Equation (21)) appears in the
following form:

Hj,k
m−1,m−1,η,λ uð Þ = Am−1

jð Þ kð Þ
λ +m
m

� �2m−2
u −

η

λ +m

� �j+k

� η +m
λ +m

− u
� � 2m−2ð Þ− j+kð Þ

,
ð22Þ

where for some convenience, we introduce

Am−1
jð Þ kð Þ =

m − 1
j

 !
m − 1
k

 !
: ð23Þ

These polynomials (Equation (22)) pop up in Section 4
for different values of j and k while finding the gradient
of Dirichlet functional for Bézier surfaces with shifted
knots, and they stand for Hi−1,k−1

m−1,m−1,η,λðuÞ,Hi−1,k
m−1,m−1,η,λðuÞ,

Hi,k−1
m−1,m−1,η,λðuÞ and Hi,k

m−1,m−1,η,λðuÞ.
For a, b ∈ R and 0 ≤ j ≤ n, j, n ∈ Z, note that
ðb
a
u − að Þj b − uð Þn−jdu = j! b − að Þn+1 n − jð Þ!

n + 1ð Þ! , ð24Þ

so that for a = η/n + λ, b = n + η/n + λ, the integral of Bern-
stein polynomials with shifted knots (given by Equation
(6)) can be written as

ðn+η/λ+n
η/λ+n

Gj
n,η,λ uð Þdu =

n

j

 !
λ + n
n

� �nðn+η/λ+n
η/λ+n

u −
η

λ + n

� �j

� η + n
λ + n

− u
� �n−j

du =
n

j

 !
λ + n
n

� �n

� j! n − jð Þ!
n + 1ð Þ!

n
λ + n

� �n+1
= n

n + 1ð Þ λ + nð Þ :

ð25Þ

Note that the above integral of Bernstein polynomials
with shifted knots is independent of η and j but depends only
on n and λ. For example, for n = 3, Equation (25) implies thatÐ η+3/λ+3
η/λ+3 G0

3,η,λðuÞdu = 3/4ðλ + 3Þ and hence for j = 0, 1, 2, 3,
we have

Ð η+3/λ+3
η/λ+3 G0

3,η,λðuÞdu =
Ð η+3/λ+3
η/λ+3ðη/λ+3ÞG

1
3,η,λðuÞdu =Ð η+3/λ+3

η/λ+3 G2
3,η,λðuÞdu =

Ð η+3/λ+3
η/λ+3 G3

3,η,λðuÞdu = 3/4ðλ + 3Þ. Let us
denote the product of two Bernstein polynomials of the same

degree n (Equation (6)) by Gj,k
n,n,η,λðuÞ =Gj

n,η,λðuÞGk
n,η,λðuÞ for

j, k = 0, 1, 2⋯ n, and, hence using Equation (6), Gj,k
n,n,η,λðuÞ

reduces to

Gj,k
n,n,η,λ uð Þ = An

jð Þ kð Þ
λ + n
n

� �2n
u −

η

λ + n

� �j+k η + n
λ + n

− u
� �2n− j+kð Þ

:

ð26Þ

The integral of above product (26) of two Bernstein poly-
nomials Gj

n,η,λðuÞ and Gk
n,η,λðuÞ of the same degree n can be

computed by using Equation (25), which is given by

ðη+n/λ+n
η/λ+n

Gj,k
n,n,η,λ uð Þdu = n λ + nð Þ 2n + 1ð Þ!ð Þ−1An

jð Þ kð ÞB
r
t , ð27Þ

where

Br
t = j + kð Þ! 2n − j − kð Þ!, r = j + k, t = 2n − j + kð Þ: ð28Þ

The integral of the product of the Bernstein-like polyno-
mials (Equation (21))

ðη+m/λ+m

η/λ+m
Hj,k

m−1,m−1,η,λ uð Þdu = λ +m
m

� �2m−2
Am−1

jð Þ kð Þ

�
ðη+m/λ+m

η/λ+m
u −

η

λ +m

� �j+k

� η +m
λ +m

− u
� � 2m−2ð Þ− j+kð Þ

du,

ð29Þ
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can be computed in view of Equation (24), and it is given by

ðη+m/λ+m

η/λ+m
Hj,k

m−1,m−1,η,λ uð Þdu =m λ +mð Þ 2m − 1ð Þ!ð Þ−1Am−1
jð Þ kð Þ

� j + kð Þ! 2m − 2ð Þ − j + kð Þð Þ!:
ð30Þ

Similarly, we can find the integrals of the products (Equa-
tion (22)) of other Bernstein-like functions for different
values of j and k. In the following section, we find now the
vanishing condition for gradient of the Dirichlet functional
for Bézier surfaces with shifted knots, utilizing the results
established in this section.

4. Vanishing Condition for Gradient of
Dirichlet Functional for Bézier Surfaces with
Shifted Knots

Let x : U ⊂ R2 ⟶ R3 be a regular parameterized surface, and
the surface area of xðu, vÞ is given by the so-called area inte-
gral

A Pð Þ =
ð
R
xu ∧ xvk kdudv =

ð
R
EG − F2� �1/2

dudv, ð31Þ

where E = Eðu, vÞ, F = Fðu, vÞ, and G =Gðu, vÞ represent the
coefficients of the first fundamental form ds2 = Edu2 + 2Fd
udv + Gdv2, given by

E u, vð Þ = xuk k2 = xu, xuh i, F u, vð Þ = xuxvh i,G u, vð Þ = xvk k2 = xv, xvh i,
ð32Þ

and R = ½0, 1� × ½0, 1�; then, a surface x is minimal; for a differ-
entiable function g : �D⟶ R where �D =DU∂D over a finite
domain D ⊂ R, if and only if A′ð0Þ = 0 for the domain D
and the normal variation of xð�DÞ (do Carmo [46] pages
197-201), which is possible only whenHðu, vÞ, the mean cur-
vature of the surface xðu, vÞ vanishes for every parametriza-
tion. Thus, a surface of minimal area can be obtained as an
extremal of the area functional (31). The area functional
(31) involves square root in its integrand; and thus, the inte-
grand is highly nonlinear in its surface parameters. The
boundary of Bézier surface with shifted knots (Equation
(5)) can be completely determined by its control points.
Then, an equivalent statement of the Plateau-Bézier problem
with shifted knots can be adopted. This comprises finding the
interior control points such that the resulting Bézier surface
with shifted knots is minimal surface amongst all the Bézier
surfaces with shifted knots. The high nonlinearity of the area
functional (31) makes it less plausible for the purpose;
instead, we use the Dirichlet functional as has been done by
Monterde [25] for his work on Bézier surfaces of minimal
area.

The Dirichlet energy functional for a surface xðu, vÞ is
given by the following expression:

D Pð Þ = 1
2

ð
R
E u, vð Þ + G u, vð Þð Þdudv: ð33Þ

For the coefficients of the first fundamental form as defined
in Equation (32), the Dirichlet functional can be written in
the following form:

D Pð Þ = 1
2

ð
R

xuk k2 + xvk k2� �
dudv = 1

2

ð
R

xu, xuh i + xv:xvh ið Þdudv:

ð34Þ

Due to the nonlinearity of the area functional, this
Dirichlet functional is comparable with the area functional
and it is well known that area minimizing property is pre-
served for the Bézier surfaces [25]. We intend to find the gra-
dient of the above Dirichlet integral w:r:t: given control
points and equate it to zero to find the extremal condition
on the inner control points. These constraints express the
interior control points (to be determined) as the linear com-
bination of boundary accepted control points of the Bézier
surface with shifted knots. For the Bézier surface (5) with
shifted knots, above Dirichlet integral (34) takes the follow-
ing form:

D Bð Þ = 1
2

ð
R

Bu,Buh i + Bv ,Bvh ið Þdudv: ð35Þ

We shall find the gradient of above Dirichlet integral (35)
w:r:t: given control points and equate it to zero for the con-
straints expressing the interior control points linearly as the
combination of control points of the prescribed boundary
of the Bézier surface with shifted knots (Equation (5)). Let
us take the gradient of the Dirichlet integral (35) and write
it as the sum of two integrals denoted by Mij and Nij as

∂D Bð Þ
∂xaij

=Mij +Nij, ð36Þ

where Mij and Nij are the constituent integrals of above
Equation (36) given by

Mij =
ð
R

∂Bu

∂xaij
,Bu

* +
dudv,

Nij =
ð
R

∂Bv

∂xaij
,Bv

* +
dudv:

ð37Þ

Let us find these integralsMij and Nij in terms of control
points. We first target the integral Mij and note that the
expression ∂Bu/∂xaij in the first integral Mij in Equation
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(37) can be written as

∂
∂xaij

Bu u, vð Þð Þ = ∂
∂u

∂
∂xaij

〠
m,n

i,j=0
Gi
m,η,λ uð ÞGj

n,η,λ vð ÞPkl

 ! !
,

ð38Þ

which is reduced to

∂
∂xaij

Bu u, vð Þð Þ = ∂
∂u

Gi
m,η,λ uð ÞGj

n,η,λ vð Þea
� �

= Gi
m,η,λ uð Þ

� �
u
Gj
n,η,λ vð Þea:

ð39Þ

Plugging the value of ðGi
m,η,λðuÞÞu from Equation (18) in

Equation (39) gives us

∂
∂xaij

Bu u, vð Þð Þ = m + λð Þ Hi−1
m−1,η,λ uð Þ −Hi

m−1,η,λ uð Þ
� �

Gj
n,η,λ vð Þea:

ð40Þ

Insert the expression for ∂Bu/∂xaij (Equation (40)) in the
first integral Mij given by Equation (37) to get

Mij = m + λð Þ
ð
R

Hi−1
m−1,η,λ uð Þ −Hi

m−1,η,λ uð Þ
� �

Gj
n,η,λ vð Þ ea,Buh idudv,

ð41Þ

where Hi
m−1,η,λðuÞ is Bernstein-like function given by Equa-

tion (20). Proceeding in the same way as above, note that

∂
∂xaij

Bv u, vð Þð Þ = ∂
∂v

∂
∂xaij

〠
m,n

i=j=0
Gi
m,η,λ uð ÞGj

n,η,λ vð ÞPij

 ! !

=Gi
m,η,λ uð Þ Gj

n,η,λ vð Þ
� �

v
ea:

ð42Þ

Substituting Equation (19) in above Equation (42), we
find that

∂
∂xaij

Bv u, vð Þð Þ =Gi
m,η,λ uð Þ Gj

n,η,λ vð Þ
� �

v
ea

= n + λð ÞGi
m,η,λ uð Þ

� Hj−1
n−1,η,λ vð Þ −Hj

n−1,η,λ vð Þ
� �

ea:

ð43Þ

Substitute the expression for ∂Bv/∂xaij from Equation
(43) in Equation (37), so that the 2nd integral Nij may be
rewritten as

Nij =
ð
R

∂Bv

∂xaij
,Bv

* +
dudv = n + λð Þ

ð
R
Gi
m,η,λ uð Þ

� Hj−1
n−1,η,λ vð Þ −Hj

n−1,η,λ vð Þ
� �

ea,Bvh idudv:
ð44Þ

For the integrals (41) and (44), we rewrite the expression
for Bu and Bv in terms of Bernstein functions with shifted
knots (using Equations (18) and (19), respectively).

Bu u, vð Þ = 〠
m,n

k,l=0
Gk
m,η,λ uð Þ

� �
u
Gl
n,η,λ vð ÞPkl = m + λð Þ 〠

m,n

k,l=0

� Hk−1
m−1,η,λ uð Þ −Hk

m−1,η,λ uð Þ
� �

Gl
n,η,λ vð ÞPkl ,

ð45Þ

Bv u, vð Þ = 〠
m,n

k,l=0
Gk
m,η,λ uð Þ Gl

n,η,λ vð Þ
� �

v
Pkl = n + λð Þ 〠

m,n

k,l=0
Gk
m,η,λ uð Þ

� Hl−1
n−1,η,λ vð Þ −Hl

n−1,η,λ vð Þ
� �

Pkl:

ð46Þ
For the above value ofBuðu, vÞ (Equation (45)), the inte-

gral Mij (Equation (41)) may be written as

Mij = m + λð Þ2
ð
R
Hi−1

m−1,η,λ uð Þ −Hi
m−1,η,λ uð Þ

h i
Gj
n,η,λ vð Þ

� ea, 〠
m,n

k,l=0
Hk−1

m−1,η,λ uð Þ −Hk
m−1,η,λ uð Þ

� �
Gl
n,η,λ vð ÞPkl

* +
dudv,

ð47Þ

and plugging the value of Buðu, vÞ (Equation (46)) in the
integral Nij (44) gives us

Nij = n + λð Þ2
ð
R
Gi
m,η,λ uð Þ Hj−1

n−1,η,λ vð Þ −Hj
n−1,η,λ vð Þ

� �

� ea, 〠
m,n

k,l=0
Gk
m,η,λ uð Þ Hl−1

n−1,η,λ vð Þ −Hl
n−1,η,λ vð Þ

� �
Pkl

* +
dudv,

ð48Þ

in which the inner product hea, Pkli of basis vectors ea and the
control points Pkl reduces to xakl for a = 1, 2, 3 and Pkl = ðx1kl
, x2kl, x3klÞ. The constituent integrals (47) and (48) can be fur-
ther simplified in the following form

Mij = m + λð Þ2 〠
m,n

k,l=0

ð
R

Hi−1
m−1,η,λ uð Þ −Hi

m−1,η,λ uð Þ
� �

� Hk−1
m−1,η,λ uð Þ −Hk

m−1,η,λ uð Þ
� �

Gl
n,η,λ vð ÞGj

n,η,λ vð Þ ea, Pklh idudv,
ð49Þ

Nij = n + λð Þ2 〠
m,n

k,l=0

ð
R

Hj−1
n−1,η,λ vð Þ −Hj

n−1,η,λ vð Þ
� �

� Hl−1
n−1,η,λ vð Þ −Hl

n−1,η,λ vð Þ
� �

Gi
m,η,λ uð ÞGk

m,η,λ uð Þ ea, Pklh idudv:
ð50Þ

Let us denote the integrand of the first integralMij ((49))

by Qkl
ij ðu, vÞ, where
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Qkl
ij u, vð Þ = Hi−1

m−1,η,λ uð Þ −Hi
m−1,η,λ uð Þ

� �
� Hk−1

m−1,η,λ uð Þ −Hk
m−1,η,λ uð Þ

� �
Gl
n,η,λ vð ÞGj

n,η,λ vð Þ,
ð51Þ

where indices i and j are the free indices and the k and l are
the dummy indices used in Equations (49) and (50). With
this notation, the integral (49) takes the form

Mij = m + λð Þ2 〠
m,n

k,l=0
Rkl
ij e

a, Pklh i, ð52Þ

where

Rkl
ij =
ð
R
Qkl

ij u, vð Þdudv: ð53Þ

Expand the integrand Qkl
ij ðu, vÞ given by Equation (51) as

the product of Bernstein polynomials with shifted knots

Qkl
ij u, vð Þ = Hi−1

m−1,η,λ uð ÞHk−1
m−1,η,λ uð Þ −Hi−1

m−1,η,λ uð ÞHk
m−1,η,λ uð Þ

�
−Hi

m−1,η,λ uð ÞHk−1
m−1,η,λ uð Þ +Hi

m−1,η,λ

uð ÞHk
m−1,η,λ uð Þ

�
Gj
n,η,λ vð ÞGl

n,η,λ vð Þ:
ð54Þ

Let us denote the products of Bernstein-like polynomials
with shifted knots by

Hi−1,k−1
m−1,m−1,η,λ uð Þ =Hi−1

m−1,η,λ uð ÞHk−1
m−1,η,λ uð Þ, ð55Þ

and that of Bernstein polynomials with shifted knots by

Gj,l
n,n,η,λ vð Þ =Gj

n,η,λ vð ÞGl
n,η,λ vð Þ: ð56Þ

In view of the notation introduced in (55) and (56), the
integral Equation (53), for the bivariate function Qkl

ij ðu, vÞ
given by (54), takes the following convenient form

Rkl
ij = Ck−1l

i−1j − Ck,l
i−1j − Ck−1l

ij + Ckl
ij , ð57Þ

which is the sum of four integrals denoted by Ck−1l
i−1j , Ck,l

i−1j,
Ck−1l
ij , Ckl

ij , and these are

Ck−1l
i−1j =∬

R
Hi−1,k−1

m−1,m−1,η,λ uð ÞGj,l
n,n,η,λ vð Þdvdu, Ck,l

i−1j

=∬
R
Hi−1,k

m−1,m−1,η,λ uð ÞGj,l
n,n,η,λ vð Þdvdu,

Ck−1l
ij =∬

R
Hi,k−1

m−1,m−1,η,λ uð ÞGj,l
n,n,η,λ vð Þdudv, Ckl

ij

=∬
R
Hi,k

m−1,m−1,η,λ uð ÞGj,l
n,n,η,λ vð Þdudv:

ð58Þ

The integrals of the product of Bernstein polynomials
with shifted knots given by Equation (27) and that for the
product of Bernstein-like polynomials given by Equation
(30) allow us to find the constituent integrals of (58), and
these are

Ck−1l
i−1j =Dl

jA
m−1
k−1ð Þ i−1ð ÞB

p−2
q , Ck,l

i−1j =Dl
jA

m−1
kð Þ i−1ð ÞB

p−1
q−1, Ck−1l

i j

=Dl
jA

m−1
k−1ð Þ ið ÞB

p−1
q−1, Ckl

ij =Dl
jA

m−1
kð Þ ið ÞB

p
q−2,

ð59Þ

where Bp
q = ði + kÞ!ð2m − ði + kÞÞ!, p = i + k, q = 2m − ði + kÞ,

Btr = ðj + lÞ!ð2n − ðj + lÞÞ!, r = j + l, t = 2n − ðj + lÞ and

Dl
j =mnγAn

jð Þ lð ÞB
r
t , Am−1

kð Þ ið Þ =
m − 1
k

 !
m − 1
i

 !
,

ð60Þ

where γ−1 = ððλ +mÞðλ + nÞð2n + 1Þ!ð2m − 1Þ!Þ. Plugging
the values of the integrals Ck−1l

i−1j , Ck,l
i−1j, Ck−1l

ij , Ckl
ij given by

Equation (59) along with Equation (60) in Equation (57),
we get

Rkl
ij =Dl

j Am−1
k−1ð Þ i−1ð ÞB

p−2
q − Am−1

kð Þ i−1ð ÞB
p−1
q−1 − Am−1

k−1ð Þ ið ÞB
p−1
q−1 + Am−1

kð Þ ið ÞB
p
q−2

� �
:

ð61Þ

Substituting value of Rkl
ij from above Equation (61) in

Equation (52) gives us

Mij = m + λð Þ2 〠
m,n

k,l=0
Dl

j Am−1
k−1ð Þ i−1ð ÞB

p−2
q − Am−1

kð Þ i−1ð ÞB
p−1
q−1

�

− Am−1
k−1ð Þ ið ÞB

p−1
q−1 + Am−1

kð Þ ið ÞB
p
q−2
�
ea, Pklh i:

ð62Þ

In the similar way, we can find the second integral Nij

(Equation (50)) by identifying its integrand by

Tkl
ij u, vð Þ = Hj−1

n−1,η,λ vð Þ −Hj
n−1,η,λ vð Þ

� �
� Hl−1

n−1,η,λ vð Þ −Hl
n−1,η,λ vð Þ

� �
Gi
m,η,λ uð ÞGk

m,η,λ uð Þ,
ð63Þ

along with

Sklij =
ð
R
Tkl
ij u, vð Þdudv: ð64Þ

Equation (50) can be written as

Nij = n + λð Þ2 〠
m,n

k,l=0
Sklij e

a, Pklh i: ð65Þ
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Expand the integrand Tkl
ij ðu, vÞ given by Equation (63) as

the product of Bernstein polynomials with shifted knots

Tkl
ij u, vð Þ =

Hj−1
n−1,η,λ vð ÞHl−1

n−1,η,λ vð Þ −Hj−1
n−1,η,λ vð ÞHl

n−1,η,λ vð Þ −
Hj

n−1,η,λ vð ÞHl−1
n−1,η,λ vð Þ +Hj

n−1,η,λ vð ÞHl
n−1,η,λ vð Þ

0
@

1
AGi

m,η,λ uð ÞGk
m,η,λ uð Þ:

ð66Þ

Let us denote the products of Bernstein polynomials with
shifted knots by

Hj−1,l−1
n−1,η,λ vð Þ =Hj−1

n−1,η,λ vð ÞHl−1
n−1,η,λ vð Þ, ð67Þ

We can write the above bivariate function Tkl
ij ðu, vÞ in Equa-

tion (63) along with Equation (67) in the following form:

Tkl
ij u, vð Þ = Hj−1,l−1

n−1,η,λ vð Þ −Hj−1,l
n−1,η,λ vð Þ −Hj,l−1

n−1,η,λ vð Þ +Hj,l
n−1,η,λ vð Þ

� �
Gi,k
m,η,λ uð Þ:

ð68Þ

Substituting Equation (68) in Equation (64), we find

Sklij =
ð
R

Hj−1,l−1
n−1,n−1,η,λ vð Þ −Hj−1,l

n−1,n−1,η,λ vð Þ −Hj,l−1
n−1,n−1,η,λ vð Þ

�
+Hj,l

n−1,n−1,η,λ vð Þ
�
Gi,k
m,η,λ uð Þdudv,

ð69Þ

which appears as the sum of four integrals

Sklij = Ekl−1
ij−1 − Ekl

ij−1 − Ekl−1
ij + Ekl

ij , ð70Þ

where

Ekl−1
ij−1 =

ð
R
Gi,k
m,m,η,λ uð ÞHj−1,l−1

n−1,n−1,η,λ vð Þdudv, Ekl
ij−1

=
ð
R
Gi,k
m,m,η,λ uð ÞHj−1,l

n−1,n−1,η,λ vð Þdudv,
ð71Þ

Ekl−1
ij =

ð
R
Gi,k
m,m,η,λ uð ÞHj,l−1

n−1,n−1,η,λ vð Þdudv,

Ekl
ij =
ð
R
Gi,k
m,m,η,λ uð ÞHj,l

n−1,n−1,η,λ vð Þdudv: ð72Þ

Equations (27) and (30) allow us to find the integrals of
Equation (71) which when substituted in Equation (70) and
gives us Sklij and replacing back Sklij in Equation (65), and we

obtain the second integral Nij with the similar process as

Nij = n + λð Þ2 〠
m,n

k,l=0
Dk
i Am−1

l−1ð Þ j−1ð ÞB
r−2
s + Am−1

lð Þ jð ÞB
r
s−2

�

− Am−1
lð Þ j−1ð ÞB

r−1
s−1 − Am−1

l−1ð Þ jð ÞB
r−1
s−1

�
Pkl ,

ð73Þ

where Br
s = ðj + 1Þ!ð2n − ðj + lÞÞ!, r = j + l, s = 2m − ðj + 1Þ.

The vanishing condition for the gradient of the Dirichlet
functional is thus given by equating the sum of Equations
(62) and (73) to zero that means

Mij +Nij = 0, ð74Þ

which gives us a system of algebraic constraints in terms of
control points, and this system of algebraic constraints can
be solved for unknown interior control points in terms of
given boundary control points. For the given boundary
points and the interior points obtained by solving the linear
constraints as mentioned above, it gives us the so-called
quasi-minimal Bézier surface with shifted knots. The above
analysis gives us the following result:

Theorem 1. A Bézier surface of degree ðm, nÞ with shifted
knots characterised by its ðm + 1Þ × ðn + 1Þ number of control
points Pklðfor k = 0, 1, 2,⋯,m, l = 0, 1, 2,⋯, nÞ is the extre-
mal of the Dirichlet functional for

〠
m,n

k,l=0
Cij
klPkl = 0,⇔Cij

kl = m + λð Þ2σij
kl + n + λð Þ2σji

lk, ð75Þ

where

σij
kl =Dl

j Am−1
k−1ð Þ i−1ð ÞB

p−2
q − Am−1

kð Þ i−1ð ÞB
p−1
q−1 − Am−1

k−1ð Þ ið ÞB
p−1
q−1 + Am−1

kð Þ ið ÞB
p
q−2

� �
:

ð76Þ

σijkl is symmetric with respect to its summation pair of indi-

ces k, l and the pair of free indices i, j. That is, σji
kl can be

obtained by interchanging i, j and k, l in σij
kl ·Dl

j and Am−1
ðkÞðiÞ

are the constants indicated by Equation (60).

Corollary 2. A biquadratic Bézier surface with shifted knots is
the extremal of the Dirichlet functional if it satisfies the extre-
mal condition given by

〠
2

j,k=0
CjkPjk = 0, ð77Þ
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where the coefficients Cjk of the control points are given below.

C00 = −
λ + 2ð Þ2

3λ + 6ð Þ 5λ + 10ð Þ −
1
15

,

C01 =
2
15

−
4 λ + 2ð Þ

15
1

3λ + 6

� �
,

C02 = −
λ + 2ð Þ2

3λ + 6ð Þ 5λ + 10ð Þ −
1
15

,

C10 =
2 λ + 2ð Þ2

3 λ + 2ð Þð Þ 5λ + 10ð Þ −
4
45

,

C11 =
8 λ + 2ð Þ

15
1

3λ + 2

� �
+ 8
45

,

C12 =
4 λ + 2ð Þ
3 5λ + 10ð Þ −

4
45

,

C20 = −
λ + 2ð Þ

3 5λ + 10ð Þ −
1
15

,

C21 =
2
15

−
4 λ + 2ð Þ

15
1

3λ + 6

� �
,

C22 = −
λ + 2ð Þ2

3 λ + 2ð Þð Þ 5λ + 10ð Þ −
1
15

:

ð78Þ

Equation (77) can be solved for the coefficient P11, which is the
only unknown coefficient in the case of 2 × 2 grid of points
given by P00, P01, P02, P10, P11, P12, P20, P21, P22. This simply
means that we can write

P11 = −
C00

C11
P00 +

C01

C11
P01 +

C02

C11
P02 +

C10

C11
P10

�

+ C12

C11
P12 +

C20

C11
P20 +

C21

C11
P21 +

C22

C11
P22

�
:

ð79Þ

The adjustment provided by this point along with already
known points generates a quasi-minimal Bézier surface with
shifted knots.

5. Extremal of a Biquadratic Bézier Surface with
Shifted Knots´

A biquadratic Bézier surface Bðu, vÞ with shifted knots
(Equation (5))

B u, vð Þ = 〠
2,2

j,k=0
Gj
2,η,λ uð ÞGj

2,η,λ vð ÞPjk, ð80Þ

for the Bernstein functions defined by Equation (6) for
m = n = 2 can be written in the form

B u, vð Þ = 1
16 λ + 2ð Þ4 η + 2

λ + 2 − u
� �2 η + 2

λ + 2 − v
� �2

P00 +
1
8 λ + 2ð Þ4

� η + 2
λ + 2 − u
� �2

v −
η

λ + 2
� � η + 2

λ + 2 − v
� �

P01 +
1
16 λ + 2ð Þ4

� η + 2
λ + 2 − u
� �2

v −
η

λ + 2
� �2

P02 +
1
8 λ + 2ð Þ4 u −

η

λ + 2
� �

� η + 2
λ + 2 − u
� �

η + 2
λ + 2 − v
� �2

P10 +
1
4 λ + 2ð Þ4 u −

η

λ + 2
� �

� η + 2
λ + 2 − u
� �

v −
η

λ + 2
� � η + 2

λ + 2 − v
� �

P11 +
1
8 λ + 2ð Þ4

� u −
η

λ + 2
� �

× η + 2
λ + 2 − u
� �

v −
η

λ + 2
� �

P12 +
1
16 λ + 2ð Þ4

� u −
η

λ + 2
� �2 η + 2

λ + 2 − v
� �2

P20 +
1
8 λ + 2ð Þ4 × u −

η

λ + 2
� �2

� v −
η

λ + 2
� � η + 2

λ + 2 − v
� �

P21 +
1
16 λ + 2ð Þ4 u −

η

λ + 2
� �2

� v −
η

λ + 2
� �2

P22:

ð81Þ
A little simplification, in particular, for η = 0:2 and λ =

0:2, a biquadratic Bézier surface Vðu, vÞ = ðxðu, vÞ, yðu, vÞ, z
ðu, vÞÞ with shifted knots for control points Pjk = ðj, k,
ð−1Þj+kÞ where j, k = 0, 1, 2, reduces to

x u, vð Þ = −0:2 + 2:2u, ð82Þ

y u, vð Þ = −0:2 + 2:2v, ð83Þ
z u, vð Þ = 2:1 − 7:6u + 7u2 − 7:6v + 27:9uv

− 25:6u2v + 7v2 − 25:6uv2 + 23:4u2v2:
ð84Þ

The fundamental magnitudes of this surface can be com-
puted which are as follows:

E = 62:65 − 211:97u + 194:301u2 − 423:93v + 1554:41uv
− 1424:88u2v + 1165:81v2 − 4274:63uv2 + 3918:41u2v2

− 1424:88v3 + 5224:55uv3 − 4789:17u2v3 + 653:068v4

− 2394:58uv4 + 2195:03u2v4,

F = 57:8087 − 317:948u + 582:90u2 − 356:22u3 − 317:95v
+ 1748:71uv − 3205:97u2v + 1959:20u3v + 582:90v2

− 3205:97uv2 + 5877:61u2v2 − 3591:88u3v2 − 356:22v3

+ 1959:20uv3 − 3591:88u2v3 + 2195:03u3v3,

G = 62:6487 − 423:93u + 1165:81u2 − 1424:88u3

+ 653:068u4 − 211:97v + 1554:41uv − 4274:63u2v
+ 5224:55u3v − 2394:58u4v + 194:30v2 − 1424:88uv2

+ 3918:41u2v2 − 4789:17u3v2 + 2195:03u4v2,

e = 67:47 − 247:37v + 226:76v2,

f = 453:52uv − 247:37u − 247:37v + 134:93,
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g = 226:76u2 − 247:37u + 67:47:
ð85Þ

A unit normal to the biquadratic Bézier surface with
shifted knots can be computed using N = ðBu ×BvÞ/jBu ×
Bvj. The coefficients of the fundamental forms along with
well-defined unit normal to the two dimensional parametric
surface (84) gives us the differential geometry related quanti-
ties like mean and Gaussian curvature of the surface to fur-
ther analyse the quasi-minimal surfaces that come out as
the extremal of the Dirichlet functional. Though, for a mini-
mal surface the mean curvature should be zero for all values
of the surface parameters u and v, however, the mean curva-
ture in this case appears as the function of surface parameters
u and v giving us a quasi-minimal surface, as the expression
for the minimal surface involves approximate coefficients.
For a quasi-minimal biquadratic Bézier surface with shifted
knots for given control points and for η = 0:2 and λ = 0:2,
the optimal point can be computed from Equation (79) and
it turns out that the optimal point, for biquadratic surface is
P11 = ð1, 1, 2Þ. The numerator of the mean curvature of this
quasi-minimal biquadratic Bézier surface (coefficients
rounded off to the nearest decimal place) is given by

Hnum = −2 × 106u4v4 + 4 × 106u4v3 − 3 × 106u4v2

+ 1 × 106u4v − 158496u4 + 4 × 106u3v4

− 9 × 106u3v3 + 7 × 106u3v2 − 3 × 106u3v
+ 345810:u3 − 3 × 106u2v4 + 7 × 106u2v3

− 6 × 106u2v2 + 2 × 106u2v − 278076u2

+ 1 × 106uv4 − 3 × 106uv3 + 2 × 106uv2

− 762397uv + 97584:7u − 158496v4

+ 345810v3 − 278076v2 + 97584:7v − 12162:8,
ð86Þ

the numerator of the Gaussian curvature of the quasi-
minimal biquadratic Bézier surface is

Knum = 23174:1 + 81852:9u − 75031:8u2 + 81852:9v
− 286847uv + 262943u2v − 75031:8v2

+ 262943uv2 − 241031u2v2,
ð87Þ

and the Dirichlet integrand

D Bð Þ = 71:8179 − 407:989u + 981:181u2 − 1113:18u3

+ 510:21u4 − 407:989v + 2091:44uv
− 4143:52u2v + 4081:68u3v − 1870:77u4v
+ 981:181v2 − 4143:52uv2 + 5839:07u2v2

− 3741:54u3v2 + 1714:87u4v2 − 1113:18v3

+ 4081:68uv3 − 3741:54u2v3 + 510:21v4

− 1870:77uv4 + 1714:87u2v4:
ð88Þ

For given control points, the biquadratic Bézier surface
with shifted knots (Equation (84)) for η = 0:2 and λ = 0:2 is
shown in Figure 1, whereas the quasi-minimal biquadratic
Bézier surface with shifted knots for the same values of η =
0:2 and λ = 0:2 along with the optimal point obtained from
Equation (79) is shown in Figure 2. The numerator part of

Figure 1: A biquadratic Bézier surface with shifted knots for η = 0:2
and λ = 0:2.

Figure 2: The quasi-minimal biquadratic Bézier surface with shifted
knots for η = 0:2 and λ = 0:2 for given boundary control points and
optimal point obtained from Equation (79).
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Figure 3: The mean curvature function of the biquadratic Bézier
surface with shifted knots for η = 0:2 and λ = 0:2.

12 Advances in Mathematical Physics



the related mean curvature function of this quasi-minimal
biquadratic Bézier surface with shifted knots is shown in
Figure 3 and the Dirichlet integrand function in Figure 4,
and the area functional integrand is shown in Figure 5. Thus,
the variational minimization of the Dirichlet functional to
obtain a quasi-minimal Bézier surface with shifted knots is
quite useful for further geometric analysis of the surface
obtained, in particular, for geometry-related quantities like
Gaussian and mean curvature.

6. Conclusion

A surface is said to be minimal if its mean curvature van-
ishes everywhere on the surface, which is the outcome of
variational minimization of area functional. Instead of vari-
ational minimization of the area function, we find the quasi-
minimal Bézier surfaces with shifted knots as the solution of
variational minimization of the Dirichlet functional, which
is expressed as the sum of two functionals in which the
respective coefficients of the control points come up with
symmetry in the pair of summation and free indices that
is helpful to solve the constraint equations for the interior
control points as the linear combination of prescribed
boundary control points. The functional gradient of the
prospective functional for the surface gives us the possible
quasi-minimal candidate functions as the minimizers of
the functional. For such algebraic constraints, we find the
gradient of Dirichlet function for the Bézier surface with
shifted knots and the vanishing condition results in the
aforesaid constraints on the interior control points as the
linear combination of prescribed boundary control points.
For illustration, the technique is implemented on a biqua-
dratic Bézier surface to obtain a quasi-minimal surface.
Similar type of process can be performed for a higher degree
Bézier surface to attain the respective quasi-minimal Bézier
surface with shifted knots.
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