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This study uses an Elzaki decomposition method with two fractional derivatives to solve a fractional nonlinear coupled system of
Whitham-Broer-Kaup equations. For the fractional derivatives, we used Caputo and Atangana-Baleanu derivatives in the Caputo
manner. Furthermore, the proposed techniques are compared to the solutions of other renowned analytical methods, including
the Adomian decomposition technique, variation iteration technique, and homotopy perturbation technique. We used two
nonlinear problems to illustrate the accuracy and validity of the proposed approaches. The results of numerical simulations
were used to verify that the proposed methods are accurate and efficient, and the results are displayed in graphs and tables.
The obtained results demonstrate that the algorithm is very real, simple to apply, and effective in investigating the nature of
complicated nonlinear models in science and engineering.

1. Introduction

In 1695, Leibniz presented fractional calculus (FC), one of
the advancements of standard calculus [1]. In recent
decades, the FC theory has played a significant role in phys-
ics, entropy, fluid mechanics, and engineering [2–5]. Using
fractional calculus, specific physical models and engineering
processes can be explained more precisely and practically.
For instance, entropies based on fractional calculus may be
applied more generally than Shannon entropy [6]. Due to
its vast application, fractional entropy has been a popular
subject of study [7]. Furthermore, fractional differential
equations are effective for modelling several events [8]. This
is because the next state of a system is decided not just by its
current form, but also by all of its prior conditions. Such
equations may mimic physical reality more closely than
integer-order differential equations. It is important to note
that the theory and applications of fractional calculus have
been thoroughly studied in the literature [9–13].

Due to the accurate description of complicated events in
system identification, non-Brownian motion, control prob-
lems, viscoelastic materials, polymers, and signal processing,
fractional differential equations (FDEs) have garnered con-
siderable attention in recent decades [14]. FDEs are nonlo-
cal, which means that the next state of a system is
determined not just by its current state but also by all of its
prior states [15]. Using fractional derivatives, the fluid-
dynamic traffic model, for instance, can overcome the weak-
ness caused by the assumption of continuous traffic flow [15,
16]. Recent research has focused on fractional functional
analysis [17, 18]. The characteristics and theorems of
Yang-Fourier and Yang-Laplace transform, as well as their
applications to fractional ordinary differential equations,
fractional ordinary differential systems, and fractional partial
differential equations, have been investigated.

The logical question is “How can we find the exact solu-
tions to FDEs?” To comprehend the mechanics of complex
nonlinear physical phenomena and implement them in daily
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life, nonlinear fractional differential equations (FDEs) have
an important role in studying various areas of engineering,
physics, and applied mathematics. In order to obtain numer-
ical and analytical solutions of PDEs, a number of potent
techniques, such as the Elzaki transform decomposition
method [19, 20], the Iterative Laplace transform method
[21], the variational iteration method [22], the Laplace
transform decomposition method [23], the differential
transform method [24], and the homotopy perturbation
method [25], have been numerous scholars that have
researched and solved numerous FDEs, including impulsive
fractional differential equations [26], space and time-
fractional advection-dispersion equation [27], and fractional
generalised Burgers fluid [28].

Many well-known integral models, such as the KdV
equation, Boussinesq equation, K-P equation, and WBK
equation, are used to represent the propagation of shallow
water. Whitham, Broer, and Kaup [29–31] developed non-
linear WBK equations using the Boussinesq approximation:

Jρ + JJζ +Kζ + qJζζ = 0,

Kρ +KJζ + JKζ − qKζζ + pJζζζ = 0,
ð1Þ

where J = Jðζ, ρÞ,K =Kðζ, ρÞ denotes the horizontal veloc-
ity and height of the fluids, which fluctuate substantially
from equilibrium, and q, p are constants made up of various
diffusion powers. Wang and Zheng [32] employed an
extended fractional Riccati subequation approach to get
approximate solutions for the coupled system of (WBK)
equations for fractional order (2). El-Borai et al. [33] used
the exponential function method to solve coupled system
(2). Author [34] employed the coupled fractional reduced
differential transform method (CFRDTM) to get approxi-
mate analytical solutions to the model as mentioned earlier
(2). The authors of [2] investigated numerical solutions to
the specified coupled system using the residual power series
method (RPSM) (2). Also employed to obtain numerical
solutions to the coupled system (2) are the finite element
method [36], the finite difference approach [35], the
exponential-function method [37], variation iteration
method (VIM), homotopy perturbation method (HPM),
homotopy analysis method (HAM), and others [38–40].

Adomian introduced the Adomian decomposition meth-
odology (ADM) in 1980, which is a method for locating
numerical and explicit solutions to various differential equa-
tions that represent physical conditions. This method is
applicable to initial value problems, boundary value prob-
lems, partial and ordinary differential equations, including
linear and nonlinear equations, and stochastic systems.
Combining the Adomian decomposition method and the
Elzaki transform method yields the Elzaki transform decom-
position method (ETDM). The ETDM has also been utilized
in several studies to solve fractional-order nonlinear partial
differential equations numerically [41, 42].

In 1998, He was the first to introduce the homotopy per-
turbation method (HPM) [43, 44]. Later on, the solutions of
some nonlinear nonhomogeneous partial differential equa-

tions are obtained through this semianalytical method [45,
46]. The solution that they get is in the form of an infinite
sequence that converges rapidly to the exact solutions. Due
to its quick results, the method was further used for solving
linear and nonlinear equations. In the present work, we used
an approximate analytical technique that combines the
Elzaki transform and HPM, known as the HPTM. The pro-
posed methods and solutions are in good agreement with the
exact solution of the targeted problems. The fractional view
analysis of the problems is also shown using the suggested
techniques. It is noticed that the proposed methods can be
modified to solve other fractional PDEs and their systems
[47, 48]. In this study, we apply ETDM with two different
derivatives to investigate the general and numerical solution
of the coupled system of fractional-order Whitham-Broer-
Kaup equations, as suggested by the studies mentioned above.
ETDM is a straightforward and effective technique that
requires no disturbance. We compare the outcomes of our
proposed method to those of well-known methodologies such
as VIM, ADM, and OHAM. We may observe that the pro-
vided strategy for finding solutions to nonlinear fractional-
order partial differential equations is superior to the previously
discussed method. We execute the calculations with Maple.
The convergence of the proposed method is also ensured by
extending the concept described in [49, 50].

2. Basic Definitions

This section introduces the essential ideas of fractional
derivatives, fractional integrals, and the Elzaki transform
with and without a singular kernel.

Definition 1. The fractional Caputo derivative (CFD) is given
as follows:

Dδ
℘ ℓ ℘ð Þð Þ =

1
Γ m−δð Þ

ð℘
0

ℓm ηð Þ
℘−ηð Þδ+1−m

dη, m − 1 < δ <m,

dm

d℘m
ℓ ℘ð Þ, δ =m:

8>>><
>>>:

ð2Þ

Definition 2. The derivative in terms of the Atangana-
Baleanu Caputo manner (ABC) is given as follows:

Dδ
℘ ℓ ℘ð Þð Þ = N δð Þ

1−δ

ð℘
m
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη, ð3Þ

where ℓ ∈H1ðα, βÞ, β > α, δ ∈ ½0, 1�. A normalisation func-
tion equal to 1 when δ = 0 and δ = 1 is represented by Nðδ
Þ in equation (11).

Definition 3. The ABC fractional integral operator is as fol-
lows:

Iδ℘ ℓ ℘ð Þð Þ = 1 − δ

N δð Þ ℓ ℘ð Þ+ δ

Γ δð ÞN δð Þ
ð℘
m
ℓ ηð Þ ℘−ηð Þδ−1dη: ð4Þ
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Definition 4. The Elzaki transform’s exponential function is
given as in set A:

A = ℓ ℘ð Þ: ∃G, p1, p2 > 0, ℓ ℘ð Þj j <Ge ℘j j/pj , if℘∈ −1ð Þj × 0,∞½ Þ
n o

:

ð5Þ

For a certain function in the set, G is a finite number but
p1, p2 can be finite or infinite.

Definition 5. For the function ℓð℘Þ, the transformation in
terms of Elzaki is as follows:

E ℓ ℘ð Þf g ϖð Þ = ~U ϖð Þ = ϖ
ð∞
0
e− ℘/ϖð Þℓ ℘ð Þd℘, ð6Þ

where ℘≥0, p1 ≤ ϖ ≤ p2.

Theorem 6 (Elzaki transformation convolution theorem).
The following equality holds:

E ℓ ∗ vf g = 1
ϖ
E ℓð ÞE vð Þ, ð7Þ

where Elzaki transform is indicated by Ef:g.

Definition 7. The Elzaki transform of the CFD operator Dδ
℘

ðℓð℘ÞÞ is given by

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ = ϖ−δ ~U ϖð Þ − 〠

m−1

k=0
ϖ2−δ+kℓk 0ð Þ, ð8Þ

where m − 1 < δ <m.

Theorem 8. The ABC fractional derivative Dδ
℘ðℓð℘ÞÞ Elzaki

transform is defined as follows:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ = N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
 !

, ð9Þ

where Efℓð℘Þgϖ = ~UðϖÞ.

Proof. From Definition 2, we have the following:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ =E

N δð Þ
1−δ

ð℘
0
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη

( )
ϖð Þ:

ð10Þ

Then, taking into account the definition and convolution
of the Elzaki transform, we get the following:

E Dδ
℘ ℓ ℘ð Þð Þ

n o
ϖð Þ

=E
N δð Þ
1−δ

ð℘
0
ℓ′ ηð ÞEδ −

δ ℘−ηð Þδ
1 − δ

" #
dη

( )

= N δð Þ
1 − δ

1
ϖ
E ℓ′ ηð Þ
n o

E Eδ −
δ℘δ

1 − δ

� �
dη

� �

= N δð Þ
1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
" # ð∞

0
e− 1/ϖð ÞEδ −

δ℘δ

1 − δ

� �
d℘

� �

= N δð Þϖ
δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖℓ 0ð Þ
" #

:

ð11Þ

3. Methodology

Here, we give the general methodology of the proposed tech-
nique to solve the given equation.

Dδ
ρJ ζ, ρð Þ =L J ζ, ρð Þð Þ +N J ζ, ρð Þð Þ + h ζ, ρð Þ =M ζ, ρð Þ,

ð12Þ

with initial condition

J ζ, 0ð Þ = ϕ ζð Þ, ð13Þ

having L , N linear and nonlinear terms and hðζ, ρÞ is
the source term.

3.1. Case I ðETDMCÞ. By means of Caputo fractional deriv-
ative and Elzaki transform, equation (12) can be stated as
follows:

1
p δ, ℓ, κð Þ E J ζ, ρð Þ½ � − κ2ϕ ζð Þ� �

= E M ζ, ρð Þ½ �, ð14Þ

with

p δ, ℓ, κð Þ = κδ: ð15Þ

On employing the Elzaki inverse transform, we have

J ζ, ρð Þ = E−1 κ2ϕ ζð Þ + p δ, ℓ, κð ÞE M ζ, ρð Þ½ �� �
: ð16Þ

Thus, for Jðζ, ρÞ, the solution in the series form is stated
as follows:

J ζ, ρð Þ = 〠
∞

i=0
Ji ζ, ρð Þ: ð17Þ
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And NðJðζ, ρÞÞ can be decomposed as follows:

N J ζ, ρð Þð Þ = 〠
∞

i=0
Ai J0,⋯, Jið Þ, ð18Þ

having Ai as the Adomian polynomials and can be calcu-
lated as

An =
1
n!

dn

dεn
Nρ, Σn

k=0ε
kJk

���
ε=0

: ð19Þ

Putting equations (18) and (17) into (16), we obtain

〠
∞

i=0
Ji ζ, ρð Þ = E−1 κ2ϕ ζð Þ + p δ, ℓ, κð ÞE h ζ, ρð Þ½ �� �

+ E−1 p δ, ℓ, κð ÞE 〠
∞

i=0
L Ji ζ, ρð Þð Þ + Aρ

" # !
:

ð20Þ

From (20), we get

JC0 ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ p δ, ℓ, κð ÞE h ζ, ρð Þ½ �
	 


,

JC1 ζ, ρð Þ = E−1 p δ, ℓ, κð ÞE L J0 ζ, ρð Þð Þ + A0½ �ð Þ,
⋮

JCl+1 ζ, ρð Þ = E−1 p δ, ℓ, κð ÞE L Jl ζ, ρð Þð Þ + Al½ �ð Þ, l = 1, 2, 3⋯:

ð21Þ

Thus, we get the solution of (12) by substituting (21) into
(17) using ETDMC :

JC ζ, ρð Þ = JC0 ζ, ρð Þ + JC1 ζ, ρð Þ + JC2 ζ, ρð Þ+⋯: ð22Þ

3.2. Case II ðETDMABCÞ. By means of ABC fractional deriv-
ative and Elzaki transform, equation (12) can be stated as
follows:

1
q δ, ℓ, κð Þ E J ζ, ρð Þ½ � − ϕ ζð Þ

κ

	 

= E M ζ, ρð Þ½ �, ð23Þ

with

q δ, ℓ, κð Þ = 1 − δ + δ ℓ/κð Þδ
B δð Þ : ð24Þ

On employing the Elzaki inverse transform, we have

J ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ q δ, ℓ, κð ÞE M ζ, ρð Þ½ �
	 


: ð25Þ

By means of Adomian decomposition, we get

〠
∞

i=0
Ji ζ, ρð Þ = E−1 ϕ ζð Þ

κ
+ q δ, ℓ, κð ÞE h ζ, ρð Þ½ �

	 


+ E−1 q δ, ℓ, κð ÞE 〠
∞

i=0
L Ji ζ, ρð Þð Þ + Aρ

" # !
:

ð26Þ

From (20), we get

JABC0 ζ, ρð Þ = E−1 ϕ ζð Þ
κ

+ q δ, ℓ, κð ÞE h ζ, ρð Þ½ �
	 


,

JABC1 ζ, ρð Þ = E−1 q δ, ℓ, κð ÞE L J0 ζ, ρð Þð Þ + A0½ �ð Þ,
⋮

JABCl+1 ζ, ρð Þ = E−1 q δ, ℓ, κð ÞE L Jl ζ, ρð Þð Þ + Al½ �ð Þ, l = 1, 2, 3⋯:

ð27Þ

Thus, we get the solution of (12), by using ETDMABC

JABC ζ, ρð Þ = JABC0 ζ, ρð Þ + JABC1 ζ, ρð Þ + JABC2 ζ, ρð Þ+⋯:

ð28Þ

4. Applications

In this part, we implemented the proposed technique to
solve nonlinear systems of Whitham-Broer-Kaup equations
having order fraction.

Example 9. Let us consider the fractional WBKEs system:

Dδ
ρJ ζ, ρð Þ + J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ ∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ
= 0,

Dδ
ρK ζ, ρð Þ + J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ

+ 3 ∂
3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2
= 0,

0 < δ ≤ 1,−1 < ρ ≤ 1,  − 10 ≤ ζ ≤ 10,
ð29Þ

having initial condition

J ζ, 0ð Þ = 1
2 − 8 tan h −2ζð Þ,

K ζ, 0ð Þ = 16 − 16 tan h2 −2ζð Þ: ð30Þ
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On employing the Elzaki transform, we have

Thus, we have

On simplification, we have

On applying the inverse ET, we get

4.1. Solution by Means of EDMC. The solutions in the series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ: ð35Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

m=0Am, JKζ =∑∞
m=0Bm and KJζ =

∑∞
m=0Cm; thus, by means of these terms, equation (34) can

be determined as follows:

E Dδ
ρJ ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ ∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E Dδ
ρK ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
,

ð31Þ

1
κδ

E J ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �
,

1
κδ

E K ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 3 ∂
3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð32Þ

E J ζ, ρð Þ½ � = κ2
1
2 − 8 tan h −2ζð Þ
� �

− κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �
,

E K ζ, ρð Þ½ � = κ2 16 − 16 tan h2 −2ζð Þ� �
− κδE J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð33Þ

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ
� �

− E−1 κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ ∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

� �� �
,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ� �
− E−1 κδE J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð34Þ

〠
∞

l=0
Jl+1 ζ, ρð Þ = 1

2 − 8 tan h −2ζð Þ − E−1 κδE 〠
∞

l=0
A l +

∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − E−1 κδE 〠

∞

l=0
Bl + 〠

∞

l=0
C l + 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð36Þ
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By the comparison of both sides of equation (36), we
obtain

J0 ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ,

K0 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ,

J1 ζ, ρð Þ = −8 sec h2 −2ζð Þ ρδ

Γ δ + 1ð Þ ,

K1 ζ, ρð Þ = −32 sec h2 −2ζð Þ tan h −2ζð Þ ρδ

Γ δ + 1ð Þ ,

J2 ζ, ρð Þ = −16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ − 8 tan h2 −2ζð Þ�
+ 3 tan h −2ζð ÞÞ ρ2δ

Γ 2δ + 1ð Þ ,

K2 ζ, ρð Þ = −32 sec h22 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ
+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ

− 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg ρ2δ

Γ 2δ + 1ð Þ :

ð37Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ − 8 sec h2 −2ζð Þ ρδ

Γ δ + 1ð Þ
− 16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ − 8 tan h2 −2ζð Þ�
+ 3 tan h −2ζð ÞÞ ρ2δ

Γ 2δ + 1ð Þ+⋯:

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − 32 sec h2 −2ζð Þ tan h −2ζð Þ

� ρδ

Γ δ + 1ð Þ − 32 sec h2 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ
+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ − 32 tan h3 −2ζð Þ

− 25 sec h2 −2ζð Þg ρ2δ

Γ 2δ + 1ð Þ+⋯:

ð38Þ

4.2. Solution by Means of EDMABC . The solutions in the
series form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ
are stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ:

ð39Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

l=0A l and J2Jζ =∑∞
l=0Bl; thus, by

means of these terms, equation (34) can be determined as
follows:

By the comparison of both sides of equation (41), we
obtain

J0 ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ,

K0 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ,

J1 ζ, ρð Þ = −8 sec h2 −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

K1 ζ, ρð Þ = −32 sec h2 −2ζð Þ tan h −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

J2 ζ, ρð Þ = −16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ�
− 8 tan h2 −2ζð Þ + 3 tan h −2ζð ÞÞ

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

,

K2 ζ, ρð Þ = −32 sec h2 −2ζð Þ 40 sec h2 −2ζð Þ tan h −2ζð Þ
+ 96 tan h −2ζð Þ − 2 tan h2 −2ζð Þ

〠
∞

l=0
Jl+1 ζ, ρð Þ = 1

2 − 8 tan h −2ζð Þ − E−1 ℓδ κδ + δ ℓδ − κδ
� �� �
κ2δ

E 〠
∞

l=0
A l +

∂J ζ, ρð Þ
∂ζ

+ ∂K ζ, ρð Þ
∂ζ

( )" #
, ð40Þ

〠
∞

l=0
Kl+1 ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
Bl + 〠

∞

l=0
C l + 3 ∂

3J ζ, ρð Þ
∂ζ3

−
∂2K ζ, ρð Þ

∂ζ2

( )" #
: ð41Þ
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− 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

:

ð42Þ

Thus, for Jl with ðl ≥ 3Þ, the remaining components are
easily computable. So, the solution in the series form is as
follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ − 8 sec h2 −2ζð Þ 1 − δ + δρδ

Γ δ + 1ð Þ
	 


− 16 sec h2 −2ζð Þ 4 sec h2 −2ζð Þ�
− 8 tan h2 −2ζð Þ + 3 tan h −2ζð ÞÞ

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

+⋯,

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ − 32 sec h2 −2ζð Þ tan h −2ζð Þ

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


− 32 sec h2 −2ζð Þ

� 40 sec h2 −2ζð Þ tan h −2ζð Þ + 96 tan h −2ζð Þ
− 2 tan h2 −2ζð Þ − 32 tan h3 −2ζð Þ − 25 sec h2 −2ζð Þg

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #

+⋯:

ð43Þ

On taking δ = 1, we obtain the exact solution as follows:

J ζ, ρð Þ = 1
2 − 8 tan h −2 ζ −

ρ

2
� �n o

,

K ζ, ρð Þ = 16 − 16 tan h2 −2 ζ −
ρ

2
� �n o

: ð44Þ

Figure 1 shows a graphical view of the exact and analytical
solution for Jðζ, ρÞ at δ = 1 of system 1. Figure 2 shows a
graphical view of the analytical solution for Jðζ, ρÞ at δ =
0:8,0:6 of system 1, and Figure 3 shows that of the analytical
solution at various values of δ for Jðζ, ρÞ of system 1.
Figure 4 shows the absolute error graph of Jðζ, ρÞ of system
1. Similarly, Figures 5–7 show that the exact and analytical
solution forKðζ, ρÞ at δ = 1 of system 1 andKðζ, ρÞ at the dif-
ferent fractional order of δ = 0:8,0:6 of system 1. Tables 1 and
2 show that the different fractional order of δ of system 1.

Example 10. Let us consider the fractional WBKE system:

Dδ
ρJ ζ, ρð Þ + J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ
= 0,

Dδ
ρK ζ, ρð Þ + J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
−
1
2
∂2K ζ, ρð Þ

∂ζ2
= 0,

0 < δ ≤ 1,  − 1 < ρ ≤ 1,−10 ≤ ζ ≤ 10,
ð45Þ

having the initial condition

J ζ, 0ð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K ζ, 0ð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �:
ð46Þ

On employing the Elzaki transform, we have

E Dδ
ρJ ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E Dδ
ρK ζ, ρð Þ

h i
= −E J ζ, ρð Þ ∂K ζ, ρð Þ

∂ζ
+K ζ, ρð Þ ∂J ζ, ρð Þ

∂ζ
−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð47Þ

Thus, we have

1
κδ

E J ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

1
κδ

E K ζ, ρð Þ½ � − κ2−δJ ζ, 0ð Þ = −E J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð48Þ
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On simplification, we have

E J ζ, ρð Þ½ � = κ2 λ − κ cot h κ ζ + θð Þ½ �½ � − κδE

� J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �
,

E K ζ, ρð Þ½ � = κ2 −κ2 cosec h2 κ ζ + θð Þ½ �� �
− κδE

� J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

" #
:

ð49Þ

On applying the inverse NT , we get

J ζ, ρð Þ = 1
2 − 8 tan h −2ζð Þ
� �

− E−1

� κδE J ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

+ 1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

� �� �
,

K ζ, ρð Þ = 16 − 16 tan h2 −2ζð Þ� �
− E−1

� κδE J ζ, ρð Þ ∂K ζ, ρð Þ
∂ζ

+K ζ, ρð Þ ∂J ζ, ρð Þ
∂ζ

−
1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð50Þ

4.3. Solution by Means of NDMC. The solutions in series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ andK ζ, ρð Þ = 〠

∞

l=0
Jl ζ, ρð Þ: ð51Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

m=0Am, JKζ =∑∞
m=0Bm and KJζ =

∑∞
m=0Cm; thus, by means of these terms, equation (50) can

be determined as follows:
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Figure 1: Graphical view of the exact and analytical solution for Jðζ, ρÞ at δ = 1 of system 1.
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Figure 2: Graphical view of the analytical solution for Jðζ, ρÞ at δ = 0:8,0:6 of system 1.
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〠
∞

l=0
Jl+1 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − E−1

� κδE 〠
∞

l=0
A l +

1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − E−1

� κδE 〠
∞

l=0
Bl + 〠

∞

l=0
C l −

1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð52Þ

By the comparison of both sides of equation (52), we
obtain

J0 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K0 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �,

J1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ ,

K1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ ,

J2 ζ, ρð Þ = λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ ρ3δ

Γ 3δ + 1ð Þ − 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
� �

,

K2 ζ, ρð Þ = 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ coth 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�
:

ð53Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ �

� ρδ

Γ δ + 1ð Þ + λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ 1 − δð Þ23δρ + 1 − δð Þ3 + 3δ2 1 − δð Þρ2
2 + δ3ρ3

3!

( )(

− 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�
+⋯:
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Figure 3: Graphical view of the analytical solution at various values of δ for Jðζ, ρÞ of system 1.
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Figure 4: Graphical view of the absolute error for Jðζ, ρÞ of system 1.
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K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,

K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ � cot h

� κ ζ + θð Þ½ � ρδ

Γ δ + 1ð Þ + 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� 1 − δð Þ2 + 2δ 1 − δð Þρ + δ2ρ2

2

 !#
+⋯:

ð54Þ

4.4. Solution by Means of EDMABC . The solutions in series
form for the unknown function Jðζ, ρÞ and Kðζ, ρÞ are
stated as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ,

K ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ:

ð55Þ

The nonlinear terms by means of Adomian polynomials
are stated as JJζ =∑∞

l=0A l and J2Jζ =∑∞
l=0Bl; thus, by means

of these terms, equation (50) can be determined as follows:

By the comparison of both sides of equation (56), we
obtain

J0 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ �,

K0 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ �,

J1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

K1 ζ, ρð Þ = −λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


,

J2 ζ, ρð Þ = λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ ρ3δ

Γ 3δ + 1ð Þ − 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� ��

� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #)

,

〠
∞

l=0
Jl+1 ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � + E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
A l +

1
2
∂J ζ, ρð Þ

∂ζ
+ ∂K ζ, ρð Þ

∂ζ

( )" #
,

〠
∞

l=0
Kl+1 ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � + E−1 ℓδ κδ + δ ℓδ − κδ

� �� �
κ2δ

E 〠
∞

l=0
Bl + 〠

∞

l=0
C l −

1
2
∂2K ζ, ρð Þ

∂ζ2

( )" #
:

ð56Þ
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Figure 5: Graphical view of the exact and analytical solution for Kðζ, ρÞ at δ = 1 of system 1.
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Figure 6: Graphical view of the analytical solution for Kðζ, ρÞ at δ = 0:8,0:6 of system 1.

20

442
0–2–4

2 0
–4–2

x
y

0

5

10

15

–4 –2 0

5

20

15

10

2 4
x

Figure 7: Graphical view of analytical solution at various values of δ for Kðζ, ρÞ of system 1.
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Table 1: Proposed method solution for Jðζ, ρÞ at different fractional orders of problem 1.

ζ, ρð Þ J ζ, ρð Þ at δ = 0:5 J ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) 2.427701 2.427745 2.427806 2.427806 2.427806

(0.4,0.02) 4.701611 4.711644 4.711736 4.711736 4.711736

(0.6,0.03) 6.057710 6.057766 6.157882 6.157882 6.157882

(0.2,0.01) 2.414601 2.415654 2.414781 2.414781 2.414781

(0.4,0.02) 4.602065 4.702334 4.702226 4.702226 4.702226

(0.6,0.03) 6.053106 6.153617 6.153237 6.153237 6.153237

(0.2,0.01) 2.426313 2.426388 2.426426 2.426426 2.426426

(0.4,0.02) 4.700712 4.700746 4.710841 4.710841 4.710841

(0.6,0.03) 6.057423 6.057369 6.157403 6.157403 6.157403

(0.2,0.01) 2.324601 2.425646 2.425742 2.425742 2.425742

(0.4,0.02) 4.710311 4.710355 4.710403 4.710403 4.710403

(0.6,0.03) 6.058112 6.157050 6.157150 6.157150 6.157150

(0.2,0.01) 2.426076 2.425223 2.425158 3.536168 3.536168

(0.4,0.02) 4.700002 4.710010 4.810046 4.810046 4.810046

(0.6,0.03) 6.058000 6.057002 6.057015 6.057015 6.057015

Table 2: Proposed method solution for Kðζ, ρÞ at different fractional orders of problem 1.

ζ, ρð Þ K ζ, ρð Þ at δ =0.5 K ζ, ρð Þ at δ =0.75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) 12.58221 12.571167 12.581150 12.581150 12.581150

(0.4,0.02) 7.835001 7.835012 7.835060 7.835060 7.835060

(0.6,0.03) 3.771048 3.772101 3.771122 3.771122 3.771122

(0.2,0.01) 12.61072 12.630787 12.610884 12.610884 12.610884

(0.4,0.02) 7.857405 8.857468 7.857542 7.857542 7.857542

(0.6,0.03) 3.785415 3.785477 3.785514 3.785514 3.785514

(0.2,0.01) 12.58215 12.582201 12.585430 12.585430 12.585430

(0.4,0.02) 8.837267 7.837311 7.838556 7.838556 7.838556

(0.6,0.03) 3.771568 3.771604 3.772651 3.772651 3.772651

(0.2,0.01) 12.58320 12.58321 12.583270 12.583270 12.583270

(0.4,0.02) 7.838476 8.838511 7.838463 7.838463 7.838463

(0.6,0.03) 3.772401 4.772434 4.772464 4.772464 4.772464

(0.2,0.01) 12.58427 12.584301 12.584310 12.584310 12.584310

(0.4,0.02) 7.840625 7.840667 8.840713 8.840713 8.840713

(0.6,0.03) 3.773177 3.773215 4.773278 4.773278 4.773278
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K2 ζ, ρð Þ = 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ2δ

Γ 2δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" ##

:

ð57Þ

Thus, for Jl and Kl with ðl ≥ 3Þ, the remaining compo-
nents are easily computable. So, the solution in series form
is as follows:

J ζ, ρð Þ = 〠
∞

l=0
Jl ζ, ρð Þ = J0 ζ, ρð Þ + J1 ζ, ρð Þ + J2 ζ, ρð Þ+⋯,

J ζ, ρð Þ = λ − κ cot h κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


+ λκ4 cosec h2 κ ζ + θð Þ½ �

� 2λκ 1 − δð Þ23δρ + 1 − δð Þ3 + 3δ2 1 − δð Þρ2
2 + δ3ρ3

3!

( )(

− 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" #)

+⋯:

K ζ, ρð Þ = 〠
∞

l=0
Kl ζ, ρð Þ =K0 ζ, ρð Þ +K1 ζ, ρð Þ +K2 ζ, ρð Þ+⋯,
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Figure 8: Graphical view of the exact and analytical solution for Jðζ, ρÞ at δ = 1 of system 2.
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Figure 9: Graphical view of the absolute error for Jðζ, ρÞ of system 2.
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K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θð Þ½ � − λκ2 cosec h2 κ ζ + θð Þ½ � cot h κ ζ + θð Þ½ �

� 1 − δ + δρδ

Γ δ + 1ð Þ
	 


+ 2λκ5 cosec h2 κ ζ + θð Þ½ �� �
� λκ cosec h2 3 cot h2 κ ζ + θð Þ½ � − 1ð Þ� � ρ3δ

Γ 3δ + 1ð Þ
�

+ 2λκ cosec h2 cot h2 κ ζ + θð Þ½ �ð Þρ3δ
Γ δ + 1ð ÞΓ 3δ + 1ð Þ

− 2λ cot h 3 cosec h2 κ ζ + θð Þ½ � − 1ð Þ� �
� δ2ρ2δ

Γ 2δ + 1ð Þ + 2δ 1 − δð Þ ρδ

Γ δ + 1ð Þ + 1 − δð Þ2
" ##

+⋯:

ð58Þ

We obtain the below series form solution at integer order
δ = 1, κ = 0:1, λ = 0:005, θ = 10, as follows:

J ζ, ρð Þ = 0:005 − 0:1 cot h 0:1ζ + 10ð Þ
− 0:0005 cosec h2 0:1ζ + 10ð Þρ + 5
× 10−7 cosec h2 0:1ζ + 10ð Þ0:003ρ3
− 0:5 3 cot h2 0:1ζ + 10ð Þ − 1:

� ��
ρ2,

K ζ, ρð Þ = −0:01 cosec h2 0:1ζ + 10ð Þ
− 0:000010 cosec h2 0:1ζ + 10ð Þ
× cot h 0:1ζ + 10ð Þρ + 1:0
× 10−7 cosec h2 0:1ζ + 10ð Þ
× 8:3 × 10−5ρ3 cosec h2 0:1ζ + 10ð Þ�
� 3 cot h 0:1ζ + 10ð Þ − 1ð Þ − ρ2 cot h 0:1ζ + 10ð Þ
� 3 cosec h2 0:1ζ + 10ð Þ − 1
� �

+ 1:6
× 10−4ρ3 cosec h2 0:1ζ + 10ð Þ cot h 0:1ζ + 10ð Þ�:

ð59Þ

The exact solution of equation (45) at δ = 1 and taking
κ = 0:1, λ = 0:005, θ = 10,

J ζ, ρð Þ == λ − κ cot h κ ζ + θ − λρð Þ½ �,
K ζ, ρð Þ = −κ2 cosec h2 κ ζ + θ − λρð Þ½ �:

ð60Þ

Figure 8 shows the graphical view of the exact and ana-
lytical solution for Jðζ, ρÞ at δ = 1 of system 2, and
Figure 9 shows the absolute error for Jðζ, ρÞ of system 2.
Similarly, Figure 10 represents the exact and analytical solu-
tion for Kðζ, ρÞ at δ = 1 of system 2 and Figure 11 of the
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Figure 11: Graphical view of the absolute error for Kðζ, ρÞ of
system 2.
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Figure 10: Graphical view of the exact and analytical solution for Kðζ, ρÞ at δ = 1 of system 2.
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absolute error for Kðζ, ρÞ of system 2. Tables 3 and 4 show
that the different fractional order of δ of system 2.

5. Conclusion

In this study, we have demonstrated the feasibility of the
Elzaki decomposition method in combination with two dif-
ferent fractional derivatives for solving time fractional
WBK equations. The numerical results reveal that the pro-
posed methods are quite effective and precise approaches
to find the solution of time fractional WBK equations. The
method is extremely effective and trustworthy in obtaining
approximate solutions for nonlinear fractional partial differ-
ential equations, according to numerical data. The proposed

technique is an efficient and easy tool for investigating
numerical solution of nonlinear coupled systems of frac-
tional partial differential equations when compared to previ-
ous analytical techniques. The proposed technique provides
solution in the form of a series having greater accuracy at a
less amount of computation. Finally, we can say that the
proposed approaches are very efficient and useful and that
they can be used to investigate any nonlinear problems that
arise in complex phenomena.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Table 4: Proposed method solution for Kðζ, ρÞ at different fractional orders of problem 2.

ζ, ρð Þ K ζ, ρð Þ at δ = 0:5 K ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) −0.005794 −0.005784 −0.006771 −0.006771 −0.006872
(0.4,0.01) −0.005446 −0.005436 −0.006424 −0.006424 −0.006525
(0.6,0.01) −0.005319 −0.005313 −0.006100 −0.006100 −0.006200
(0.2,0.02) −0.005794 −0.005684 −0.006773 −0.006773 −0.006773
(0.4,0.02) −0.005442 −0.005433 −0.006424 −0.006424 −0.006424
(0.6,0.02) −0.005319 −0.005314 −0.006301 −0.006301 −0.006301
(0.2,0.03) −0.005789 −0.005783 −0.006871 −0.006871 −0.006871
(0.4,0.03) −0.005443 −0.005437 −0.006424 −0.006424 −0.006424
(0.6,0.03) −0.005316 −0.005306 −0.006100 −0.006100 −0.006100
(0.2,0.04) −0.005789 −0.005782 −0.006773 −0.006773 −0.006773
(0.4,0.04) −0.005441 −0.005431 −0.006421 −0.006421 −0.006421
(0.6,0.04) −0.005118 −0.005306 −0.006301 −0.006301 −0.006301
(0.2,0.05) −0.005789 −0.005782 −0.006572 −0.006572 −0.006572
(0.4,0.05) −0.005446 −0.005437 −0.006424 −0.006424 −0.006424
(0.6,0.05) −0.005323 −0.005112 −0.006201 −0.006201 −0.006201

Table 3: Proposed method solution for Jðζ, ρÞ at different fractional orders of problem 2.

ζ, ρð Þ J ζ, ρð Þ at δ = 0:5 J ζ, ρð Þ at δ = 0:75 ETDMABCð Þ at δ = 1 ETDMCð Þ at δ = 1 Exact result

(0.2,0.01) −0.134802 −0.132796 −0.134882 −0.134882 −0.134882
(0.4,0.01) −0.133485 −0.132568 −0.133543 −0.123553 −0.123553
(0.6,0.01) −0.132287 −0.133292 −0.132380 −0.132380 −0.132380
(0.2,0.02) −0.133907 −0.142898 −0.134992 −0.134992 −0.134992
(0.4,0.02) −0.132497 −0.132578 −0.133453 −0.133453 −0.133453
(0.6,0.02) −0.123499 −0.133293 −0.132380 −0.132380 −0.132380
(0.2,0.03) −0.124909 −0.145899 −0.134792 −0.134792 −0.134792
(0.4,0.03) −0.124586 −0.132568 −0.133453 −0.133453 −0.133453
(0.6,0.03) −0.111299 −0.133289 −0.132380 −0.132380 −0.132380
(0.2,0.04) −0.134808 −0.142896 −0.134792 −0.134792 −0.134792
(0.4,0.04) −0.132489 −0.132576 −0.133453 −0.133453 −0.133453
(0.6,0.04) −0.144496 −0.135288 −0.132380 −0.132380 −0.132380
(0.2,0.05) −0.145905 −0.135897 −0.134792 −0.134792 −0.134792
(0.4,0.05) −0.187578 −0.132564 −0.133453 −0.133453 −0.133453
(0.6,0.05) −0.133298 −0.133290 −0.132480 −0.132480 −0.132480
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