
Research Article
A Numerical and Analytical Study of a Stochastic Epidemic SIR
Model in the Light of White Noise

Shah Hussain ,1 Elissa Nadia Madi ,1 Hasib Khan ,2 and Mohammed S. Abdo 3

1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Terengganu, Malaysia
2Department of Mathematics, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
3Department of Mathematics, Hodeidah University, Al-Hodeidah, Yemen

Correspondence should be addressed to Mohammed S. Abdo; msabdo@hoduniv.net.ye

Received 11 June 2022; Revised 18 July 2022; Accepted 26 July 2022; Published 27 August 2022

Academic Editor: Qura tul Ain

Copyright © 2022 Shah Hussain et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study examines a novel SIR epidemic model that takes into account the impact of environmental white noise. According to
the study, white noise has a significant impact on the disease. First, we establish the solution’s existence and uniqueness. Following
that, we explain that the stochastic basic productionR0 is a threshold that determines the extinction or persistence of the disease.
When noise levels are high, we acquireR0 < 1, which causes the sickness to disappear. A sufficient condition for the existence of a
stationary distribution is archived when the noise intensity is high, which suggests the infection is prevalent whenR0 > 1. Finally,
numerical simulations are used to explain the key findings.

1. Introduction

The goal of this research is to show how challenging SIR
models are for understanding the epidemic and to offer a
useful model for establishing proposal insights into its
spread. The traditional susceptible-infected-removed SIR
model of Kermack and McKendrick is the progenitor of
nearly all mathematical models for the transmission of infec-
tious illnesses. Numerous researchers have thoroughly stud-
ied the dynamic behavior of various epidemic models and
many of their expansions. The presence of the threshold
values that determine whether a disease dies out, the stability
of the disease-free and endemic equilibria, permanence, and
extinction are the fundamental and essential study topics for
contemporary studies.

For many years, the spread and transmission of illnesses
have been questioned and examined. In reality, Graunt was
the first scientist to attempt to scientifically quantify causes
of mortality [1], and his investigation of causes of death
resulted in a hypothesis that is now widely accepted among
current epidemiologists. Bernoulli was the first mathemati-
cian to propose an infectious disease mathematical model.

He modeled the transmission of smallpox [2], which was
widespread at the time, and advocated for the benefits of
variolation [3] in 1760. In 1927, McKendrick and Kermack
proposed a basic deterministic (compartmental) model for
forecasting the behavior of epidemic outbreaks [4]. SIR
models are an extremely versatile modeling approach devel-
oped by the researchers. They are often used in the modeling
of infectious illnesses using mathematics. People are divided
into groups with the letters S, I, and R (susceptible, infec-
tious, and recovered). ODE, which are deterministic, are
most often applied to run the models, but they may also be
used with a stochastic (random) framework, which is more
realistic but trickier to evaluate.

According to John M. Last, epidemiology is the study of
the spread and determinants of disease or well-being status
in a population, or it is the outlet of medicine that deals with
the occurrence, distribution, possible mechanism of malady,
and other factors related to health. It is the foundation of
common safety and nature’s tactic varieties, as well as
evidence-based preparation by distinct risk factors for illness
and emphases on protective curative amenities. Syndrome
diffusion experts assist by deliberating on proposals, variety,
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and measurable investigation of evidence, altering under-
standing and spread of outcomes (calculating viscount
inspection and periodic proficient review). As a result, epide-
miology has generated techniques in scientific analysis, com-
mon safety education, and, less suggestively, fundamental
surveys in the biological disciplines [5]. Disease causality,
diffusion, epidemic analysis, disease observation, environ-
mental epidemiology, forensic epidemiology, occupational
epidemiology, screening, biomonitoring, and comparisons
of cure effects, such as in clinical trials, are all important
areas of epidemiological study. Further scientific castigations
are used by epidemiologists, such as biology to better under-
stand disease progressions, statistics to make actual use of
data and advance appropriate outcomes, social sciences to
better understand local and terminal grounds, and engineer-
ing to increase revelation.

The word “epidemiology” is usually used to describe and
illuminate not only epidemics and infectious diseases, but
disease in general, as well as associated circumstances. High
blood pressure, mental disease, and obesity are objective
insufficient of the concerns studied by epidemiology. As a
consequence, this epidemiology is based on how the pattern
of disease produces a change in human function. Mathemat-
ical research has generated great improvements in practical
and theoretical fields [6–8].

To investigate the influence of environmental condi-
tions on the epidemic model and make the results more
realistic, we first developed a stochastic mathematical SIR
model. Recent scientific advances with a focus on the
transmission of numerous infectious illnesses (SDE) and
(ODE) have been front and center. An SDE is a differen-
tial equation in which one or more of the terms are sto-
chastic processes, with the solution likewise being a
stochastic process. SDEs often include a variable that is
calculated as the Wiener process or Brownian motion
derivative and represents random white noise. Other kinds
of random behavior, including jump processes, are indeed
feasible. Stochastic differential equations and random dif-
ferential equations are conjugate [9], while differential
equation having one or more functions of one indepen-
dent variable and their derivatives is known as an ordinary
differential equation (ODE) in mathematics. Ordinary dif-
ferential equations are applied in contrast to partial differ-
ential equations, which may refer to more than one
independent variable [10].

The current paper will investigate the persistence and
extinction of the epidemic, provide the system’s threshold
value, and be affected by motion brought on by white noise.
Even though stochastic system perturbations have many
more varied features, we still took into account how this sys-
tem’s threshold compares to those of other models that
include the same motion [11]. Finally, we visualize the
numerical simulations using MATLAB.

2. Stochastic Epidemic Model Description

In this section, we provide our new stochastic model in the
form of differential equations.

(i) The total inhabitant Nt is distributed in three com-
partments: S t , I t , andRt represent the susceptible,
infected peoples, and recovered people, respectively

(ii) The indicated stochastic model’s variables and
parameters are both nonnegative

(iii) We perturbed β and γ, i.e., β⟶ β + σ1B1 and
γ⟶ γ + σ2B2. Where B1,B2 are the Brownian
motion with the property B10 = 0 =B20 and the
intensity σ21, σ2

2 are positive

Remark 1. The deterministic general epidemic study estimates
that ifR0 < 1, a small outburst will aries, and ifR0 > 1, a large
outbreak will occur, infecting a large chunk of the population.
The results are based on the assumption that the community is
homogeneous and that individuals mingle evenly. However, if
the hypothesis of an evenly mixed society is accepted, the
model may not be appropriate in particular situations. When
contemplating a tiny population, such as an epidemic out-
break in a daycare center or school, it appears logical to pre-
sume that the eventual number of infected will be
unpredictable or random. Also, even ifR0 > 1 and the society
is huge, if the outbreak is started by only one (or a few) early
invective’s, the plagues may never take off by accident. The
formulation of a related stochastic epidemic model is moti-
vated by these two aspects. It allows parameter estimation
from disease outbreak data to include standard error, and
the subject of the disease extinction is better suited for the sto-
chastic model for researching epidemic diseases.

In the light of above speculations, we established the
below new stochastic SIR epidemic model.

d Stð Þ = Λ − βStIt − dStð Þdt − σ1StItdB1 tð Þ,
, d Itð Þ = βStIt − d + γð ÞdIt − h Ið Þð Þdt + σ1StItdB1 tð Þ − σ2ItdB2 tð Þ,
d Rtð Þ = γI + h Ið Þ − dRð Þdt + σ2ItdB2 tð Þ:

ð1Þ

The above Table 1 represents the parameters and their
values, while Table 2 represents the compartments and their
values. Note that hðIÞ is the elimination of the transferable
entities due to the cure of the form:

h Ið Þ =
M > 0 for I > 0 ;
M = 0 I = 0:

(
ð2Þ

The authors [12] have the following deterministic.

d Stð Þ
dt

=Λ − βStIt − dSt ,

d Itð Þ
dt

= βStIt − d + γð ÞdIt − h Ið Þ,
d Rtð Þ
dt

= γI + h Ið Þ − dR,

ð3Þ
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and

d Nð Þ =Λ − dN, ð4Þ

where Nt = St + It + Rt indicates the entire constant res-
idents for Λ ≈ μN and N0 = S0 +I 0 +R0. Equation (4)
has the exact solution

Nt = e−dt N0 +
Λ

d
edt

� �
: ð5Þ

Also, we have

0 ≥ S0, 0 ≥I 0,R0 ≥ 0⇒ St ≥ 0, It ≥ 0, 0 ≤ Rt: ð6Þ

So that the result has positivity property. For the stability
analysis of the model (3), we have the reproduction number,
which is

R0 =
βΛ

d + γð Þd : ð7Þ

IfR0 < 1, the system (3) will be locally steady and will be
unsteady if R0 ≥ 1 asymptotically stable. Further, the system
(3) will be globally asymptotic if Λ = 0.

3. Preliminaries

Throughout this paper, we formulated the necessary
assumptions. Suppose Rd+ is the d-dimensional Euclidean
space. Rd

+ = fj ∈ Rd : 0 < ji, d > 1g.
Let ð℧, F,PÞ a whole probability space that has been

filtered by fFgt≥0 and fBtgt≥0 is a 1-dimensional Brownian
motion defined on it. Usually, we consider a SDE of n-dimen-
sion as

dω tð Þ =F y tð Þ, tð Þdt +G y tð Þ, tÞdB tð Þð Þ, for t ≥ t0, ð8Þ

with initial value yðt0Þ = y0εR
d. By defining the dimen-

sional operator £ with equation (8)

£ = ∂
∂t

+ 〠
d

i=1
Fi y, tð Þ ∂

∂yi
+ 1
2 〠

d

i,j=1
GT y, tð ÞG y, tð Þ
h i

ij

∂2

∂yi∂yj
:

ð9Þ

If the operator £ acts on the a functionV = ðℝd ×ℝ+ ;ℝ+Þ
then

£V =Vt y, tð Þ +Vy y, tð ÞF y, tð Þ + 1
2 trace GT y, tð ÞVyyG y, tð Þ

h i
:

ð10Þ

4. Existence and Uniqueness

By utilizing the technique in [13–15], the following theorem
can be proof with ease.

Theorem 2. ðSt , It , RtÞ is a unique positive solution of system
(1)for t ≥ 0 with ðS0,I 0,R0Þ ∈ R3

+, and result will be left in
R3
+, with probability equals to one.

We outline a ∁2-function U : ℝ3
+ ⟶ℝ+, by the result-

ing formulation

U S t ,I t , Rtð Þ = St − 1 − ln Stð Þ + It −
2
3 + 1

3

� �
− ln It

� �

+ Rt −
2
3 + 1

3

� �
− ln Rt

� �
:

ð11Þ

By applying Ito formula, we have

dU St , It , Rtð Þ = 1 − 1
St

� �
dSt +

1
2S2t

dStð Þ2 + 1 − 1
It

� �

� dIt +
1
2I2t

dItð Þ2 + 1 − 1
Rt

� �
dRt +

1
2R2

t

dRtð Þ2,

ð12Þ

= L∗Udt + σ1 I t − S tð ÞdB1 tð Þ + σ2 I t − Sð ÞdB2 tð Þ,
ð13Þ

Table 1: Parametric description of the model.

Symbol Description Value

Λ Constitute the recruitment rate in the susceptible inhabitant 0.1

β Is the diffusion rate 0.01

d Is the usual passing away rate 0.006

γ Is the impulsive salvage amount of the virulent entities 0.03

Table 2: Compartments and description.

Symbol Description Value

S Susceptible 20

I Infected peoples 6

R Recovered peoples 1
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where L∗U : ℝ3
+ ⟶ℝ+ is defined by

L∗U = 1 − 1
St

� �
Λ − βStIt − dStð Þ + 1

2σ
2
1I

2

+ 1 − 1
It

� �
βStIt − d d + γð ÞItð Þ + 1

2σ
2
1S

2 + 1
2σ

2
2I

2

+ 1 − 1
Rt

� �
γIt − dRð Þ + σ22, =Λ − βStIt − dSt − dSt

−
Λ

S t
+ βIt + d + βStIt − d + γð Þd − βSt + d + γð Þd

+ γI − dRt − γ
It
Rt

+ d + 1
2σ

2
1S

2 + 1
2σ

2
2I

2
+σ

2
2: ≤Λ + d

+ d2 + γd + d++ 1
2σ

2
1S

2 + 1
2σ

2
2I

2
+σ

2
2 ≔ A:

ð14Þ

The rest of the proof can be followed from [16–18].

5. Extinction of the Disease

In this part, we will figure out when the sickness will wipe
out, as well as when it will resurface. As a result, system’s
(1) basic reproduction number is provided. We may deduce
the following lemmas from the proof in [19].

Lemma 3 (see [20]). Let ðSt , It , RtÞ be the solution of system
(1) with initial value ðS0, I0, R0Þ ∈ℝ3

+. Then

Limt⟶∞
St + It + Rt

t
= 0 a:s: ð15Þ

6. Remark

In fact, combine with solution positivity and equation (15),
we have by [20]

Limt⟶∞
S t

t

� �
= 0, Limt⟶∞

It
t

� �
= 0, Limt⟶∞

Rt

t

� �
= 0 a:s:,

ð16Þ

and according to lemma 2.2 of [20], we have

Lemma 4. Assume d > 1/2ðσ2
1∨σ

2
2Þ:Let ðSt, It , RtÞ be the solu-

tion of system (1) with initial value ðS0, I0, R0Þ ∈ℝ3
+, then

Limt⟶∞

Ð t
0S rð Þ
t

= 0,

Limt⟶∞

Ð t
0S rð Þ
t

= 0,

Limt⟶∞

Ð t
0S rð Þ
t

= 0:

ð17Þ

R0 = βΛ/dðd + γÞ is the basic reproduction of the system
(3) in [12].

and

R•
0 =

βΛ

d d + γ + 1/2ð Þσ22
� � =R0 −

βΛ

2d d + γð Þ d + γ + 1/2ð Þσ2
2

� �σ22:
ð18Þ

We will study the results in the next part based on Lemma
3 and 4.

Theorem 5. Suppose d > 1/2ðσ2
1∨σ

2
2Þ. Let ðSt , It , RtÞ be the

solution of the system (1) with any initial value ðS0, I0, R0Þ ∈
ℝ3

+. If 1 >R•
0, then

Limt⟶∞ sup log It
t

≤ d + γ + 1
2
σ22

� �
R•

0 − 1ð Þ < 0 a:s:

ð19Þ

It approaches to 0 exponentially almost sure. In other
words, the illness will most likely die out.

Proof. From system (1), we have

−S0 + St
t

= − −Λð Þ − d
t

ðt
0
S sð Þds − β

t

ðt
0
I sð ÞS sð Þ

� ds − σ1
t

ðt
0
S sð ÞI sð ÞdB1 sð Þ,

−I0 + It
t

= β

Ð t
0S sð ÞI sð Þds

t
− d d + γð Þ

Ð t
0I sð Þds
t

−
Ð t
0h Ið Þds

t
+ σ1

Ð t
0S sð ÞI sð Þ

t
dB1 sð Þ

−σ2

Ð t
0I sð ÞdB2 sð Þ

t
,

−R0 + Rt

t
= γ

Ð t
0I sð Þds
t

+
Ð t
0h Ið Þds

t
− d

Ð t
0R sð Þds

t
+ σ2

Ð t
0I sð Þd
t

B2 sð Þ,
ð20Þ

then

d

Ð t
0S sð Þds
t

+ d d + γð Þ
Ð t
0I sð Þds
t

=Λ −
It − St

t
+ I0 − S0

t

−
Ð t
0h Ið Þds

t
− σ2

Ð t
0I sð ÞdB2 sð Þ

t
=Λ + ξ tð Þ,

ð21Þ

where ξðtÞ possesses the property that

Limt⟶∞ξ tð Þ = 0: ð22Þ

According to (15) and (17), we have

Limt⟶∞
d
Ð t
0S sð Þds + d d + γð ÞÐ t0I sð Þds

t
=Λ: ð23Þ
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Furthermore

log It − log I0 = β
ðt
0
S sð Þds − d + γ + 1

2σ
2
2

� �
� t + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ,

log It = log I0 + β
Λ

d
t − β d + γð Þ

ðt
0
I sð Þds + β

d
tξ tð Þ

− d + γ + 1
2σ

2
2

� �
t + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ,

= tβ
Λ

d
− γ + 1

2 σ
2
2 + d

� �� �
t − β d + γð Þ

ðt
0
I sð Þds

+ log I0 +
β

d
tξ tð Þ + σ1S sð ÞB1 tð Þ − σ2B2 tð Þ:

≤ β
Λ

d
t − d + γ + 1

2σ
2
2

� �� �
t + log I0

+ β

d
tξ tð Þ − σ2B2 tð Þ,

ð24Þ

and

Limt⟶∞
1
t

log I0 +
β

d
tξ tð Þ − σ2B2 tð Þ

� �
= 0 a:s: ð25Þ

By (22) and the property of Brownian motion. If 1 >R•
0,

then, from (24), we have

Limt⟶∞  sup log It
t

≤
βΛ

d
− d + γ + 1

2σ
2
2

� �

= d + γ + 1
2σ

2
2

� �
R•

0 − 1ð Þ < 0,

ð26Þ

as required.

7. Persistence of the Disease

In this section, we will look at the infection’s persistence in
the pandemic context (1), with the following theorem intro-
ducing our main result.

Theorem 6. Suppose d > 1/2ðσ2
1∨σ

2
2Þ. Let ðSt , It , RtÞ be the

solution of the system (1) with any initial value ðS0, I0, R0Þ
∈ℝ3

+. If 1 <R•
0, then

Limt⟶∞
1
t

ðt
0
S sð Þds = Λ

dR•
0
,

Limt⟶∞
1
t

ðt
0
I sð Þds = d γ + 1/2ð Þσ22 + d

� �
dβ + γβð Þ R•

0 − 1ð Þ,

Limt⟶∞
1
t

ðt
0
R sð Þds = γ d + γ + 1/2ð Þσ22

� �
β d + γð Þ R•

0 − 1ð Þ:

ð27Þ

Proof. IfR•
0 > 1, then, by (24) and by Lemma 3 and 5.2 in [21].

Limt⟶∞
1
t

ðt
0
I sð Þds = 1/dð Þ βΛð Þ − d + 1/2ð Þσ22 + γ

� �
dβ + γβð Þ/d ,

= γ d + γ + 1/2ð Þσ2
2

� �
β d + γð Þ R•

0 − 1ð Þ:

ð28Þ

Along with (23)

Limt⟶∞
1
t

ðt
0
S sð Þds = Λ

d
−

γ + d + 1/2ð Þσ22
β

� �
R•

0 − 1ð Þ, = Λ

dR•
0
:

ð29Þ

Further, integrating from 0 to t the last equation of system
(1), we get

Rt − R0
t

= γ

t

ðt
0
I sð Þds +

ðt
0
h Ið Þds − d

t

ðt
0
R sð Þds + σ22

t

ðt
0
R sð ÞdB2 sð Þ,

ð30Þ

now (17) and (28) ⇒

Limt⟶∞
1
t

ðt
0
R sð Þds = γ + d + 1/2ð Þσ2

2
� �

γ

β d + γð Þ R•
0 − 1ð Þ: ð31Þ

Remark 7. Theorems 5 and 6 reveal that the illness’s ability
to die out or endure is highly influenced by the strength of
white noise disturbances, with tiny white noise disturbances
promoting long-term disease prevalence and big white noise
disturbances causing the epidemic disease to die out.

8. Numerical Scheme and Results

Our study of disease extinction and persistence has now
concluded. We will now perform some numerical simula-
tions of (1) to illustrate the applicability of our findings.
The Milstein technique [22] is used to generate numerical
simulations. Consider the model’s discretization equation:

Sk+1 = Sk + Λ − βSkIk − dSkð ÞΔt − σ1SkIk
ffiffiffiffiffi
Δt

p
τk −

σ2
1
2 SkIk τ2k − 1

� �
Δt,

Ik+1 = Ik + βSkIk − d d + γð ÞIk −Mð ÞΔt + σ1SkIk
ffiffiffiffiffi
Δt

p
τk

+ σ2
1
2 SkIk τ2k − 1

� �
Δt − σ2Ik

ffiffiffiffiffi
Δt

p
τk −

σ2
2
2 Ik τ2k − 1

� �
Δt,

Rk+1 = Rk + γIk +M − dRkð ÞΔt + σ2Ik
ffiffiffiffiffi
Δt

p
τk +

σ2
2
2 Ik τ2k − 1

� �
Δt:

ð32Þ

8.1. Numerical Data. Here, we highlight the numerical data
for the stochastic model (1). For the parametric and initial
values, we refer to [12].

Figures 1(a) and 1(b) are the comparison of S class in the
deterministic system and in the stochastic system, with

5Advances in Mathematical Physics



Λ = 0:1, d = 0:006,m = 0:00001, β = 0:01, γ = 0:03 and ini-
tial values Sð0Þ = 20, Ið0Þ = 6, Rð0Þ = 1. In Figures 1(a)
and 1(b), we have presented the joint solution of the model
(1) for σ = 0:0, S, and different values of σ. Comparing the first
figure, the noise getting smaller, the fluctuation of the system
of model (1) is getting weaker. If we increase the value of
σ = 0:02,0:03,0:04, respectively, the amplitude of fluctuation
becomes stronger. That is to say, noise intensities have
great effect on the solution of S.

Figures 2(a) and 2(b) are the comparison of I, R classes
in the deterministic system and in the stochastic system,

with Λ = 0:1, d = 0:006,m = 0:00001, β = 0:01, γ = 0:03 and
initial values Sð0Þ = 20, Ið0Þ = 6, Rð0Þ = 1. In Figure 2, we
presented the dynamics of I and R of the model (1) for
σ = 0:0, S, and different values of σ. Then, I will tend to
zero exponentially with probability one. That is to say, an event
distinct from its corresponding deterministic model might
cause the illness to become extinct when there are enormous
noises (3). The role of parameters on the stochastic model (1)
has an importance. For observing this, we have modified the
parametric values and observed a change in the dynamics of
all the classes. Even, there is a change in the dynamics as a whole
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Figure 1: (a, b) Joint solution of (1) at σ = 0:0 and SðtÞ.
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Figure 2: (a, b) IðtÞ and RðtÞ for different values of σ.
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which can be observed in Figure 3(a). In Figures 3 and 4, the
considered parametric values are Λ = 0:1, d = 0:008, r = 0:1,
m = 0:0001, β = 0:01, γ = 0:03 and while keeping the initial
values unchanged and σ is changed as mentioned in the graphs.

9. Conclusions

In this research, we explored the dynamic behavior of a
novel SIR epidemic model that takes into account the impact
of information intervention and environmental noise. Infor-

mation intervention and white noise have been demon-
strated to have significant effects on the condition.

The following are the key findings:

(i) We have thought about how white noise in the envi-
ronment affects the condition

We have proven that the R•
0 =R0 − βΛ/2dðd + γÞðd +

γ + ð1/2Þσ2
2Þσ2

2 is a model (1) threshold for the illness to
die out or endure, and noise intensities can modify the value
of the stochastic reproduction number R•
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Figure 3: (a, b) Joint solution of (1) at σ = 0:0 and SðtÞ.
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Figure 4: (a, b) IðtÞ and RðtÞ for different values of σ.
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(ii) IfR•
0 < 1, the illness will be eradicated with a strong

probability

(iii) If R•
0 > 1, on the other hand, model (2) has a sta-

tionary distribution, indicating that the illness will
dominate

(iv) Additionally, we have examined the numerical sim-
ulation of both deterministic and stochastic models
that give a reasonable level of support for our exam-
ined technique

10. Remark

Comparing with the results in [23, 24], we observed that sto-
chastic dynamics of fractional order are commonly demon-
strated as nonrandom differential equation driven by
fractional Brownian motion. On the other hand, our sto-
chastic models are likely to provide various outcomes each
time they are performed. Using random variables, our sto-
chastic system indicates the probability of various outcomes
under various circumstances. Our stochastic model offers
information and forecasts results that take into account var-
ious degrees of randomness or inconsistency, and an abrupt
change can be observed in (1).

There are still a number of intriguing aspects that we will
discuss later. For instance, rapid climate change, weather
warming or cooling, and wetness or evaporation may all
have an impact on disease propagation. As a result, when a
discontinuous random process, like variational noise, is
added to model (1), how does it affect disease spread? This
is something we will look into later.
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