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In this article, two-phase compressible six equation flow model is numerically investigated. The six-equation model consists of
velocity, pressure equations, and also relaxation terms. An extra seventh equation is included describing the total energy of the
mixture to ensure the correct treatment of the sharp discontinuities. The model is hyperbolic and poses numerous difficulties
for numerical schemes. An efficient and well-balanced scheme can handle the numerical difficulties related to this model. The
second order space-time CE/SE scheme is extended to solve the model. This scheme offers an effective numerical method for
several continuum mechanics problems. The suggested scheme suppresses the numerical oscillations and dissipation effects.
Several numerical test cases have been carried out to reveal the efficiency and performance of the proposed approach. The
results are compared with the exact solution and also with Runge-Kutta Discontinuous Galerkin (RKDG) and central
(NT) schemes.

1. Introduction

A lot of research work has been drafted on multiphase flows
caused by their various applications in divergent scientific
and engineering fields [1].

In many cases, multiphase flow problems arise in techni-
cal and advanced heat transfer systems. They have industrial
implementation in energy conversion sector, paper creation,
food making, and medical applications. Furthermore, an
effective and secure evaluation of nuclear reactors accident
situation needs an accurate forecasting of two-phase flow
structure. Moreover, two-fluid flow has some daily opera-
tions in geysers and boilers. Ishii classified two-phase flow
into four different groups on the grounds of phase mixture
in the flow [2]. The groups contain gas-liquid flow (i.e., gas
droplet flows, bubble flows, and separated flows), gas-solid
flow (i.e., fluidized flows and flow of gas particle), liquid-
solid flow (i.e., flow of slurry and transport of sediment),

and immiscible liquid-liquid flow. As two-phase flows have
substantial implementations, appropriate mathematical tem-
plates are mandatory to be constructed and associated with
hypothetical outcomes. The averaging methodology is usu-
ally the foundation of multiphase flows as there is intricate
connection between the fluids in a multiphase flow approach
[3]. Researchers and engineers have proposed a number of
multiphase mathematical flow models in the past to study
the physical behavior of such flows. One such type of those
models is seven-equation models; they use different velocity,
density, and pressure for two phases. The seventh equation
is obtained by coupling of conservation laws and the convec-
tion equation for the interface motion. Baer and Nunziato
[4] were the pioneers who formulated a solid gas two-
phase seven-equation model; and later, this model was mod-
ified and further studied by Abgrall and Saurel [5, 6] and
other investigators. Although, such models are treated as
the best two-phase flow models. However, there exist a
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number of physical and numerical difficulties in such
models. To overcome those problems present in such flow
models, the investigators have suggested models with a
smaller number of equations ranging from three to six [7, 8].

In this work, we have primarily considered the six-
equation two-phase flowmodel studied by [9]. As mentioned
earlier that because of complex nature of the seven-equation
model, Kapila et al. [7] extracted a reduced five-equation
model from seven-equation model [4]. The extracted model
[7] has been used successfully to study the two-phase flows.
Despite the fact that this model is simple but the presence
of nonconservative term and shocks make it difficult to
obtain the convergent physical solution.

To resolve difficulties, present in the Kapila’s model,
Saurel and coauthors [9] proposed a new model by incorpo-
rating the nonequilibrium pressure terms present in the
seven-equation model. This new model is the six-equation
model with same velocity, separate pressure, and relaxation
terms for each phase. To treat the shock correctly in the
single phase limit, an additional equation of mixture energy
has been incorporated in the model. Importantly, this new
model is hyperbolic in nature with three wave propagation
speeds. Moreover, the positivity of the volume fraction is
an important feature present in the model. Saurel and coau-
thors [9] applied Godunov-type method and HLLC-type
solver to solve the six-equation model. Zia et al. [10] applied
KFVS and central-upwind schemes to study the model
under discussion.

In this article, a space-time CE/SE scheme [11] is
extended to solve the reduced six-equation model equations.
The space-time CE/SE scheme is different from the existing
methods in literature. In CE/SE scheme, the space and time
variables are discretized simultaneously, whereas in other
methods, the space variable is discretized first, and the
resulting system of ODE’s is solved by any other method.
Because of the unique idea of discretization, the CE/SE
scheme effectively handles the numerical complexities of
the two-layer equations. This scheme has been successfully
implemented in different areas, e.g., see unsteady flows
[12, 13]. The solution of two-phase six-equation model is
also available in the literature by upwind scheme and kinetic
flux vector splitting (KFVS) scheme [10]. The results
obtained by CE/SE scheme are compared with RKDG
scheme [14] and central (NT) scheme [15].

This article is outlined as follows. The 1-D two-phase
compressible six-equation flow model is presented in Section
2. A review of RKDG scheme is given in Section 3. Section 4
is devoted to numerical test problems. Conclusions are
explained in Section 5.

2. Mathematical Model

Here, we present reduced six-equation compressible flow
model which has been deduced from the seven-equation
model by using asymptotic limit condition of zero velocity
relaxation time in [7]. It is observed that the considered
model has the ability to resolve those difficulties which were
involved in five-equation model presented by [7, 16]. It is
important to mention that we are considering the model

without heat and mass transfer mechanisms. The one-
dimensional model is given as [10].

∂α1
∂t

+ u
∂α1
∂x

= μ p1 − p2ð Þ, ð1Þ

∂ α1ρ1ð Þ
∂t

+ ∂ α1ρ1uð Þ
∂x

= 0, ð2Þ

∂ α2ρ2ð Þ
∂t

+ ∂ α2ρ2uð Þ
∂x

= 0, ð3Þ

∂ ρuð Þ
∂t

+ ∂ ρu2 + α1p1 + α2p2
� �

∂x
= 0, ð4Þ

∂ α1ρ1e1ð Þ
∂t

+ ∂ α1ρ1e1uð Þ
∂x

+ α1p1
∂u
∂x

= μp1 p1 − p2ð Þ, ð5Þ

∂ α2ρ2e2ð Þ
∂t

+ ∂ α2ρ2e2uð Þ
∂x

+ α1p2
∂u
∂x

= μp2 p1 − p2ð Þ: ð6Þ

Here, u, ρ, and p are the velocity, the mixture density,
and the mixture pressure, respectively; and volume fraction
for kth phase is given by αk. The mixture energy E and mix-
ture internal energy e are defined in the following equations

E = e + 1
2 u

2, ð7Þ

e = Y1e1 ρ1, pð Þ + Y2e2 ρ2, pð Þ: ð8Þ

For each kth phase, mass fraction is Yk = ðαρÞk/ρ. Fur-
thermore, the density of the mixture of both phases is
defined by ρ = ðαρÞ1 + ðαρÞ2. The equation-of-state (EOS)
formula is given by

ek =
pk + γkπk

ρk γk − 1ð Þ + qk: ð9Þ

Here, qk, γk, and πk are constants (material) subject to
the fluid. Utilizing equation (8), the mixture pressure p can
be found as under

p = ρe − α1γ1π1/γ1 − 1ð Þ + α2γ2π2/γ2 − 1ð Þ½ �
α1/γ1 − 1ð Þ + α2/γ2 − 1ð Þ : ð10Þ

Here, the interfacial pressure is denoted by pI and is
given by the formula

p1 =
Z1p2 + Z2p1
Z1 + Z2

: ð11Þ

The acoustic impedance of phase k is given by the term
Zk = ρkck. For the seventh equation in the model, the mass
and momentum equations are combined with the internal
energy equation, and this additional equation becomes

∂ ρe + 1/2ρu2
� �

∂t
+ ∂u ρe + 1/2ρu2 + α1p1 + α2p2

� �
∂x

= 0, ð12Þ
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where ρe = α1ρ1e1 + α2ρ2e2. To handle the nonconservative
terms on the RHS of the model and for convergence of the
schemes, nonconventional jump conditions are needed
which are based on Reimann solver, see [9]. It is worth spec-
ifying that the numerical schemes proposed to solve the cur-
rent model do not need these conditions. Moreover, the
frozen sound speed is given as under

cf 2 = Y1c12 + Y2c22 , ð13Þ

where ckðk = 1, 2Þ is sound speed of phase and is given as

ck2 =
pk/ρk2 ∂ek/∂ρkð Þð pk

∂ek/∂ρkÞpk
: ð14Þ

Now, equation (1) can be reformulated as

∂α1
∂t

+ ∂α1u
∂x

− α1
∂u
∂x

= 0: ð15Þ

On utilizing equations (1) to (6) along with equation
(15), the model takes the following form,

Wt + F Wð Þx = S
∂u
∂x

, ð16Þ

where

W = ρuα1½ , F Wð Þ = α2½ ρ2uα1ρ1uα1u, ’S = α00021Þ½ : ð17Þ

The expressions α1∂u/∂x and αkpk∂u/∂x for k = 1, 2
involve derivatives; therefore, these expressions are treated
in the similar fashion as the flux vectors. For closure of the
model equations (1) to (6) and (12), extra equations are
required.

Thus, in the present situation, these equations are
obtained from the stiffened gas EOS (9). In the next section,
we will present a brief derivation of RKDG and CE/SE
schemes.

3. Proposed Schemes

3.1. RKDG Scheme. A short overview of RKDG scheme is
presented in this section. The RKDG scheme is applied on
1D system of hyperbolic conservation laws of the form

∂tW + ∂xF Wð Þ = Z, t > 0, x ∈Ω, ð18Þ

where ZðW, xÞ = S∂u/∂x with initial conditions

W x, 0ð Þ =W0 xð Þ: ð19Þ

We subdivide the domain Ω into cells Ci = ½xi−1/2, xi+1/2�,
where i = 1, N: We denote the center of ith cell by xi and
defined as 0. 5ðxi−1/2 + xi+1/2Þ. The size of ith cell is defined
as △xi = xi+1/2 − xi−1/2, for all i. Multiply equation (18) by a

smooth function τðxÞ and integrate the resulting equation
over the ith cell Ci. By integrating, we obtain

ð
Ci

∂tW x, tð Þτ xð Þdx −
ð
Ci

F W x, tð Þð Þ∂xτ xð Þdx

+ F W xi+1/2, tð Þð Þτ xi+1/2ð Þ − F W xi−1/2, tð Þð Þτ xi−1/2ð Þ
=
ð
Ci

Z W, xð Þτ xð Þdx,

ð20Þ

ð
Ci

W x, 0ð Þτ xð Þdx =
ð
Ci

W0 xð Þτ xð Þdx: ð21Þ

Consider for each time t ∈ ½0, tfinal�, the solution approx-
imation Wh of W belongs to discontinuous Galerkin finite
element space

V h = v : vjCi
∈P k Cið Þ, i = 0, 1, 2⋯N

n o
: ð22Þ

The P kðCÞ is the polynomial space of degree at most k
in cell Ci. We choose the local orthogonal basis fϕli, l = 0,
1, 2, kg, named as scaled Legendre polynomials P lðxÞ, over
cell Ci as defined below

ϕli xð Þ =P l
x − xi
△xi

� �
, l = 0, 1, 2,⋯k: ð23Þ

Then, the approximate solution Whðx, tÞ ∈V h is
defined as

Wh x, tð Þ = 〠
k

l=0
Wl

i tð Þϕli xð Þ, for x ∈ Ci, ð24Þ

where Wl
iðtÞ = 2l + 1/△xi

Ð
Ci
Whðx, tÞϕliðxÞdx by using the

orthogonal property

ð
Ci

ϕliϕ
m
i dx =

0, l ≠m,
△xi
2l + 1 , l =m:

8<
: ð25Þ

Now, replace a smooth function τðxÞ by the test func-
tion ϕliðxÞ ∈V h and flux function FðWðxi+1/2, tÞÞ by
numerical flux F̂ in equations (20) and (21) to obtain a
numerical scheme as follows

ð
Ci

∂tWh x, tð Þϕli xð Þdx −
ð
Ci

F Wh x, tð Þð Þ∂xϕli xð Þdx

+ F̂ϕli x
−
i+1/2ð Þ − F̂ϕli x

+
i−1/2ð Þ =

ð
Ci

Z wh, xð Þϕli xð Þdx,

ð26Þ
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with ð
Ci

Wh x, 0ð Þϕli xð Þdx =
ð
Ci

W0 xð Þϕli xð Þdx: ð27Þ

The flux F̂ = ┌ðWhðx−i+1/2, tÞ,Whðx+i+1/2, tÞÞ is any mono-
tone numerical flux. Here, we use the LFF as a monotone
numerical flux which is defined below

┌ W−
i+1/2,W+

i+1/2ð Þ = 1
2 F W−

i+1/2ð Þ + F W+
i+1/2ð Þð

− θ W+
i+1/2 −W−

i+1/2ð ÞÞ,
ð28Þ

where θ =maxW jFðWÞj and Whðx±i+1/2, tÞ are the limited
values of approximate solution Whðx, tÞ at the cell interface
xi+1/2. By using above definitions, equations (26) and (27)
simplify to

dWl
i tð Þ

dt
= −

2l + 1
△xi

ð
Ci

F Wh x, tð Þð Þ∂xϕli xð Þdx + F̂ϕli x
−
i+1/2ð Þ

 

− F̂ϕli x
+
i−1/2ð Þ +

ð
Ci

Z W, xð Þτ xð Þdx
!
,

ð29Þ

Wl
i 0ð Þ = 2l + 1

△xi

ð
Ci

W0 xð Þϕli xð Þdx: ð30Þ

Next, to obtain nonoscillatory discontinuity propaga-
tion and high order accuracy by RKDG method, the limiter
procedure is divided into two parts. First, identify the cells,
named as “troubled cells,” that may need the limiting pro-

cedure. Second, reconstruct the polynomial solutions in
these troubled cells by using WENO reconstruction.

Here, the troubled cells are identified by total variation
bounded (TVB) limiter, which is described as

Wh x+i+1/2ð Þ =W 0ð Þ
i + �W,Wh x+i−1/2ð Þ =W 0ð Þ

i − W
¼
, ð31Þ

where

�W = 〠
k

l=1
Wl

iϕ
l
i xi+1/2ð Þ, W¼ = −〠

k

l=1
Wl

iϕ
l
i xi−1/2ð Þ: ð32Þ

Now, �W and ��W are modified by the modified minmod
(MM) function, as follows

�W =MM �W,W 0ð Þ
i+1 −W 0ð Þ

i ,W 0ð Þ
i −W 0ð Þ

i−1

� �
, ð33Þ

W
¼

=MM W
¼
,W 0ð Þ

i+1 −W 0ð Þ
i ,W 0ð Þ

i −W 0ð Þ
i−1

0
@

1
A, ð34Þ

where MM is defined as

MM a1, a2, a3ð Þ =
a1, if a1j j ≤M △xð Þ2,
M a1, a2, a3ð Þ, otherwise,

(

ð35Þ

where M is a positive constant and the minmod function M
is defined as

Using explicit, nonlinearly stable high order Runge-
Kutta time discretization. [Shu and Osher, JCP, 1988].

The semidiscrete scheme (26) is written as

Wt = L Wð Þ, ð37Þ

is discretized in time by a nonlinearly stable Runge-Kutta
time discretization, e.g., the third order version.

3.2. The CE/SE Scheme. In this section, we give a brief deri-
vation of CE/SE scheme [1, 11].

Let the coordinates of a 2-D Euclidean space (E) be
x0 = t and x1 = x. The equivalent integral form can be

obtained by employing the Gauss-divergence theorem, on
equation (15).

þ
S Vð Þ

hi · dS =
ð
V
SidV , i = 1 − 6, ð38Þ

in which (a) hi = ðwi, f iÞT , i = 1, 2, 3, 4, i.e., for all i = 1, 2, 3, 4,
wi and f i be the elements of the vector hi in the t − and x −
directions, respectively, and (b) def dS = dσn in which dσ
represents the area whereas n being the typical unit outward
vector of a surface component on SðVÞ. Over the space-time
region CE (conservation element), equation (38) is imple-
mented. The actual numerical combination uses solution
components (SEs) in a discreet manner.

M a1, a2, a3ð Þ =
S · min1≤i≤3 aij j, if sign a1ð Þ = sign a2ð Þ = sign a3ð Þ = S,
0, otherwise:

(
ð36Þ
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In E2 space, the arrangement of work focuses ðj, kÞ is
represented by Ω1 where k = 0, 1/2, 1, 3/2, ⋯ and for each
k, j = 0, ±1/2, ±1, ±3/2, ⋯. There is a SE (solution element)
corresponding to each ðj, kÞ, as depicted in Figure 1 (dashed
curve). It includes both a horizontal and a vertical line and
the immediate neighborhood.

The correct size of immediate vicinity does not make a
difference. For any ðx, tÞ ∈ SEðj, kÞ, wiðx, tÞ, f i and hi are
estimated by w∗

i ðx, t ; j, nÞ, f ∗i ðx, t ; j, kÞ, and h∗i ðx, t ; j, kÞ
separately as takes the following form

w∗
i x, t ; j, kð Þd= ef wið Þkj + witð Þkj t − tk

� �
+ wixð Þkj x − xj

� �
,

ð39Þ

f ∗i x, t ; j, kð Þd= ef f lð Þkj + f itð Þkj t − tk
� �

+ f ixð Þkj x − xj
� �

:

ð40Þ
Moreover,

τ∗i x, t ; j, kð Þd= ef τ w∗
i ,w∗

ixð Þ, ð41Þ

Using chain rule, we acquire

f ixð Þkj = 〠
4

n=1
f i,n
� �k

j
wnxð Þkjdef , ð42Þ

f itð Þkj = 〠
4

n=1
f i,n
� �k

j
wntð Þkjdef , ð43Þ

where

def ∂f i f i,n = �∂wn, i, n = 1 − 6: ð44Þ

Here, f i,n, i, k = 1 − 6, where i and k, respectively, repre-

sent the column and row indices. Note that ðwiÞkj , ðwixÞkj ,
and ðwitÞkj are constants in SE ðj, kÞ. The numerical analogs
of these values are the following wi, ∂wi/∂x, and ∂wi/∂t at
ðxj, tkÞ, respectiyely. Since hdi = ef ðwi, f iÞT , therefore,

h∗i x, t : j, kð Þdef = w∗
i x, t : j, kð Þ, f ∗i x, t : j, kð Þð ÞT : ð45Þ

Using equations (39), (40), (41), and (45), we get

wlð Þkj = wið Þk−1/2j±1/2 ∓
△x
4 wixð Þk−1/2j±1/2 + wixð Þkj
h i

∓
△t
△x

f ið Þk−1/2j±1/2 − f ið Þkj
h i

∓
△t2

4△x
f itð Þk−1/2j±1/2 + f itð Þkj

h i
± Slð Þk−1/2j±1/2 − Slð Þkj
h i

:

ð46Þ

The summation gives

wilð Þkj =
1
2 wið Þk−1/2j−1/2 + wið Þk−1/2j+1/2 + Qið Þk−1/2j−1/2 − Qilð Þk−1/2j+1/2

h
+ Slð Þk−1/2j+1/2 − Slð Þk−1/2j−1/2

i
,

ð47Þ

where

Qið Þk−1/2j±1/2 =
△x
4 wixð Þk−1/2j±1/2 +

△t
△x

f ið Þk−1/2j±1/2 +
△t2

4△x
f itð Þk−1/2j±1/2 :

ð48Þ

j – 1 jj – 3
2

j – 1
2

j + 1j + 1
2

j + 3
2

k + 1
2

k – 1
2

k – 1

k + 1

k

Δ x/2

Δ t/2

Δ t/2

Δ x/2

t

x

(a)

A

DC

B
(j.n)

(j – 1/2, n–1/2) (j + 1/2, n–1/2)

F

ED

A
(j.n)

(b)

C

B

A

D

(j.n)

(j – 1/2, n–1/2) (j + 1/2, n–1/2)

F

E

(c)

Figure 1: Staggered space-time grid.
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Clearly from the source term, S2 = S3 = S4 = 0. Moreover,

S1ð Þk−1/2j+1/2 − S1ð Þk−1/2j−1/2 =
△t
2△x

α1ð Þk−1/2j−1/2 + α1ð Þk−1/2j+1/2

� �
, ð49Þ

S5ð Þk−1/2j+1/2 − S5ð Þk−1/2j−1/2 =
△t
2△x

α1p1ð Þk−1/2j−1/2 + α1p1ð Þk−1/2j+1/2

� �
:

ð50Þ

S6ð Þk−1/2j+1/2 − S6ð Þk−1/2j−1/2 =
△t
2△x

α2p2ð Þk−1/2j−1/2 + α2p2ð Þk−1/2j+1/2

� �
:

ð51Þ
For more details, the reader is referred to [1, 11].

4. Numerical Test Problems

In the present section, the CE/SE scheme is used to study the
single velocity six-equation model along with a pressure

relaxation procedure to accommodate the nonconservative
terms in the model. It has been mentioned earlier that
two-phase flow models inherit serious computational diffi-
culties. Some one-dimensional test problems carried out in
this section and their results are compared with each other,
to authenticate the results of two proposed schemes. To fur-
ther authenticate the efficiency of suggested schemes, we
have used the RKDG [14] and central (NT) [15] schemes.
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Figure 2: Problem 1: results for alpha ðαÞ, density (ρ), velocity (u), and pressure (p).

Table 1: Comparison of L1-errors in the schemes.

N RKDG CE/SE

40 0.4320 0.5850

80 0.8997 0.9639

160 0.9833 1.0507

320 0.9721 0.9835

640 1.1818 1.2231
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Problem 1 No reflection test problems. This test case was also
studied in [8] by implementing KFVS scheme. The Riemann
left and right data about interface x = 0:5 is given as

ρ, p, u, αð Þ =
3:1748, 100, 1, 9:435ð Þ, if x ≤ 0:5,
1, 1, 0, 0ð Þ, otherwise:

(
ð52Þ

The problem is simulated at 500 mesh cells, and t = 0:02
is the final simulation time. Here, γL = 1:667 and γR = 1:2 are
values of specific heat ratios. Furthermore, πL = πR, and
CFL = 0:32. Because of significant pressure shifts at the
interface, it is one of the tough test problems for a numerical
scheme. Choosing the velocity and jumping pressure over
the shock makes it difficult to create reflection wave.
Figure 2 displays the results obtained from two schemes.
Clearly, wiggles can be observed in pressure and velocity
plots from all the schemes. These wiggles disappear on
refined mesh. Similar type of results is reported in Kreeft
[17]. Furthermore, we have also computed the L1 error of

CE/SE and RKDG schemes. The errors are given in
Table 1. We can clearly observe that CE/SE has less error
as compared to RKDG scheme.

The L1-errors for CE/SE, KFVS, and central (NT)
schemes at different grid points are listed in Table 1. We
can clearly observe from Table 1 that CE/SE scheme has less
error as compared to KFVS and central (NT) schemes.

Problem 2 Sode’s test problem. The problem considered is
like the Sod problem of single-phase gas dynamics, which
is simulated by [10] as well. A thin membrane fixed at x =
1/2 separates the two gases which are at rest initially. The
gases on both sides of the interface mixes with each other
as soon as membrane is removed. The initial state of prob-
lem is as under

ρ, p, u, αð Þ = 310,10,0, 1ð Þ, if x ≤ 1
2 ,

0:125, 0:1, 0, 0ð Þ, otherwise:

8<
: ð53Þ
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Figure 3: Results for alpha (a), density (b), velocity (c), and pressure (d).
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The specific heat ratio γl = 1:4 is on the of interface, and
γr = 1:6 is on the right of interface. The results at t = 0:015
are presented in Figure 3. From the simulated results, a
left-going rarefaction wave can be seen. Also, a right-
moving two-fluid interface and right-going shock wave can
be observed. In Figure 3, the results by proposed schemes
are shown at 400 cells. For this comparison, the reference
solution is simulated for CE/SE scheme at 2000 meshes.
Both the schemes are in close agreement capturing the
shocks effectively.

Problem 3 Two fluid mixture problem. This two-fluid mix-
ture problem has been considered in [10] and was simulated
by five-equation model. The values of the other physical var-
iables are given as

ρ, p, u, αð Þ = 2:0, 1000, 0, 1ð Þ, if x ≤ 1
2 ,

1,0:01,0, 0ð Þ, otherwise:

8<
: ð54Þ

In this case study, γL = 1:2 and γR = 1:4. In the figure,
one can see a right moving shock wave, a left going rarefac-
tion wave, and a contact discontinuity. The right going
shock hits the interface at x = 0:5. The shock continues to
move towards right, and a rarefaction wave is created which
is moving towards left. For simulation of the results, we take
400 cells, and t = 0:012 is the final time. The results are pre-
sented in Figure 4. The results reveal that two schemes give
comparable results. However, the results of CE/SE scheme
are better than the other schemes.

Problem 4 Comparison test problem. The present test of
water-air mixture is presented here with CE/SE and
RKDG schemes, respectively. The initial values of the
problem are [10]

ρ, p, u, αð Þ = 2:0, 1000, 0, 1ð Þ, if x ≤ 1
2 ,

1,0:01,0, 0ð Þ, otherwise,
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: ð55Þ

0 0.2 0.4 0.6 0.8 1

x–axis

0

0.2

0.4

0.6

0.8

1
𝛼

𝛼

0 0.2 0.4 0.6 0.8 1

x–axis

0

2

4

6

8

10
Density

𝜌

0 0.2 0.4 0.6 0.8 1

x–axis

0

20

40

60

80

100

Pressure

P

0 0.2 0.4 0.6 0.8 1

x–axis

0

2

4

6

8

10
Velocity

u

Exact
CE/SE

Central (NT)
RKDG

Exact
CE/SE

Central (NT)
RKDG

Exact
CESE

Central (NT)
RKDG

Exact
CE/SE

Central (NT)
RKDG

Figure 4: Results of Problem 3.
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where γR = 4:4, γL = 1:4, πL = 6x108, CFL = 0:4, and α = 1.
The results at t = 200μs are depicted in Figure 5. We can
observe that all the schemes are in close agreement with each
other. However, among all CE/SE performance is better.

5. Conclusions

In this article, reduced six-equation flow model was numer-
ically investigated by the space-time CE/SE and RKDG
schemes. The numerical complexities related to the model
include accurate discretization of source term. The proposed
methods have the ability to resolve sharp discontinuous pro-
files. The numerical test problems show the performance of
the suggested method to handle a wide range of flow condi-
tions. The results of suggested schemes are compared with
those obtained from the central (NT) scheme and exact
solutions. A good agreement was observed among the results
of CE/SE and RKDG schemes. However, it was found that
our suggested CE/SE scheme effectively resolves sharp dis-
continuities better than central (NT). The CE/SE scheme
generally proposes a good strategy for solving both noncon-
servative and conservative system of equations.
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