
Research Article
Quadruple Best Proximity Points with Applications to Functional
and Integral Equations

Hasanen A. Hammad ,1,2 Rashwan A. Rashwan,3 A. Nafea ,2 and Fahd Jarad 4,5,6

1Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University, Saudi Arabia
2Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
3Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt
4Department of Mathematics, Çankaya University, Etimesgut, 06790 Ankara, Turkey
5Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Correspondence should be addressed to Fahd Jarad; fahd@cankaya.edu.tr

Received 23 February 2022; Accepted 4 April 2022; Published 6 May 2022

Academic Editor: Sergey Shmarev

Copyright © 2022 Hasanen A. Hammad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This manuscript is devoted to obtaining a quadruple best proximity point for a cyclic contraction mapping in the setting of
ordinary metric spaces. The validity of the theoretical results is also discussed in uniformly convex Banach spaces.
Furthermore, some examples are given to strengthen our study. Also, under suitable conditions, some quadruple fixed point
results are presented. Finally, as applications, the existence and uniqueness of a solution to a system of functional and integral
equations are obtained to promote our paper.

1. Introduction and Preliminaries

Fixed point (FP) theory has many applications not only in
the nonlinear analysis and its trends, from solutions of dif-
ferential and integral equations, functional equations arising
from dynamical programming, topology, and a dynamical
system, but also in economics, game theory, biological
sciences, computer sciences, and chemistry, etc. [1–4].

The FP technique became more attractive and elegant
when Banach [5] introduced his principle, which is stated
as follows: a mapping Γ : Y ⟶ Y defined on a complete
metric space (MS) ðY , dÞ has a unique FP if Γ is a contrac-
tion, i.e., dðΓσ1, Γσ2Þ ≤ kdðσ1, σ2Þ, k ∈ ð0, 1Þ. He used this
method for studying the existence of solutions for some inte-
gral equations.

The FP technique was extended to a coupled and tripled
FP by Bhaskar and Lakshmikantham [6] and Berinde and
Borcut [7], respectively. Many researchers have worked in
these directions and obtained exciting results and life appli-

cations that serve the scientific communities, which in turn
has led to the fixed points being brilliant and pioneering in
the field of functional analysis until the present time. For
more details, see [8–20].

Not only did the matter stop here, but Karapinar and
Sadarangani [21] were able to generalize the triple point to
the quadruple and generalized the previous results on this
scale in terms of theories and applications. After that, this
trend spreads to others; see, for instance, [22–25].

In 1978, Pathak and B. Fisher [26] were able to merge
the state and decision space to clarify the importance of
the FP methodology in finding the solution to the following
functional system:

η σ1ð Þ = sup
σ2∈D

ℵ σ1, σ2, η I σ1, σ2ð Þð Þð Þ, ð1Þ

where S and D are the state space and the decision space,
respectively; σ1 ∈ S,I denotes the transformation of the
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process; and ηðσ1Þ refers to the optimal return function with
the initial state σ1. The above system is called a functional
equation arising from dynamical programming which is
commonly used in modeling and optimization problems.
To clarify the participation of fixed and coincidence points
and to delve deeper into this trend, we guide the reader to
read these papers [27–30].

On the other hand, the importance of the FP technique
lies in the fact that it presents a unified process and an
important tool in solving equations that do not have to be
linear. In the case of dðz, ΓzÞ ≠ 0, that is, a contraction map-
ping Γ does not possess a FP; it became necessary to search a
pointzthat makesdðz, ΓzÞthe minimum, meaning the pointz
is in close proximity toΓðzÞ:

Assume that Z,O are nonempty closed subsets of a
complete MS Y and Γ : Z⟶O is a given mapping. A point
z ∈ Z is called the best proximity point (BPP, for short) if
dðz, ΓzÞ = dðZ,OÞ, where dðZ,OÞ is described as

d Z,Oð Þ = inf d z, oð Þ: z ∈ Z, o ∈Of g: ð2Þ

It should be noted that if Z ∩O ≠∅, then a BPP
reduces to a usual FP.

The initial paper concerned with the BPP was presented
by Fan [31]. This direction is very interesting in optimiza-
tion, so many researchers have discussed and developed this
direction in several applications; see, [32–36].

Now, we need the definitions below.

Definition 1 (see [37]). A Banach space Y is said to be

(i) strictly convex, if

σ1k k = σ2k k = 1with σ1 ≠ σ2 implies σ1 + σ2
2

��� ��� < 1, ∀σ1, σ2 ∈ Y ,

ð3Þ

(ii) uniformly convex, if for any ε ∈ ð0, 2�, there is δ>0
so that

σ1k k ≤ 1, σ2k k ≤ 1with σ1 − σ2k k ≥ ε implies σ1 + σ2
2

��� ���
< 1 − δ, ∀σ1, σ2 ∈ Y :

ð4Þ

Clearly, a uniformly convex Banach space (UCBS) is
strictly convex, but the opposite does not hold.

Definition 2 (see [21]). Assume that ðY , dÞ is a MS and
Z ≠∅ is a subset of Y . A point ðσ1, σ2, σ3, σ4Þ ∈ Z4 is called
a quadruple fixed point (QFP, for short) of the map
Θ : Z4 ⟶ Z if

σ1 =Θ σ1, σ2, σ3, σ4ð Þ, σ2 =Θ σ2, σ3, σ4, σ1ð Þ, σ3
=Θ σ3, σ4, σ1, σ2ð Þ, σ4 =Θ σ4, σ1, σ2, σ3ð Þ: ð5Þ

Our paper is arranged as follows: In Section 2, some new
definitions and supporting examples are presented. Also, the
convergence of quadruple best proximity (QBP, for short)
points for a pair of cyclic contraction mappings without and
with property UC∗ are obtained in the context of metric
spaces (MSs). Moreover, quadruple fixed point (QFP) results
for cyclic contraction mappings are established, and an exam-
ple for supporting the above results is discussed in Section 3.
In Section 4, the existence of a solution for quadruple func-
tional equations arising in dynamical programming is
discussed, and an example for supporting the results is pre-
sented. Ultimately, in Section 5, the existence of solutions for
a system of quadruple integral equations is given, and an
example is obtained to strengthen this contribution.

2. Main Results

This part is devoted to present the convergence of QBP
points for a pair of cyclic contraction mappings in the setting
of ordinary MSs.

We begin this part with the definitions below.

Definition 3. Let Z and O be two nonempty closed subsets of
a MS ðY , dÞ. The pair ðZ,OÞ is called to satisfy the property
UC, if there exist fσn1g, fσn4g ⊂ Z and fσn2g, fσn

3g ⊂O such
that

d σn
1 , σn

2ð Þ⟶ d Z,Oð Þ, d σn1 , σn3ð Þ⟶ d Z,Oð Þ, d σn
4 , σn2ð Þ

⟶ d Z,Oð Þ, d σn4 , σn3ð Þ⟶ d Z,Oð Þ,
ð6Þ

as n⟶∞, then

d σn1 , σn
4ð Þ⟶ 0, as n⟶∞: ð7Þ

Example 1. Suppose that Z and O are two nonempty subsets
of a MS ðY , dÞ with dðZ,OÞ = 0. Then, ðZ,OÞ satisfies the
property UC:

Example 2. Assume that Z, Z′,O, and O′ are nonempty
subsets of a MS ðY , dÞ with Z ⊂ Z ′,O ⊂O′, and dðZ,OÞ =
dðZ ′,O′Þ. If the pair ðZ,OÞ satisfies the property UC, then
the pair ðZ ′,O′Þ satisfies also the property UC:

Example 3. Suppose that Z and O are nonempty subsets of a
UCBS, then the pair ðZ,OÞ satisfies the property UC, if one
of the hypotheses below holds:

(i) Z is convex

(ii) Z is convex relatively compact

Definition 4. Assume that ðY , dÞ is a MS and Z, O are two
nonempty subsets of Y : We say that the pair ðZ,OÞ has
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the property UC∗ if ðZ,OÞ has the property UC and the stip-
ulation below is fulfilled:

If the sequences fσn1g,fσn4g in Z and fσn2g,fσn3g in O so
that the following statements are fulfilled:

(†1) dðσn
4 , σn2Þ⟶ dðZ,OÞ and dðσn

4 , σn3Þ⟶ dðZ,OÞ
(†2) ∀ε > 0,∃N ∈ℕ so that

d σm1 , σn2ð Þ ≤ d Z,Oð Þ + ε, ∀m > n ≥N ,
d σm1 , σn3ð Þ ≤ d Z,Oð Þ + ε, ∀m > n ≥N ,

ð8Þ

then there is N1 ∈ℕ so that

d σm
1 , σn4ð Þ ≤ d Z,Oð Þ + ε, ∀m > n ≥N1: ð9Þ

Example 4. For nonempty subsets Z and O of a MS ðY , dÞ,
assume that dðZ,OÞ = 0. Then, the pair ðZ,OÞ posses the
property UC∗:

Example 5. Assume that all requirements of Example 2 hold.
If the pair ðZ,OÞ has the propertyUC∗, then the pair ðZ′,O′Þ
has the property UC∗ too:

Example 6. Assume that Z,O are two nonempty subsets of
a UCBS and Z is convex. Then, ðZ,OÞ verifies the prop-
erty UC∗:

Definition 5. Assume that ðY , dÞ is a MS and Z, O are non-
empty closed subsets of Y : Also assume Θ : Z4 ⟶O is a
given mapping. We say that a quadruple ðσ1, σ2, σ3, σ4Þ ∈ Z4

is a QBP point of Θ if,

d σ1,Θ σ1, σ2, σ3, σ4ð Þð Þ = d σ2,Θ σ2, σ3, σ4, σ1ð Þð Þ
= d σ3,Θ σ3, σ4, σ1, σ2ð Þð Þ
= d σ4,Θ σ4, σ1, σ2, σ3ð Þð Þ
= d Z,Oð Þ:

ð10Þ

Clearly, when Z =O in Definition 5, then a QBP point
reduces to a QFP.

Definition 6. Assume that ðY , dÞ is a MS and Z, O are
nonempty closed subsets of Y : We say that the mappings
Θ : Z4 ⟶O and Ω : O4 ⟶ Z are cyclic contractions if
there is ℓ ∈ 0, 1Þ so that the inequality below holds:

d Θ σ1, σ2, σ3, σ4ð Þ,Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
≤
ℓ
4 d σ1, ϑ1ð Þ + d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð Þð Þ
+ 1 − ℓð Þd Z,Oð Þ,

ð11Þ

for all ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4:

Notice that, if the pair ðΘ,ΩÞ is a cyclic contraction,
then the pair ðΩ,ΘÞ is a cyclic contraction too.

Example 7. Consider Y =ℝ equipped with the distance
dðσ1, σ2Þ = jσ1 − σ2j. Let Z = ½3, 9� and O = ½−9,−3�: Obvi-

ously, dðZ,OÞ = 6: Describe two mappings Θ : Z4 ⟶O
and Ω : O4 ⟶ Z as

Θ σ1, σ2, σ3, σ4ð Þ = −σ1 − σ2 − σ3 − σ4 − 12
8 ,

Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þ = −ϑ1 − ϑ2 − ϑ3 − ϑ4 + 12
8 ,

ð12Þ

for all ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4, respec-
tively. For each ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4

and let ℓ = 1/2, we have

d Θ σ1, σ2, σ3, σ4ð Þ,Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
= −σ1 − σ2 − σ3 − σ4 − 12

8 −
−ϑ1 − ϑ2 − ϑ3 − ϑ4 + 12

8

����
����

≤
σ1 − ϑ1j j + σ2 − ϑ2j j + σ3 − ϑ3j j + σ4 − ϑ4j j

8 + 3

= ℓ
4 d σ1, ϑ1ð Þ + d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð Þð Þ
+ 1 − ℓð Þd Z,Oð Þ:

ð13Þ

This leads to the pair ðΘ,ΩÞ as a cyclic contraction with
ℓ = 1/2:

Example 8. Consider Y =ℝ4 endowed with

d σ1, σ2, σ3, σ4ð Þ, ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
=max σ1 − ϑ1j j, σ2 − ϑ2j j, σ3 − ϑ3j j, σ4 − ϑ4j jf g, ð14Þ

for all ðσ1, σ2, σ3, σ4Þ,ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈ Y and suppose that

Z = σ1, 0, 0, 0ð Þ ∈ℝ4 : 0 ≤ σ1 ≤ 1
� �

,O
= ϑ1, 1, 1, 1ð Þ ∈ℝ4 : 0 ≤ ϑ1 ≤ 1
� �

:
ð15Þ

Clearly, dðZ,OÞ = 1. Define Θ : Z4 ⟶O and Ω : O4

⟶ Z by

Θ σ1, 0, 0, 0ð Þ, σ2, 0, 0, 0ð Þ, σ3, 0, 0, 0ð Þ, σ4, 0, 0, 0ð Þð Þ
= σ1 + σ2 + σ3 + σ4

4 , 1, 1, 1
� �

,

Ω ϑ1, 1, 1, 1ð Þ, ϑ2, 1, 1, 1ð Þ, ϑ3, 1, 1, 1ð Þ, ϑ4, 1, 1, 1ð Þð Þ
= ϑ1 + ϑ2 + ϑ3 + ϑ4

4 , 0, 0, 0
� 	

,
ð16Þ
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respectively. Then, we obtain

d
Θ σ1, 0, 0, 0ð Þ, σ2, 0, 0, 0ð Þ, σ3, 0, 0, 0ð Þ, σ4, 0, 0, 0ð Þð Þ,
Ω ϑ1, 1, 1, 1ð Þ, ϑ2, 1, 1, 1ð Þ, ϑ3, 1, 1, 1ð Þ, ϑ4, 1, 1, 1ð Þð Þ

 !

= d
σ1 + σ2 + σ3 + σ4

4 , 1, 1, 1
� �

, ϑ1 + ϑ2 + ϑ3 + ϑ4
4 , 0, 0, 0

� 	� 	
= 1:

ð17Þ

Also, if

σ1, 0, 0, 0ð Þ, σ2, 0, 0, 0ð Þ, σ3, 0, 0, 0ð Þ, σ4, 0, 0, 0ð Þ ∈ Z,
ϑ1, 1, 1, 1ð Þ, ϑ2, 1, 1, 1ð Þ, ϑ3, 1, 1, 1ð Þ, ϑ4, 1, 1, 1ð Þ ∈O,

ð18Þ

then one can write

ℓ
4 d σ1, 0, 0, 0ð Þ, ϑ1, 1, 1, 1ð Þð Þ + d σ2, 0, 0, 0ð Þ, ϑ2, 1, 1, 1ð Þð Þð

+ d σ3, 0, 0, 0ð Þ, ϑ3, 1, 1, 1ð Þð Þ + d σ4, 0, 0, 0ð Þ, ϑ4, 1, 1, 1ð Þð ÞÞ
+ 1 − ℓð Þd Z,Oð Þ = ℓ

4 max σ1 − ϑ1j j, 1, 1, 1f gð
+max σ2 − ϑ2j j, 1, 1, 1f g +max σ3 − ϑ3j j, 1, 1, 1f g
+max σ4 − ϑ4j j, 1, 1, 1f gÞ + 1 − ℓð Þd Z,Oð Þ = ℓ

4 × 4

+ 1 − ℓð Þ = 1,
ð19Þ

for any ℓ < 1. In addition, let

σ1, σ2, σ3, σ4ð Þ = σ1, 0, 0, 0ð Þ, σ2, 0, 0, 0ð Þ, σ3, 0, 0, 0ð Þ, σ4, 0, 0, 0ð Þð Þ ∈ Z4,
ϑ1, ϑ2, ϑ3, ϑ4ð Þ = ϑ1, 1, 1, 1ð Þ, ϑ2, 1, 1, 1ð Þ, ϑ3, 1, 1, 1ð Þ, ϑ4, 1, 1, 1ð Þð Þ ∈O4,

ð20Þ

then it follows from (17) and (19) that

d Θ σ1, σ2, σ3, σ4ð Þ,Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
≤
ℓ
4 d σ1, ϑ1ð Þ + d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð Þð Þ
+ 1 − ℓð Þd Z,Oð Þ:

ð21Þ

Thus, the pair ðΘ,ΩÞ is a cyclic contraction.
The lemma below is very important in the sequel.

Lemma 7. Assume that ðY , dÞ is a MS and Z,O are nonempty
closed subsets of Y : LetΘ : Z4 ⟶O andΩ : O4 ⟶ Z be two
cyclic contraction mappings. If ðσ0

1, σ0
2, σ0

3, σ04Þ ∈ Z4 and the
sequences fσn1g, fσn2g, fσn3g, fσn

4g in Y are defined as follows:

σ2n+11 =Θ σ2n1 , σ2n2 , σ2n3 , σ2n4

 �

, σ2n+21 =Ω σ2n+1
1 , σ2n+1

2 , σ2n+1
3 , σ2n+1

4


 �
,

σ2n+12 =Θ σ2n2 , σ2n3 , σ2n4 , σ2n1

 �

, σ2n+22 =Ω σ2n+1
2 , σ2n+1

3 , σ2n+1
4 , σ2n+1

1


 �
,

σ2n+13 =Θ σ2n3 , σ2n4 , σ2n1 , σ2n2

 �

, σ2n+23 =Ω σ2n+1
3 , σ2n+1

4 , σ2n+1
1 , σ2n+1

2


 �
,

σ2n+14 =Θ σ2n4 , σ2n1 , σ2n2 , σ2n3

 �

, σ2n+24 =Ω σ2n+1
4 , σ2n+1

1 , σ2n+1
2 , σ2n+1

3


 �
,

ð22Þ

for all n ≥ 0, then we get

d σ2n1 , σ2n+1
1


 �
⟶ d Z,Oð Þ, d σ2n+11 , σ2n+21


 �
⟶ d Z,Oð Þ,

d σ2n2 , σ2n+1
2


 �
⟶ d Z,Oð Þ, d σ2n+12 , σ2n+22


 �
⟶ d Z,Oð Þ,

d σ2n3 , σ2n+1
3


 �
⟶ d Z,Oð Þ, d σ2n+13 , σ2n+23


 �
⟶ d Z,Oð Þ,

d σ2n4 , σ2n+14


 �
⟶ d Z,Oð Þ, d σ2n+1

1 , σ2n+21


 �
⟶ d Z,Oð Þ:

ð23Þ

Proof. Consider, for each n ∈ℕ,

d σ2n1 , σ2n+11

 �

= d σ2n
1 ,Θ σ2n

1 , σ2n
2 , σ2n

3 , σ2n
4


 �
 �
= d

Ω σ2n−1
1 , σ2n−1

2 , σ2n−1
3 , σ2n−14


 �
,

Θ
Ω σ2n−1

1 , σ2n−1
2 , σ2n−13 , σ2n−14


 �
,Ω σ2n−1

2 , σ2n−1
3 , σ2n−1

4 , σ2n−1
1


 �
,

Ω σ2n−1
3 , σ2n−1

4 , σ2n−11 , σ2n−12

 �

,Ω σ2n−14 , σ2n−1
1 , σ2n−1

2 , σ2n−1
3


 �
0
@

1
A

0
BBBB@

1
CCCCA

≤
ℓ
4 d σ2n−1

1 ,Ω σ2n−1
1 , σ2n−1

2 , σ2n−1
3 , σ2n−14


 �
 �
+ d σ2n−12 ,Ω σ2n−12 , σ2n−13 , σ2n−14 , σ2n−11


 �
 ��
+ d σ2n−13 ,Ω σ2n−1

3 , σ2n−1
4 , σ2n−1

1 , σ2n−1
2


 �
 �
+ d σ2n−1

4 ,Ω σ2n−1
4 , σ2n−11 , σ2n−12 , σ2n−13


 �
 �

+ 1 − ℓð Þd Z,Oð Þ

= ℓ
4 d

Θ σ2n−21 , σ2n−22 , σ2n−23 , σ2n−2
4


 �
,

Ω
Θ σ2n−2

1 , σ2n−2
2 , σ2n−2

3 , σ2n−24

 �

,Θ σ2n−2
2 , σ2n−2

3 , σ2n−2
4 , σ2n−21


 �
,

Θ σ2n−2
3 , σ2n−2

4 , σ2n−2
1 , σ2n−2

2

 �

,Θ σ2n−2
4 , σ2n−2

1 , σ2n−2
2 , σ2n−2

3

 �

0
@

1
A

0
BBBB@

1
CCCCA

2
66664 + d

Θ σ2n−22 , σ2n−2
3 , σ2n−2

4 , σ2n−2
1


 �
,

Ω
Θ σ2n−22 , σ2n−23 , σ2n−24 , σ2n−2

1

 �

,Θ σ2n−23 , σ2n−24 , σ2n−2
1 , σ2n−2

2

 �

Θ σ2n−24 , σ2n−21 , σ2n−22 , σ2n−2
3


 �
,Θ σ2n−21 , σ2n−22 , σ2n−2

3 , σ2n−2
4


 �
0
@

1
A

0
BBBB@

1
CCCCA

+ d

Θ σ2n−2
3 , σ2n−24 , σ2n−21 , σ2n−22


 �
,

Ω
Θ σ2n−2

3 , σ2n−2
4 , σ2n−2

1 , σ2n−22

 �

,Θ σ2n−2
4 , σ2n−2

1 , σ2n−2
2 , σ2n−23


 �
,

Θ σ2n−2
1 , σ2n−2

2 , σ2n−2
3 , σ2n−2

4

 �

,Θ σ2n−2
2 , σ2n−2

3 , σ2n−2
4 , σ2n−21


 �
0
@

1
A

0
BBBB@

1
CCCCA+d

Θ σ2n−24 , σ2n−21 , σ2n−22 , σ2n−23

 �

,

Ω
Θ σ2n−2

4 , σ2n−2
1 , σ2n−22 , σ2n−23


 �
,Θ σ2n−2

1 , σ2n−2
2 , σ2n−23 , σ2n−24


 �
Θ σ2n−2

2 , σ2n−2
3 , σ2n−24 , σ2n−21


 �
,Θ σ2n−2

3 , σ2n−2
4 , σ2n−21 , σ2n−22


 �
0
@

1
A

0
BBBB@

1
CCCCA

3
77775

+ 1 − ℓð Þd Z,Oð Þ:
ð24Þ
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Using (11), we have

d σ2n1 , σ2n+11

 �

≤
ℓ
4

ℓ
4 d σ2n−2

1 ,Θ σ2n−21 , σ2n−2
2 , σ2n−2

3 , σ2n−2
4


 �

 ��
+ d σ2n−2

2 ,Θ σ2n−22 , σ2n−23 , σ2n−2
4 , σ2n−2

1

 �
 �

+ d σ2n−2
3 ,Θ σ2n−23 , σ2n−24 , σ2n−2

1 , σ2n−2
2


 �
 �
+ d σ2n−2

4 ,Θ σ2n−24 , σ2n−21 , σ2n−2
2 , σ2n−2

3

 �
 �Þ

+ 1 − ℓð Þd Z,Oð Þ + ℓ
4 d σ2n−2

2 ,Θ σ2n−22 , σ2n−2
3 , σ2n−2

4 , σ2n−2
1


 �
 �

+ d σ2n−2

3 ,Θ σ2n−23 , σ2n−24 , σ2n−2
1 , σ2n−2

2

 �
 �

+ d σ2n−2
4 ,Θ σ2n−24 , σ2n−21 , σ2n−2

2 , σ2n−2
3


 �
 �
+ d σ2n−2

1 ,Θ σ2n−21 , σ2n−22 , σ2n−2
3 , σ2n−2

4

 �
 �Þ + 1 − ℓð Þd Z,Oð Þ

+ ℓ
4 d σ2n−23 ,Θ σ2n−23 , σ2n−24 , σ2n−21 , σ2n−22


 �
 �
, d



� σ2n−24 ,Θ σ2n−24 , σ2n−21 , σ2n−22 , σ2n−23


 �
 �
+ d σ2n−2

1 ,Θ σ2n−21 , σ2n−22 , σ2n−2
3 , σ2n−2

4

 �
 �

+ d σ2n−2
2 ,Θ σ2n−22 , σ2n−23 , σ2n−2

4 , σ2n−2
1


 �
 �Þ
+ 1 − ℓð Þd Z,Oð Þ + ℓ

4 d σ2n−2
4 ,Θ σ2n−24 , σ2n−2

1 , σ2n−2
2 , σ2n−2

3

 �
 �


+ d σ2n−2
1 ,Θ σ2n−21 , σ2n−22 , σ2n−2

3 , σ2n−2
4


 �
 �
+ d σ2n−2

2 ,Θ σ2n−22 , σ2n−23 , σ2n−2
4 , σ2n−2

1

 �
 �

+ d σ2n−2
3 ,Θ σ2n−23 , σ2n−24 , σ2n−2

1 , σ2n−2
2


 �
 ��
+ 1 − ℓð Þd Z,Oð Þ

�
+ 1 − ℓð Þd Z,Oð Þ

= ℓ2

4 d σ2n−2
1 ,Θ σ2n−21 , σ2n−22 , σ2n−2

3 , σ2n−2
4


 �
 �

+ d σ2n−2

2 ,Θ σ2n−22 , σ2n−23 , σ2n−2
4 , σ2n−2

1

 �
 �

+ d σ2n−2
3 ,Θ σ2n−23 , σ2n−24 , σ2n−2

1 , σ2n−2
2


 �
 �
+ d σ2n−2

4 ,Θ σ2n−24 , σ2n−21 , σ2n−2
2 , σ2n−2

3

 �
 ��

+ 1 − ℓ2

 �

d Z,Oð Þ:
ð25Þ

By mathematical induction, we obtain for each n ∈ℕ that

d σ2n1 , σ2n+11

 �

≤
ℓ2n

4 d σ0
1,Θ σ01, σ02, σ03, σ04


 �
 �
+ d σ02,Θ σ0

2, σ0
3, σ0

4, σ0
1


 �
 �

+ d σ0

3,Θ σ0
3, σ04, σ01, σ02


 �
 �
+ d σ04,Θ σ04, σ01, σ02, σ03


 �
 ��
+ 1 − ℓ2

 �

d Z,Oð Þ:
ð26Þ

Passing n⟶∞, we find that

d σ2n1 , σ2n+1
1


 �
⟶ d Z,Oð Þ: ð27Þ

Again, for each n ∈ℕ, by induction, one can write

d σ2n+11 , σ2n+2
1


 �
≤
ℓ2n

4 d σ11,Θ σ11, σ1
2, σ1

3, σ1
4


 �
 �
+ d σ12,Θ σ1

2, σ1
3, σ14, σ11


 �
 �

+ d σ1

3,Θ σ13, σ14, σ1
1, σ1

2

 �
 �

+ d σ14,Θ σ1
4, σ1

1, σ12, σ13

 �
 ��

+ 1 − ℓ2

 �

d Z,Oð Þ,
ð28Þ

this yields after passing n⟶∞,

d σ2n+11 , σ2n+21

 �

⟶ d Z,Oð Þ: ð29Þ

Analogously, we have

d σ2n
2 , σ2n+1

2

 �

⟶ d Z,Oð Þ, d σ2n+1
2 , σ2n+22


 �
⟶ d Z,Oð Þ, d σ2n3 , σ2n+13


 �
⟶ d Z,Oð Þ,

d σ2n+13 , σ2n+2
3


 �
⟶ d Z,Oð Þ, d σ2n

4 , σ2n+1
4


 �
⟶ d Z,Oð Þ, d σ2n+1

1 , σ2n+21

 �

⟶ d Z,Oð Þ:
ð30Þ

This finishes the required proof.

Lemma 8. Assume that ðY , dÞ is a MS and Z, O are non-
empty closed subsets of Y so that ðZ,OÞ and ðO, ZÞ satisfy
the property UC. Let the mappings Θ : Z4 ⟶O and Ω
: O4 ⟶ Z be cyclic contractions. If ðσ01, σ02, σ03, σ04Þ ∈ Z4 and
the sequences fσn

1g, fσn2g, fσn3g, fσn4g in Y are defined as
(22), ∀n ∈ℕ ∪ f0g, then for each ε > 0, there is N0 > 0 so that

1
4

d σ2m1 , σ2n+11


 �
+ d σ2m2 , σ2n+12


 �
+ d σ2m3 , σ2n+13


 �
+ d σ2m

4 , σ2n+14


 �
 �
< d Z,Oð Þ + ε, ∀m > n ≥N0:

ð31Þ

Proof. According to Lemma 7, we get

d σ2n1 , σ2n+11

 �

⟶ d Z,Oð Þ, d σ2n+1
1 , σ2n+21


 �
⟶ d Z,Oð Þ,

d σ2n2 , σ2n+12

 �

⟶ d Z,Oð Þ, d σ2n+1
2 , σ2n+22


 �
⟶ d Z,Oð Þ,

d σ2n3 , σ2n+13

 �

⟶ d Z,Oð Þ, d σ2n+1
3 , σ2n+23


 �
⟶ d Z,Oð Þ,

d σ2n4 , σ2n+1
4


 �
⟶ d Z,Oð Þ, d σ2n+11 , σ2n+21


 �
⟶ d Z,Oð Þ:

ð32Þ

Because ðZ,OÞ fulfills the property UC, then we have

d σ2n
1 , σ2n+21


 �
⟶ 0, d σ2n2 , σ2n+22


 �
⟶ 0, d σ2n3 , σ2n+23


 �
⟶ 0, d σ2n4 , σ2n+24


 �
⟶ 0:

ð33Þ

Also, ðO, ZÞ verifies the property UC, we have

d σ2n+1
1 , σ2n+3

1

 �

⟶ 0, d σ2n+1
2 , σ2n+32


 �
⟶ 0, d σ2n+13 , σ2n+33


 �
⟶ 0, d σ2n+1

4 , σ2n+34

 �

⟶ 0:
ð34Þ

Assuming (31) is not true. Then, for each k ∈ℕ with
mk > nk ≥ k, there is ε′ > 0 so that

1
4 d σ

2mk
1 , σ2nk+1

1

� �
+ d σ

2mk
2 , σ2nk+12

� �
+ d σ

2mk
3 , σ2nk+13

� ��
+ d σ2mk

4 , σ2nk+14
� ��

≥ d Z,Oð Þ + ε′:

ð35Þ

Hence, we can select the smallest integer mk with mk > nk
fulfilling (35). Therefore,
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1
4 d σ

2mk−2
1 , σ2nk+11

� �
+ d σ2mk−2

2 , σ2nk+12
� �

+ d σ2mk−2
3 , σ2nk+13

� ��
+ d σ

2mk−2
4 , σ2nk+14

� ��
< d Z,Oð Þ + ε′:

ð36Þ

Thus, we obtain

d Z,Oð Þ + ε′ ≤ 1
4 d σ

2mk
1 , σ2nk+11

� �
+ d σ2mk

2 , σ2nk+1
2

� ��
+ d σ2mk

3 , σ2nk+13

� �
+ d σ2mk

4 , σ2nk+14

� �
Þ ≤ 1

4 d σ
2mk
1 , σ2mk−2

1

� ��
+ d σ2mk−2

1 , σ2nk+1
1

� �
+ d σ2mk

2 , σ2mk−2
2

� �
+ d σ2mk−2

2 , σ2nk+12

� �
+d σ2mk

3 , σ2mk−2
3

� �
+ d σ2mk−2

3 , σ2nk+13

� �
+ d σ2mk

4 , σ2mk−2
4

� �
+ d σ2mk−2

4 , σ2nk+1
4

� �
Þ < 1

4 d σ
2mk
1 , σ2mk−2

1

� ��
+ d σ2mk

2 , σ2mk−2
2

� �
+ d σ2mk

3 , σ2mk−2
3

� �
+ d σ2mk

4 , σ2mk−2
4

� ��
+ d Z,Oð Þ + ε′:

ð37Þ

As k⟶∞, one can write

1
4 d σ2mk

1 , σ2mk−2
1

� �
+ d σ2mk

2 , σ2mk−2
2

� �
+ d σ2mk

3 , σ2mk−2
3

� ��
+ d σ

2mk
4 , σ2mk−2

4
� ��

⟶ d Z,Oð Þ + ε′:

ð38Þ

Applying the triangle inequality, we get

1
4 d σ

2mk
1 , σ2nk+11

� �
+ d σ

2mk
2 , σ2nk+1

2
� �

+ d σ
2mk
3 , σ2nk+13

� ��
+ d σ

2mk
4 , σ2nk+14

� ��
≤
1
4 d σ

2mk
1 , σ2mk+2

1
� �h

+ d σ
2mk+2
1 , σ2nk+31

� �
+ d σ

2nk+3
1 , σ2nk+1

1
� �

+ d σ
2mk
2 , σ2mk+2

2
� �

+ d σ
2mk+2
2 , σ2nk+32

� �
+ d σ

2nk+3
2 , σ2nk+12

� �
+ d σ

2mk
3 , σ2mk+2

3
� �

+ d σ2mk+2
3 , σ2nk+33

� �
+ d σ2nk+33 , σ2nk+1

3
� �

+d σ2mk
4 , σ2mk+2

4
� �

+ d σ2mk+2
4 , σ2nk+34

� �
+ d σ2nk+34 , σ2nk+1

4
� �i

= 1
4 d σ2mk

1 , σ2mk+2
1

� �h
+ d Ω σ2mk+1

1 , σ2mk+1
2 , σ2mk+1

3 , σ2mk+1
4

� �
,

�
Θ σ2nk+2

1 , σ2nk+22 , σ2nk+2
3 , σ2nk+24

� ��
+d σ2nk+31 , σ2nk+1

1
� �i

+ 1
4 d σ2mk

2 , σ2mk+2
2

� �
+ d Ω σ2mk+1

2 , σ2mk+1
3 , σ2mk+1

4 , σ2mk+1
1

� �
,

�h
Θ σ2nk+22 , σ2nk+23 , σ2nk+24 , σ2nk+21
� ��

+ +d σ2nk+3
2 , σ2nk+12

� �i
+ 1
4

� d σ2mk
3 , σ2mk+2

3
� �

+ d Ω σ2mk+1
3 , σ2mk+1

4 , σ2mk+1
1 , σ2mk+1

2
� �

,
�h

Θ σ2nk+23 , σ2nk+2
4 , σ2nk+21 , σ2nk+2

2
� ��

+d σ2nk+3
3 , σ2nk+13

� �i
+ 1
4

� d σ2mk
4 , σ2mk+2

4
� �

+ d Ω σ2mk+1
4 , σ2mk+1

1 , σ2mk+1
2 , σ2mk+1

3
� �

,
�h

Θ σ
2nk+2
4 , σ2nk+21 , σ2nk+22 , σ2nk+2

3
� ��

+d σ
2nk+3
4 , σ2nk+14

� �i
: ð39Þ

Applying (11), we obtain that

1
4 d σ2mk

1 , σ2nk+1
1

� �
+ d σ2mk

2 , σ2nk+12
� �

+ d σ2mk
3 , σ2nk+13

� ��
+ d σ2mk

4 , σ2nk+14
� ��

≤
1
4 d σ2mk

1 , σ2mk+2
1

� �h
+ ℓ
4 d σ2mk+1

1 , σ2nk+2
1

� �
+ d σ2mk+1

2 , σ2nk+22
� ��

+d σ2mk+1
3 , σ2nk+23

� �
+ d σ2mk+1

4 , σ2nk+24
� �

Þ + 1 − ℓð Þd Z,Oð Þ + d σ2nk+3
1 , σ2nk+11

� �
+ d σ2mk

2 , σ2mk+2
2

� �
+ ℓ
4 d σ2mk+1

2 , σ2nk+2
2

� ��
+ d σ2mk+1

3 , σ2nk+23
� �

+d σ2mk+1
4 , σ2nk+24

� �
+ d σ2mk+1

1 , σ2nk+21
� ��

+ 1 − ℓð Þd Z,Oð Þ + d σ2nk+3
2 , σ2nk+1

2
� �

+ d σ2mk
3 , σ2mk+2

3
� �

+ ℓ
4 d σ2mk+1

3 , σ2nk+2
3

� �
+ d σ2mk+1

4 , σ2nk+24
� ��

+d σ2mk+1
1 , σ2nk+21

� �
+ d σ2mk+1

2 , σ2nk+22
� ��

+ 1 − ℓð Þd Z,Oð Þ + d σ2nk+33 , σ2nk+1
3

� �
+ d σ2mk

4 , σ2mk+2
4

� �
+ ℓ
4 d σ2mk+1

4 , σ2nk+2
4

� ��
+ d σ2mk+1

1 , σ2nk+21
� �

+d σ2mk+1
2 , σ2nk+22

� �
+ d σ2mk+1

3 , σ2nk+23
� ��

+ 1 − ℓð Þd Z,Oð Þ + d σ2nk+3
4 , σ2nk+1

4
� �i

= 1
4 d σ2mk

1 , σ2mk+2
1

� �h
+ d σ2nk+3

1 , σ2nk+11
� �

+ d σ2mk
2 , σ2mk+2

2
� �

+ d σ2nk+3
2 , σ2nk+12

� �
+d σ2mk

3 , σ2mk+2
3

� �
+ d σ2nk+33 , σ2nk+1

3
� �

+ d σ2mk
4 , σ2mk+2

4
� �

+ d σ2nk+3
4 , σ2nk+14

� �i
+ ℓ
4 d σ2mk+1

1 , σ2nk+2
1

� ��
+ d σ2mk+1

2 , σ2nk+22
� �

+ d σ2mk+1
3 , σ2nk+23

� �
+ d σ2mk+1

4 , σ2nk+2
4

� ��
+ 1 − ℓð Þd Z,Oð Þ:

ð40Þ

It follows that

1
4 d σ

2mk
1 , σ2nk+11

� �
+ d σ

2mk
2 , σ2nk+12

� �
+ d σ

2mk
3 , σ2nk+13

� ��
+ d σ

2mk
4 , σ2nk+14

� �
Þ ≤ 1

4 d σ
2mk
1 , σ2mk+2

1
� �h

+ d σ
2nk+3
1 , σ2nk+1

1
� �

+ d σ
2mk
2 , σ2mk+2

2
� �

+ d σ
2nk+3
2 , σ2nk+1

2
� �

+d σ
2mk
3 , σ2mk+2

3
� �

+ d σ
2nk+3
3 , σ2nk+13

� �
+ d σ2mk

4 , σ2mk+2
4

� �
+ d σ2nk+34 , σ2nk+14
� �i

+ ℓ
4

� d Θ σ2mk
1 , σ2mk

2 , σ2mk
3 , σ2mk

4
� �

,Ω σ2nk+1
1 , σ2nk+1

2 , σ2nk+1
3 , σ2nk+1

4
� �� �h

+ d Θ σ2mk
2 , σ2mk

3 , σ2mk
4 , σ2mk

1
� �

,Ω σ2nk+1
2 , σ2nk+1

3 , σ2nk+1
4 , σ2nk+1

1
� �� �

+ d Θ σ2mk
3 , σ2mk

4 , σ2mk
1 , σ2mk

2
� �

,Ω σ2nk+1
3 , σ2nk+1

4 , σ2nk+1
1 , σ2nk+1

2
� �� �

+d Θ σ
2mk
4 , σ2mk

1 , σ2mk
2 , σ2mk

3
� �

,Ω σ
2nk+1
4 , σ2nk+11 , σ2nk+12 , σ2nk+13

� �� �i
+ 1 − ℓð Þd Z,Oð Þ ≤ 1

4 d σ2mk
1 , σ2mk+2

1
� �

+ d σ2nk+31 , σ2nk+11
� �h

+ d σ2mk
2 , σ2mk+2

2
� �

+ d σ2nk+32 , σ2nk+12
� �

+d σ2mk
3 , σ2mk+2

3
� �

+ d σ2nk+33 , σ2nk+13
� �

+ d σ2mk
4 , σ2mk+2

4
� �

+ d σ2nk+34 , σ2nk+14
� �i

+ ℓ2

4 d σ2mk
1 , σ2nk+1

1
� ��

+ d σ
2mk
2 , σ2nk+12

� �
+ d σ

2mk
3 , σ2nk+13

� �
+ d σ

2mk
4 , σ2nk+1

4
� �

Þ + 1 − ℓð Þd Z,Oð Þ:

ð41Þ
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Letting n⟶∞, we have

d Z,Oð Þ + ε′ ≤ ℓ2 d Z,Oð Þ + ε′
� �

+ 1 − ℓ2

 �

d Z,Oð Þ = d Z,Oð Þ + ℓ2ε′,

ð42Þ

which is a contradiction since ℓ < 1. This implies that (31) is
fulfilled, and this finishes the proof.

Lemma 9. Assume that ðY , dÞ is a MS and Z, O are non-
empty closed subsets of Y so that ðZ,OÞ and ðO, ZÞ satisfy
the property UC∗. Let the mappings Θ : Z4 ⟶O and Ω
: Z4 ⟶O be cyclic contractions. If ðσ01, σ0

2, σ0
3, σ0

4Þ ∈ Z4 and
for all n ∈ℕ ∪ f0g, the sequences fσn

1g, fσn
2g, fσn3g, fσn4g in

Y are defined by (22). Then, fσ2n1 g,fσ2n2 g,fσ2n
3 g, and fσ2n4 g

are Cauchy sequences.

Proof. Based on Lemma 7, one can get

d σ2n
1 , σ2n+11


 �
⟶ d Z,Oð Þ, d σ2n+1

1 , σ2n+21

 �

⟶ d Z,Oð Þ:
ð43Þ

As ðZ,OÞ satisfies the property UC, then dðσ2n1 , σ2n+21 Þ
⟶ 0: Similarly, since ðO, ZÞ verifies the property UC, then
dðσ2n+11 , σ2n+31 Þ⟶ 0.

Now, we claim that, ∀ε > 0, ∃N ∈ℕ so that

d σ
2mk
1 , σ2nk+1

1
� �

≤ d Z,Oð Þ + ε, ∀m > n ≥N: ð44Þ

Assume that (44) is not true. Then, ∀k ∈ℕ, ∃ε > 0, and
mk > nk ≥ k such that

d σ
2mk
1 , σ2nk+1

1

� �
> d Z,Oð Þ + ε: ð45Þ

Therefore, we can select a smallest integer mk with
mk > nk fulfilling (45). Hence, one can get

d Z,Oð Þ + ε < d σ
2mk
1 , σ2nk+11

� �
≤ d σ

2mk
1 , σ2mk−2

1
� �

+ d σ2mk−2
1 , σ2nk+11

� �
≤ d σ2mk

1 , σ2mk−2
1

� �
+ d Z,Oð Þ + ε:

ð46Þ

Setting k⟶∞, we have

d σ2mk
1 , σ2nk+1

1
� �

⟶ d Z,Oð Þ + ε: ð47Þ

Using Lemma 8, we can write

1
4 d σ2mk

1 , σ2nk+11
� �

+ d σ2mk
2 , σ2nk+12

� �
+ d σ2mk

3 , σ2nk+1
3

� ��
+ d σ

2mk
4 , σ2nk+1

4
� ��

< d Z,Oð Þ + ε,

ð48Þ

for all mk > nk ≥ k: Applying the triangle inequality, we get

d Z,Oð Þ + ε < d σ
2mk
1 , σ2nk+11

� �
≤ d σ

2mk
1 , σ2mk+2

1

� �
+ d σ

2mk+2
1 , σ2nk+3

1

� �
+ d σ

2nk+3
1 , σ2nk+11

� �
= d σ2mk

1 , σ2mk+2
1

� �
+ d Ω σ2mk+1

1 , σ2mk+1
2 , σ2mk+1

3 , σ2mk+1
4

� �
,

�

Θ σ2nk+21 , σ2nk+22 , σ2nk+23 , σ2nk+24
� ��

+ d σ2nk+31 , σ2nk+11
� �

≤ d σ
2mk
1 , σ2mk+2

1

� �
+ ℓ
4 d σ

2mk+1
1 , σ2mk+2

1

� ��
+ d σ

2mk+1
2 , σ2mk+2

2
� �

+d σ
2mk+1
3 , σ2mk+2

3
� �

+ d σ2mk+1
4 , σ2mk+2

4
� �

Þ + 1 − ℓð Þd Z,Oð Þ + d σ2nk+3
1 , σ2nk+11

� �
= ℓ
4 d Θ σ

2mk
1 , σ2mk

2 , σ2mk
3 , σ2mk

4

� �
,Ω σ

2nk+1
1 , σ2nk+1

2 , σ2nk+13 , σ2nk+14

� �� �h
+ d Θ σ

2mk
2 , σ2mk

3 , σ2mk
4 , σ2mk

1
� �

,Ω σ
2nk+1
2 , σ2nk+13 , σ2nk+14 , σ2nk+11

� �� �
+ d Θ σ

2mk
3 , σ2mk

4 , σ2mk
1 , σ2mk

2
� �

,Ω σ
2nk+1
3 , σ2nk+14 , σ2nk+11 , σ2nk+12

� �� �
+d Θ σ

2mk
4 , σ2mk

1 , σ2mk
2 , σ2mk

3

� �
,Ω σ

2nk+1
4 , σ2nk+11 , σ2nk+12 , σ2nk+13

� �� �i
+ d σ

2mk
1 , σ2mk+2

1
� �

+ d σ
2nk+3
1 , σ2nk+1

1
� �

+ 1 − ℓð Þd Z,Oð Þ

≤
ℓ
4

ℓ
4 d σ2mk

1 , σ2nk+11
� �

+ d σ2mk
2 , σ2nk+1

2
� �

+ d σ2mk
3 , σ2nk+1

3
� ���

+ d σ2mk
4 , σ2nk+1

4
� ��

+ 1 − ℓð Þd Z,Oð Þ + ℓ
4 d σ2mk

2 , σ2nk+12
� ��

+ d σ
2mk
3 , σ2nk+1

3

� �
+ d σ

2mk
4 , σ2nk+1

4

� �
+ d σ

2mk
1 , σ2nk+11

� ��
+ 1 − ℓð Þd Z,Oð Þ ℓ4 d σ

2mk
3 , σ2nk+13

� �
+ d σ

2mk
4 , σ2nk+14

� ��
+ d σ2mk

1 , σ2nk+1
1

� �
+ d σ2mk

2 , σ2nk+1
2

� ��
+ 1 − ℓð Þd Z,Oð Þ + ℓ

4 d σ
2mk
4 , σ2nk+1

4

� ��
+ d σ2mk

1 , σ2nk+1
1

� �
+ d σ2mk

2 , σ2nk+1
2

� �
+ d σ2mk

3 , σ2nk+13
� ��

+ 1 − ℓð Þd Z,Oð Þ� + d σ
2mk
1 , σ2mk+2

1
� �

+ d σ
2nk+3
1 , σ2nk+11

� �
+ 1 − ℓð Þd Z,Oð Þ = ℓ2

4 d σ
2mk
1 , σ2nk+11

� �
+ d σ

2mk
2 , σ2nk+1

2

� ��
+ d σ2mk

3 , σ2nk+1
3

� �
+ d σ2mk

4 , σ2nk+1
4

� ��
+ 1 − ℓ2

 �

d Z,Oð Þ
+ d σ

2mk
1 , σ2mk+2

1

� �
+ d σ

2nk+3
1 , σ2nk+1

1

� �
< ℓ2 d Z,Oð Þ + εð Þ

+ 1 − ℓ2

 �

d Z,Oð Þ + d σ
2mk
1 , σ2mk+2

1

� �
+ d σ

2nk+3
1 , σ2nk+11

� �
= ℓ2ε + d Z,Oð Þ + d σ

2mk
1 , σ2mk+2

1
� �

+ d σ
2nk+3
1 , σ2nk+11

� �
:

ð49Þ

Letting n⟶∞, we obtain that

d Z,Oð Þ + ε ≤ d Z,Oð Þ + ℓ2ε: ð50Þ

This is a contradiction. This achieves the inequality (44). It fol-
lows from (44), dðσ2n1 , σ2n+11 Þ⟶ dðZ,OÞ and the property
UC∗ of dðZ,OÞ that fσ2n1 g is a Cauchy sequence. By the same
manner, we can show that fσ2n

2 g, fσ2n3 g, and fσ2n
4 g are

Cauchy sequences. This finishes the proof.

Now, via the property UC∗, we shall discuss the exis-
tence and convergence of QBP points.
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Theorem 10. Assume that Z and O are nonempty closed sub-
sets of Y so that the property UC∗ are satisfied on ðZ,OÞ and
ðO, ZÞ. Let the mappings Θ : Z4 ⟶O and Ω : O4 ⟶ Z be
cyclic contractions. If ðσ01, σ02, σ03, σ04Þ ∈ Z4 and for all
n ∈ℕ ∪ f0g, the sequences fσn1g, fσn

2g, fσn3g, fσn4g in Y are
described as (22): Then, Θ has a QBP point ðℸ1,ℸ2,ℸ3,ℸ4Þ
∈ Z4 and Ω has a QBP point ðℸ1′ ,ℸ2 ′,ℸ3 ′,ℸ4 ′Þ ∈O4. More-
over, we have

σ2n1 ⟶ℸ1, σ2n2 ⟶ℸ2, σ2n
3 ⟶ℸ3, σ2n4 ⟶ℸ4, σ2n+11

⟶ℸ1′ , σ2n+1
2 ⟶ℸ2′ , σ2n+13 ⟶ℸ3′ , σ2n+14 ⟶ℸ4′:

ð51Þ

In addition, if ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′, then

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð52Þ

Proof. Based on Lemma 7, we conclude that dðσ2n
1 , σ2n+11 Þ⟶

dðZ,OÞ: From Lemma 9, we find that fσ2n1 g, fσ2n2 g, fσ2n3 g,
and fσ2n4 g are Cauchy sequences. Thus, there are ðℸ1,ℸ2,
ℸ3,ℸ4Þ ∈ Z so that σ2n1 ⟶ℸ1, σ

2n
2 ⟶ℸ2, σ

2n
3 ⟶ℸ3, and

σ2n4 ⟶ℸ4. Hence, we have

d Z,Oð Þ ≤ d ℸ1, σ2n−1
1


 �
≤ d ℸ1, σ2n

1

 �

+ d σ2n1 , σ2n−1
1


 �
: ð53Þ

Passing n⟶∞ in (53), we find that

d ℸ1, σ2n−1
1


 �
⟶ d Z,Oð Þ: ð54Þ

By the same method, we have

d ℸ2, σ2n−1
1


 �
⟶ d Z,Oð Þ, d ℸ3, σ2n−1

3

 �

⟶ d Z,Oð Þ, d ℸ4, σ2n−1
4


 �
⟶ d Z,Oð Þ:

ð55Þ

Now, consider

d σ2n1 ,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þ
 �
= d Ω σ2n−1

1 , σ2n−1
2 , σ2n−1

3 , σ2n−1
4


 �
,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þ
 �

≤
ℓ
4 d σ2n−11 ,ℸ1


 �
, d σ2n−1

2 ,ℸ2

 �

, d σ2n−13 ,ℸ3

 �

, d



� σ2n−1
4 ,ℸ4


 �Þ + 1 − ℓdZ,Oð Þ:
ð56Þ

Passing n⟶∞, we obtain

d ℸ1,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þð Þ = d Z,Oð Þ: ð57Þ

Analogously, we can obtain

d ℸ2,Θ ℸ2,ℸ3,ℸ4,ℸ1ð Þð Þ = d Z,Oð Þ, d ℸ3,Θ ℸ3,ℸ4,ℸ1,ℸ2ð Þð Þ
= d Z,Oð Þ, d ℸ4,Θ ℸ4,ℸ1,ℸ2,ℸ3ð Þð Þ
= d Z,Oð Þ:

ð58Þ

Therefore, ðℸ1,ℸ2,ℸ3,ℸ4Þ is a QBP point of Θ:

Analogously, we can prove that there are ℸ1′ ,ℸ2′ ,ℸ3′ ,
ℸ4′ ∈O so that σ2n+1

1 ⟶ℸ1′, σ2n+12 ⟶ℸ2′, σ2n+1
3 ⟶ℸ3′,

and σ2n+14 ⟶ℸ4′. Moreover, we get

d ℸ1′ ,Θ ℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′
� �� �

= d Z,Oð Þ, d ℸ2′ ,Θ ℸ2′ ,ℸ3′ ,ℸ4′ ,ℸ1′
� �� �

= d Z,Oð Þ,

d ℸ3′ ,Θ ℸ3′ ,ℸ4′ ,ℸ1′ ,ℸ2′
� �� �

= d Z,Oð Þ, d ℸ4′ ,Θ ℸ4′ ,ℸ1′ ,ℸ2′ ,ℸ3′
� �� �

= d Z,Oð Þ:
ð59Þ

Hence, ðℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′Þ is a QBP point of Ω:

Ultimately, let ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′, then we
claim that (52) holds. For each n ∈ℕ, one can write

d σ2n
1 , σ2n+1

1

 �

= d Ω σ2n−1
1 , σ2n−12 , σ2n−13 , σ2n−14


 �
,Θ σ2n1 , σ2n2 , σ2n3 , σ2n4

 �
 �

≤
ℓ
4 d σ2n−11 , σ2n1


 �
+ d σ2n−12 , σ2n2

 �

+ d σ2n−1
3 , σ2n3


 �

+ d σ2n−1

4 , σ2n
4


 �Þ + 1 − ℓð Þd Z,Oð Þ:
ð60Þ

Letting n⟶∞, we get

d ℸ1,ℸ1′
� �

≤
ℓ
4 d ℸ1,ℸ1′

� �
+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� ��

+ d ℸ4,ℸ4′
� ��

+ 1 − ℓð Þd Z,Oð Þ:
ð61Þ

Also, ∀n ∈ℕ, we get

d σ2n
2 , σ2n+1

2

 �

= d Ω σ2n−1
2 , σ2n−13 , σ2n−14 , σ2n−11


 �
,Θ σ2n2 , σ2n3 , σ2n4 , σ2n1

 �
 �

≤
ℓ
4 d σ2n−12 , σ2n2


 �
+ d σ2n−13 , σ2n3

 �

+ d σ2n−1
4 , σ2n4


 �

+ d σ2n−1

1 , σ2n
1


 ��
+ 1 − ℓð Þd Z,Oð Þ:

ð62Þ

Passing n⟶∞, one can obtain

d ℸ2,ℸ2′
� �

≤
ℓ
4 d ℸ2,ℸ2′

� �
+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

+ d ℸ1,ℸ1′
� �� �

+ 1 − ℓð Þd Z,Oð Þ:
ð63Þ
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Similarly, we obtain

d ℸ3,ℸ3′
� �

≤
ℓ
4 d ℸ3,ℸ3′

� �
+ d ℸ4,ℸ4′
� �

+ d ℸ1,ℸ1′
� ��

+ d ℸ2,ℸ2′
� ��

+ 1 − ℓð Þd Z,Oð Þ,

d ℸ4,ℸ4′
� �

≤
ℓ
4 d ℸ4,ℸ4′

� �
+ d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� ��

+ d ℸ3,ℸ3′
� ��

+ 1 − ℓð Þd Z,Oð Þ:
ð64Þ

It follows from (61), (63), (64), and (66) that

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

≤ ℓ d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �� �

+ 4 1 − ℓð Þd Z,Oð Þ:
ð65Þ

This leads to

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

≤ 4d Z,Oð Þ:
ð66Þ

Since

d Z,Oð Þ ≤ d ℸ1,ℸ1′
� �

, d Z,Oð Þ ≤ d ℸ2,ℸ2′
� �

, d Z,Oð Þ
≤ d ℸ3,ℸ3′
� �

, d Z,Oð Þ ≤ d ℸ4,ℸ4′
� �

,
ð67Þ

then we have

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

≥ 4d Z,Oð Þ:
ð68Þ

According to (66) and (68), we have

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð69Þ

This finishes the proof.

It should be noted that every pair of nonempty closed
subsets Z and O of a UCBS so that Z is convex fulfills the
property UC∗, then we can state the result below.

Corollary 11. Assume that Y is a UCBS and Z, O are non-
empty closed subsets of Y . Assume also Θ : Z4 ⟶O and Ω
: O4 ⟶ Z are cyclic contraction mappings. If ðσ01, σ02, σ03, σ04Þ
∈ Z4 and the sequences fσn

1g, fσn2g, fσn3g, fσn4g in Y are
defined as (22), for each n ∈ℕ ∪ f0g, then Θ has a QBP point
ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4 and Ω has a QBP point ðℸ1′ ,ℸ2′ ,ℸ3′ ,
ℸ4′Þ ∈ Z4. Moreover, we get

σ2n1 ⟶ℸ1, σ2n
2 ⟶ℸ2, σ2n3 ⟶ℸ3, σ2n4 ⟶ℸ4, σ2n+11

⟶ℸ1′ , σ2n+12 ⟶ℸ2′ , σ2n+13 ⟶ℸ3′ , σ2n+1
4 ⟶ℸ4′:

ð70Þ

In addition, if ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′, then

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð71Þ

The following example supports Corollary 11.

Example 9. Let Y =ℝ be a UCBS equipped with the usual
norm. Take Z = ½3, 5� and O = ½−5,−3�: Obviously, dðZ,OÞ
= 8: Describe two mappings Θ : Z4 ⟶O and Ω : O4 ⟶
Z as

Θ σ1, σ2, σ3, σ4ð Þ = −σ1 − σ2 − σ3 − σ4 − 16
8 ,

Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þ = −ϑ1 − ϑ2 − ϑ3 − ϑ4 + 16
8 ,

ð72Þ

for each ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4, respec-
tively. For all ðσ1, σ2, σ3, σ4Þ ∈ Z4, ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4, and
fixed ℓ = 1/2, we have

d Θ σ1, σ2, σ3, σ4ð Þ,Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
= −σ1 − σ2 − σ3 − σ4 − 16

8 −
−ϑ1 − ϑ2 − ϑ3 − ϑ4 + 16

8

����
����

≤
σ1 − ϑ1j j + σ2 − ϑ2j j + σ3 − ϑ3j j + σ4 − ϑ4j j

8 + 4

= ℓ
4 d σ1, ϑ1ð Þ + d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð Þð Þ
+ 1 − ℓð Þd Z,Oð Þ:

ð73Þ

Thus, the mappings Θ and Ω are cyclic contractions
with ℓ = 1/2: Because Z and O are closed convex, the pairs
ðZ,OÞ and ðO, ZÞ justify the property UC∗. Therefore, all
requirements of Corollary 11 are fulfilled. Thus, Θ has a
QBP point and Ω has a QBP point. We note that a point
ð4, 4, 4, 4Þ ∈ Z4 is a unique QBP point of Θ and a point
ð−4,−4,−4,−4Þ ∈ V4 is a unique QBP point of Ω. Therefore,
we obtain

d 4,−4ð Þ + d 4,−4ð Þ + d 4,−4ð Þ + d 4,−4ð Þ = 32 = 4d Z,Oð Þ:
ð74Þ

In a compact subset of a MS, we can obtain the QBP
point result as follows.

Theorem 12. Assume that ðY , dÞ is a MS and Z, O are non-
empty compact subsets of Y : Assume also Θ : Z4 ⟶O and
Ω : O4 ⟶ Z are cyclic mappings. If ðσ01, σ02, σ03, σ04Þ ∈ Z4

and the sequences fσn
1g, fσn2g, fσn3g, fσn4g in Y are defined
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in (22), for each n ≥ 0: Then Θ has a QBP point ðℸ1,ℸ2,
ℸ3,ℸ4Þ ∈ Z4 and Ω has a QBP point ðℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′Þ ∈ Z4.
Moreover, we get

σ2n1 ⟶ℸ1, σ2n2 ⟶ℸ2, σ2n
3 ⟶ℸ3, σ2n4 ⟶ℸ4, σ2n+11

⟶ℸ1′ , σ2n+1
2 ⟶ℸ2′ , σ2n+13 ⟶ℸ3′ , σ2n+14 ⟶ℸ4′:

ð75Þ

In addition, if ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′, then

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð76Þ

Proof. Since σ0
1, σ0

2, σ03, σ04 ∈ Z and (22) holds for each
n ∈ℕ ∪ f0g, we get

σ2n1 , σ2n
2 , σ2n

3 , σ2n4 ∈ Z, σ2n+11 , σ2n+12 , σ2n+13 , σ2n+14 ∈O: ð77Þ

The compactness of Z illustrates that the sequences
σ2n1 , σ2n2 , σ2n3 , and σ2n4 have the convergent subsequences

σ2nk1 , σ2nk2 , σ2nk3 , and σ2nk
4 , respectively, so that

σ
2nk
1 ⟶ℸ1 ∈ Z, σ

2nk
2 ⟶ℸ2 ∈ Z, σ

2nk
3 ⟶ℸ3 ∈ Z, σ

2nk
4

⟶ℸ4 ∈ Z:
ð78Þ

Now, we have

d Z,Oð Þ ≤ d ℸ1, σ
2nk−1
1

� �
≤ d ℸ1, σ

2nk
1

� �
+ d σ2nk1 , σ2nk−11
� �

:

ð79Þ

Applying Lemma 7, we find that

d σ
2nk
1 , σ2nk−1

1
� �

⟶ d Z,Oð Þ: ð80Þ

Taking n⟶∞ in (79), we get

d ℸ1, σ
2nk−1
1

� �
⟶ d Z,Oð Þ: ð81Þ

By the same manner, one can obtain

d ℸ2, σ
2nk−1
2

� �
⟶ d Z,Oð Þ, d ℸ3, σ

2nk−1
3

� �
⟶ d Z,Oð Þ, d ℸ4, σ

2nk−1
4

� �
⟶ d Z,Oð Þ:

ð82Þ

Notice that

d Z,Oð Þ = d σ
2nk
1 ,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þ

� �
= d Ω σ2nk−1

1 , σ2nk−1
2 , σ2nk−13 , σ2nk−14

� �
,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þ

� �
≤
ℓ
4 d σ

2nk−1
1 ,ℸ1

� �
, d σ2n−1

2 ,ℸ2

 �

, d σ2n−1
3 ,ℸ3


 �
, d σ2n−1

4 ,ℸ4

 �� �

+ 1 − ℓð Þd Z,Oð Þ:
ð83Þ

As n⟶∞, we have

d ℸ1, ℸ1,ℸ2,ℸ3,ℸ4ð Þð Þ = d Z,Oð Þ: ð84Þ

Analogously, we have

d ℸ2, ℸ2,ℸ3,ℸ4,ℸ1ð Þð Þ = d Z,Oð Þ, d ℸ3, ℸ3,ℸ4,ℸ1,ℸ2ð Þð Þ
= d Z,Oð Þ, d ℸ4, ℸ4,ℸ1,ℸ2,ℸ3ð Þð Þ
= d Z,Oð Þ:

ð85Þ

Thus, Θ has a QBP point ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4. By
the same argument, since O is compact, we can also
claim that Ω has a QBP point ðℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′Þ ∈O4.
To prove

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð86Þ

we can follow the same approach used in the proof of
Theorem 10.

3. Quadruple Fixed Point Technique

This part is devoted to present new QFP consequences in the
sense of cyclic contraction mappings.

Theorem 13. Assume that ðY , dÞ is a MS and Z, O are non-
empty closed subsets of Y : Let the mappings Θ : Z4 ⟶O and
Ω : O4 ⟶ Z be cyclic contractions. If ðσ01, σ02, σ0

3, σ0
4Þ ∈U4

and the sequences fσn
1g, fσn2g, fσn3g, fσn4g in Y are described

as (22), for each n ≥ 0: If dðZ,OÞ = 0, then Θ has a QFP point
ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4 and Ω has a QFP point ðℸ1′ ,ℸ2′ ,ℸ3′ ,
ℸ4′Þ ∈O4. Moreover, we get

σ2n1 ⟶ℸ1, σ2n
2 ⟶ℸ2, σ2n3 ⟶ℸ3, σ2n4 ⟶ℸ4, σ2n+11

⟶ℸ1′ , σ2n+12 ⟶ℸ2′ , σ2n+13 ⟶ℸ3′ , σ2n+1
4 ⟶ℸ4′:

ð87Þ

In addition, ifℸ2 =ℸ3 =ℸ4 andℸ2′ =ℸ3′ =ℸ4′, thenΘ and
Ω have a common QFP in ðZ ∩OÞ4:

Proof. Because dðZ,OÞ = 0, we find that the pairs ðZ,OÞ and
ðO, ZÞ justify the property UC∗. Using Theorem 10, we see
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that Θ has a QBP point ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4, that is,

d ℸ1,Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þð Þ = d ℸ2,Θ ℸ2,ℸ3,ℸ4,ℸ1ð Þð Þ
= d ℸ3,Θ ℸ3,ℸ4,ℸ1,ℸ2ð Þð Þ
= d ℸ4,Θ ℸ4,ℸ1,ℸ2,ℸ3ð Þð Þ
= d Z,Oð Þ,

ð88Þ

and Ω has a QBP point ðℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′Þ ∈O4, that is,

d ℸ1′ , ℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′
� �� �

= d ℸ2′ , ℸ2′ ,ℸ3′ ,ℸ4′ ,ℸ1′
� �� �

= d ℸ3′ ,Ω ℸ3′ ,ℸ4′ ,ℸ1′ ,ℸ2′
� �� �

= d ℸ4′ ,Ω ℸ4′ ,ℸ1′ ,ℸ2′ ,ℸ3′
� �� �

= d Z,Oð Þ:
ð89Þ

From (88) and since dðZ,OÞ = 0, we obtain

ℸ1 =Θ ℸ1,ℸ2,ℸ3,ℸ4ð Þ,ℸ2 =Θ ℸ2,ℸ3,ℸ4,ℸ1ð Þ,ℸ3
=Θ ℸ3,ℸ4,ℸ1,ℸ2ð Þ,ℸ4 =Θ ℸ4,ℸ1,ℸ2,ℸ3ð Þ: ð90Þ

This means that ðℸ1,ℸ2,ℸ3,ℸ4Þ is a QFP of Θ:
Again, from (89) and since dðZ,OÞ = 0, we get

ℸ1′ =Ω ℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′
� �

,ℸ2′ =Ω ℸ2′ ,ℸ3′ ,ℸ4′ ,ℸ1′
� �

,ℸ3′

=Ω ℸ3′ ,ℸ4′ ,ℸ1′ ,ℸ2′
� �

,ℸ4′ =Ω ℸ4′ ,ℸ1′ ,ℸ2′ ,ℸ3′
� �

:

ð91Þ

This means that ðℸ1′ ,ℸ2′ ,ℸ3′ ,ℸ4′Þ is a QFP of Ω:

Now, let ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′. From Theorem
10, one can write

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 4d Z,Oð Þ:
ð92Þ

Since dðZ,OÞ = 0, we have

d ℸ1,ℸ1′
� �

+ d ℸ2,ℸ2′
� �

+ d ℸ3,ℸ3′
� �

+ d ℸ4,ℸ4′
� �

= 0:

ð93Þ

It follows that

ℸ1 =ℸ1′ =ℸ2 =ℸ2′ ,ℸ3 =ℸ3′ =ℸ4 =ℸ4′: ð94Þ

Therefore, the quadruple ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ ðZ ∩OÞ4
is a common QFP of Θ and Ω. This is enough to
end the proof.

Example 10. Consider Y =ℝ equipped with the usual norm.
Take Z = ½−4, 0� and O = ½0, 4�: Describe two mappings
Θ : Z4 ⟶O and Ω : O4 ⟶ Z as

Θ σ1, σ2, σ3, σ4ð Þ = −
σ1 + σ2 + σ3 + σ4

8 ,

Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þ = −
ϑ1 + ϑ2 + ϑ3 + ϑ4

8 ,
ð95Þ

for each ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈O4, respec-
tively. Then, dðZ,OÞ = 0 andΘ,Ω are cyclic contractions with
ℓ = 1/2: Moreover, for each ðσ1, σ2, σ3, σ4Þ ∈ Z4 and ðϑ1, ϑ2,
ϑ3, ϑ4Þ ∈O4, we get

d Θ σ1, σ2, σ3, σ4ð Þ,Ω ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ
= −

σ1 + σ2 + σ3 + σ4
8 + ϑ1 + ϑ2 + ϑ3 + ϑ4

8

����
����

≤
1
8 σ1 − ϑ1j j + σ2 − ϑ2j j + σ3 − ϑ3j j + σ4 − ϑ4j jð Þ

= ℓ
4 d σ1, ϑ1ð Þ + d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð Þð Þ
+ 1 − ℓð Þd Z,Oð Þ:

ð96Þ

Therefore, all postulates of Theorem 13 are justified. Then,
Θ and Ω have a common QFP ð0, 0, 0, 0Þ ∈ ðZ ∩OÞ4.

Putting Z =O in the above theorem, we have the result
below.

Corollary 14. Assume that ðY , dÞ is a complete MS and Z
≠∅ is a closed subset of Y . Assume also that Θ : Z4 ⟶ Z
and Ω : Z4 ⟶ Z are cyclic contraction mappings so that
ifðσ0

1, σ02, σ03, σ04Þ ∈ Z4 and the sequences fσn1g, fσn2g, fσn
3g,

fσn4g in Y are defined as (22), for each n ≥ 0, then Θ
has a QFP ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4 and Ω has a QFP ðℸ1′ ,
ℸ2′ ,ℸ3′ ,ℸ4′Þ ∈ Z4. Also, we obtain

σ2n1 ⟶ℸ1, σ2n
2 ⟶ℸ2, σ2n3 ⟶ℸ3, σ2n4 ⟶ℸ4, σ2n+11

⟶ℸ1′ , σ2n+12 ⟶ℸ2′ , σ2n+13 ⟶ℸ3′ , σ2n+1
4 ⟶ℸ4′:

ð97Þ

Moreover, if ℸ2 =ℸ3 =ℸ4 and ℸ2′ =ℸ3′ =ℸ4′, then Θ
and Ω have a common QFP in Z4.

The following corollary is very important in the applica-
tion part. We get this result by placing Θ =Ω in Corollary 14.

Corollary 15. Let ðY , dÞ be a complete MS and Z be a
nonempty closed subset of Y . Assume also the mapping
Θ : Z4 ⟶ Z verifying

d Θ σ1, σ2, σ3, σ4ð Þ,Θ ϑ1, ϑ2, ϑ3, ϑ4ð Þð Þ ≤ ℓ
4

d σ1, ϑ1ð Þð
+ d σ2, ϑ2ð Þ + d σ3, ϑ3ð Þ + d σ4, ϑ4ð ÞÞ,

ð98Þ
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for all ðσ1, σ2, σ3, σ4Þ,ðϑ1, ϑ2, ϑ3, ϑ4Þ ∈ Z4, and ℓ ∈ 0, 1Þ.
Then, Θ has a unique QFP ðℸ1,ℸ2,ℸ3,ℸ4Þ ∈ Z4.

4. Solving a System of Functional Equations

Here, we apply Corollary 15 to discuss the existence of the
solution for the following quadruple functional equations:

where S and D are a state and decision space, respectively;
σ1 ∈ S,g : S ×D⟶ℝ; ℵ : S ×D ×ℝ4 ⟶ℝ; and I : S ×D
⟶ Sðwhereℝ4 =ℝ ×ℝ ×ℝ ×ℝÞ.

Assume that RS is the set of all bounded real-valued
functions on S. Consider

υk k = sup
σ1∈S

υ σ1ð Þj j, ∀υ ∈RS: ð100Þ

Moreover, define a distance on RS in the form of

℧ μ, νð Þ = sup
σ1∈S

μ σ1ð Þ − ν σ1ð Þj j, for all μ, ν ∈RS: ð101Þ

Obviously, the pair ðRS,℧Þ is a complete MS.
In the theorem below, we will discuss the existence of the

solution for the system (99).

Theorem 16. Assume that the following postulates are
fulfilled:

(a1) the functions g : S ×D⟶ℝ and I : S ×D⟶ S
are bounded

(a2) for each σ1 ∈ S,σ2 ∈D, and η1, η2, η3, η4, η1′ , η2′ , η3′ ,
η4′ ∈ℝ, we have

ℵ σ1, σ2, η1, η2, η3, η4ð Þ −ℵ σ1, σ2, η1′ , η2′ , η3′ , η4′
� ���� ���

≤
1
8

η1 − η1′
�� �� + η2 − η2′

�� �� + η3 − η3′
�� �� + η4 − η4′

�� ��� �
:

ð102Þ

Then, system (99) has a unique bounded solution (UBS).

Proof. Describe an operator Ψ on the space RS by

Ψ η1, η2, η3, η4ð Þ σ1ð Þ = sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η1 I σ1, σ2ð Þð Þ, η2ðf

� I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð ÞÞg,
ð103Þ

for each η1, η2, η3, η4 ∈RS and σ1 ∈ S,σ2 ∈D: The existence
solution for system (99) is equivalent to find a QFP of the
operator Ψ:

Clearly, the mapping Ψ is well-defined (because the
functions g and ℵ are bounded).

Hence, by the postulate ða2Þ, we obtain

η1 σ1ð Þ = sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η1 I σ1, σ2ð Þð Þ, η2 I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð Þð Þf g,

η2 σ1ð Þ = sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η2 I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð Þ, η1 I σ1, σ2ð Þð Þð Þf g,

η3 σ1ð Þ = sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð Þ, η1 I σ1, σ2ð Þð Þ, η2 I σ1, σ2ð Þð Þð Þf g,

η4 σ1ð Þ = sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η4 I σ1, σ2ð Þð Þ, η1 I σ1, σ2ð Þð Þ, η2 I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þð Þf g,

8>>>>>>>>>><
>>>>>>>>>>:

ð99Þ

℧ Ψ η1, η2, η3, η4ð Þ,Ψ η1′ , η2′ , η3′ , η4′
� �� �

= sup
σ1∈S

Ψ η1, η2, η3, η4ð Þ σ1ð Þ −Ψ η1′ , η2′ , η3′ , η4′
� �

σ1ð Þ
��� ��� = sup

σ1∈S
sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η1 I σ1, σ2ð Þð Þ, η2ðf
�����

� I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð ÞÞg − sup
σ2∈D

g σ1, σ2ð Þ +ℵ σ1, σ2, η1′ I σ1, σ2ð Þð Þ, η2′ I σ1, σ2ð Þð Þ, η3′ I σ1, σ2ð Þð Þ, η4′ I σ1, σ2ð Þð Þ
� �n o�����

= sup
σ1∈S

sup
σ2∈D

ℵ σ1, σ2, η1 I σ1, σ2ð Þð Þ, η2 I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð Þð Þj
(

−ℵ σ1, σ2, η1′ I σ1, σ2ð Þð Þ, η2′ I σ1, σ2ð Þð Þ, η3′ I σ1, σ2ð Þð Þ, η4′ I σ1, σ2ð Þð Þ
� ����o

≤ sup
σ1∈S

1
8 sup

σ2∈D
η1 − η1′
�� �� + η2 − η2′

�� �� + η3 − η3′
�� �� + η4 − η4′

�� ��� �( )
≤
1
8 sup

σ1∈S
η1 − η1′
�� �� + η2 − η2′

�� �� + η3 − η3′
�� �� + η4 − η4′

�� ��n o

= ℓ
4 ℧ η1, η1′

� �
+℧ η2, η2′
� �

+℧ η3, η3′
� �

+℧ η4, η4′
� �� �

:

ð104Þ
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This implies that the contractive stipulation of Corollary
15 holds with ℓ = 1/2. Then, the mapping Ψ has a unique
QFP, which is a UBS of problem (99):

The example below justifies Theorem 16.

Example 11. Consider a quadruple system of functional
equations below:

for all σ1 ∈ ½0, 1�:

Clearly, system (105) is comparable to system (99) with
S = ½0, 1� and D =ℝ: Clearly, the postulate ða1Þ of Theorem
16 is fulfilled. To achieve the postulate ða2Þ, we have

ℵ σ1, σ2, η1 I σ1, σ2ð Þð Þ, η2 I σ1, σ2ð Þð Þ, η3 I σ1, σ2ð Þð Þ, η4 I σ1, σ2ð Þð Þð Þj
−ℵ σ1, σ2, η1′ I σ1, σ2ð Þð Þ, η2′ I σ1, σ2ð Þð Þ, η3′ I σ1, σ2ð Þð Þ, η4′ I σ1, σ2ð Þð Þ
� ����

≤
1
8

η1 Ið Þj j
1 + η1 Ið Þj j −

η1′ Ið Þ�� ��
1 + η1′ Ið Þ�� ��

�����
����� + 1

8
η2 Ið Þj j

1 + e η2 Ið Þj j −
η2′ Ið Þ�� ��

1 + e η2′ Ið Þj j

�����
�����

+ 1
8

η3′ Ið Þ�� ��
1 + ln η3′ Ið Þ�� �� − η3′ Ið Þ�� ��

1 + ln η3′ Ið Þ�� ��
�����

����� + 1
8

η4 Ið Þj j
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 Ið Þj jp −

η4′ Ið Þ�� ��
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4′ Ið Þ�� ��q

�������
�������

≤
1
8 η1 Ið Þj j − η1′ Ið Þ�� ���� �� + η2 Ið Þj j − η2′ Ið Þ�� ���� �� + η3 Ið Þj jj
�

− η3′ Ið Þ�� ���� + η4 Ið Þj j − η4′ Ið Þ�� ���� ��Þ
≤
1
8 η1 − η1′
�� �� + η2 − η2′

�� �� + η3 − η3′
�� �� + η4 − η4′

�� ��� �
:

ð106Þ

Therefore, the postulate ða2Þ of Theorem 16 is fulfilled.
Thus, problem (105) has a UBS in RS:

5. Solving a System of Integral Equations

The existence of solutions for a system of quadruple inte-
gral equations is presented here by using the results of
Corollary 15.

Consider the following problem:

σ1 βð Þ =
ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þdζ,

σ2 βð Þ =
ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þ, σ1 ζð Þð Þdζ,

σ3 βð Þ =
ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ3 ζð Þ, σ4 ζð Þ, σ1 ζð Þ, σ2 ζð Þð Þdζ,

σ4 βð Þ =
ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ4 ζð Þ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þð Þdζ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð107Þ

where β, ζ ∈ ½0,⅁� with ⅁ > 0.
Suppose that ℶ = Cð½0,⅁�,ℝnÞ is endowed with

σ1k k = sup
β∈ 0,⅁½ �

σ1 βð Þj j, for allσ1 ∈ℶ: ð108Þ

Moreover, define a distance on ℶ in the form of

℘ r̆, ~uð Þ = sup
β∈ 0,⅁½ �

r̆ βð Þ − ~u βð Þj j, for all r̆, ~u ∈ℶ: ð109Þ

Hence, ðℶ,⅁Þ is a complete MS.

Theorem 17. Suppose that the following hypotheses hold:

η1 σ1ð Þ = sup
σ2∈ℝ

arctan σ1 + 4σ2ð Þ + 1
2 + σ1ð Þ2 + 1

3 + e3σ2

(
+ 1
8

η1 Ið Þj j
1 + η1 Ið Þj j +

1
8

η2 Ið Þj j
1 + e η2 Ið Þj j +

1
8

η3 Ið Þj j
1 + ln η3 Ið Þj j +

1
8

η4 Ið Þj j
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 Ið Þj jp

)
,

η2 σ1ð Þ = sup
σ2∈ℝ

arctan σ1 + 4σ2ð Þ + 1
2 + σ1ð Þ2 + 1

3 + e3σ2

(
+ 1
8

η2 Ið Þj j
1 + η2 Ið Þj j +

1
8

η3 Ið Þj j
1 + e η3 Ið Þj j +

1
8

η4 Ið Þj j
1 + ln η4 Ið Þj j +

1
8

η1 Ið Þj j
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1 Ið Þj jp

)
,

η3 σ1ð Þ = sup
σ2∈ℝ

arctan σ1 + 4σ2ð Þ + 1
2 + σ1ð Þ2 + 1

3 + e3σ2

(
+ 1
8

η3 Ið Þj j
1 + η3 Ið Þj j +

1
8

η4 Ið Þj j
1 + e η4 Ið Þj j +

1
8

η1 Ið Þj j
1 + ln η1 Ið Þj j +

1
8

η2 Ið Þj j
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 Ið Þj jp

)
,

η4 σ1ð Þ = sup
σ2∈ℝ

arctan σ1 + 4σ2ð Þ + 1
2 + σ1ð Þ2 + 1

3 + e3σ2

(
+ 1
8

η4 Ið Þj j
1 + η4 Ið Þj j +

1
8

η1 Ið Þj j
1 + e η1 Ið Þj j +

1
8

η2 Ið Þj j
1 + ln η2 Ið Þj j +

1
8

η3 Ið Þj j
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η3 Ið Þj jp

)
,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð105Þ
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ð▲1Þ The functions Ĵ : ½0,⅁� × ½0,⅁� × ðℝnÞ4 ⟶ℝn and
ℏ : ½0,⅁� × ½0,⅁�⟶ℝn are continuous so that

ð⅁
0
ℏ β, ζð Þdζ ≤ ⅁

16
, for all β, ζ ∈ 0,⅁½ �: ð110Þ

ð▲2Þ For all σ1, σ2, σ3, σ4, σ4′, σ2′, σ3′, σ4′ ∈ℝn, we get

Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þ − Ĵ β, ζ, σ1′ ζð Þ, σ2′ ζð Þ, σ3′ ζð Þ, σ4′ ζð Þ
� ���� ���

≤
1
⅁

σ1 − σ1′
�� �� + σ2 − σ2′

�� �� + σ3 − σ3′
�� �� + σ4 − σ4′

�� ��� �
, for all β, ζ ∈ 0,⅁½ �:

ð111Þ

Then, problem (107) has a unique solution on Cð½0,⅁�,
ℝnÞ.

Proof. Define the mapping Λ : ℶ4 ⟶ℶ by

Λ σ1, σ2, σ3, σ4ð Þ βð Þ =
ð⅁
0
ℏ β, ζð ÞĴ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þdζ, β ∈ 0,⅁½ �:

ð112Þ

The existence solution of (107) corresponds to finding a
QFP of Λ:

Assume that σ1, σ2, σ3, σ4, σ1′, σ2′, σ3′, σ4′ ∈ℝn, we get

Hence, the stipulation of Corollary 15 holds with ℓ = 1/4.
Therefore, Λ has a QFP, which in turn is considered the
unique solution to (107):

Example 12. Consider a system of quadruple integral equa-
tions below:

for all β ∈ ½0, 16�:

℘ Λ σ1, σ2, σ3, σ4ð Þ,Λ σ1′ , σ2′ , σ3′ , σ4′
� �� �

= sup
β∈ 0,⅁½ �

Λ σ1, σ2, σ3, σ4ð Þ βð Þ −Λ σ1′ , σ2′ , σ3′ , σ4′
� �

βð Þ
��� ���

= sup
β∈ 0,⅁½ �

ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þdζ

���� −
ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ1′ ζð Þ, σ2′ ζð Þ, σ3′ ζð Þ, σ4′ ζð Þ

� �
dζ
����

≤ sup
β∈ 0,⅁½ �

ð⅁
0
ℏ β, ζð Þ Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þ − Ĵ β, ζ, σ1′ ζð Þ, σ2′ ζð Þ, σ3′ ζð Þ, σ4′ ζð Þ

� ���� ���dζ
≤ sup

β∈ 0,⅁½ �

ð⅁
0
ℏ β, ζð Þdζ 1

⅁
σ1 − σ1′
�� �� + σ2 − σ2′

�� �� + σ3 − σ3′
�� �� + σ4 − σ4′

�� ��� �� 	

≤
1
16 sup

β∈ 0,⅁½ �
σ1 − σ1′
�� �� + σ2 − σ2′

�� �� + σ3 − σ3′
�� �� + σ4 − σ4′

�� ��� �

= ℓ
4 ℘ σ1, σ1′

� �
+℘ σ2, σ2′
� �

+℘ σ3, σ3′
� �

+℘ σ4, σ4′
� �� �

:

ð113Þ

σ1 βð Þ =
ð16
0

β3 + 2ζ2 + 1
16

σ1 ζð Þj j
1 + sin σ1 ζð Þj jð Þ +

1
16

σ2 ζð Þj j
2 + cos σ2 ζð Þj jð Þ + 1

16
σ3 ζð Þj j

1 + σ3 ζð Þj j +
1
16

σ4 ζð Þj j
3 + σ4 ζð Þj jð Þ2

 !
dζ,

σ2 βð Þ =
ð16
0

β3 + 2ζ2 + 1
16

σ2 ζð Þj j
1 + sin σ2 ζð Þj jð Þ +

1
16

σ3 ζð Þj j
2 + cos σ3 ζð Þj jð Þ + 1

16
σ4 ζð Þj j

1 + σ4 ζð Þj j +
1
16

σ1 ζð Þj j
3 + σ1 ζð Þj jð Þ2

 !
dζ,

σ3 βð Þ =
ð16
0

β3 + 2ζ2 + 1
16

σ3 ζð Þj j
1 + sin σ3 ζð Þj jð Þ +

1
16

σ4 ζð Þj j
2 + cos σ4 ζð Þj jð Þ + 1

16
σ1 ζð Þj j

1 + σ1 ζð Þj j +
1
16

σ2 ζð Þj j
3 + σ2 ζð Þj jð Þ2

 !
dζ,

σ4 βð Þ =
ð16
0

β3 + 2ζ2 + 1
16

σ4 ζð Þj j
1 + sin σ4 ζð Þj jð Þ +

1
16

σ1 ζð Þj j
2 + cos σ1 ζð Þj jð Þ + 1

16
σ2 ζð Þj j

1 + σ2 ζð Þj j +
1
16

σ3 ζð Þj j
3 + σ3 ζð Þj jð Þ2

 !
dζ,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð114Þ
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Problem (114) is another shape of problem (107) with
⅁ = 1,ℏðβ, ζÞ = β3 + 2ζ2 and

Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þ = 1
16

σ1 ζð Þj j
1 + sin σ1 ζð Þj jð Þ

+ 1
16

σ2 ζð Þj j
2 + cos σ2 ζð Þj jð Þ + 1

16
σ3 ζð Þj j

1 + σ3 ζð Þj j +
1
16

σ4 ζð Þj j
3 + σ4 ζð Þj jð Þ2

:

ð115Þ

Obviously, the hypothesis ð▲1Þ of Theorem 17 holds.
For the hypothesis ð▲2Þ, one can write

Ĵ β, ζ, σ1 ζð Þ, σ2 ζð Þ, σ3 ζð Þ, σ4 ζð Þð Þ − Ĵ β, ζ, σ1′ ζð Þ, σ2′ ζð Þ, σ3′ ζð Þ, σ4′ ζð Þ
� ���� ���

≤
1
16

σ1 ζð Þj j
1 + sin σ1 ζð Þj jð Þ −

σ1′ ζð Þ�� ��
1 + sin σ1′ ζð Þ�� ��� �

������
������

+ 1
16

σ2 ζð Þj j
2 + cos σ2 ζð Þj jð Þ −

σ2′ ζð Þ�� ��
2 + cos σ2′ ζð Þ�� ��� �

������
������

+ 1
16

σ3 ζð Þj j
1 + σ3 ζð Þj j −

σ3′ ζð Þ�� ��
1 + σ3′ ζð Þ�� ��

�����
�����

+ 1
16

σ4 ζð Þj j
3 + σ4 ζð Þj jð Þ2

−
σ4′ ζð Þ�� ��

3 + σ4′ ζð Þ�� ��� �2
�������

�������
≤

1
16 σ1 ζð Þj j − σ1′ ζð Þ�� ���� �� + σ2 ζð Þj j − σ2′ ζð Þ�� ���� ���
+ σ3 ζð Þj j − σ3′ ζð Þ�� ���� �� + σ4 ζð Þj j − σ4′ ζð Þ�� ���� ���

≤
1
16 σ1 − σ1′

�� �� + σ2 − σ2′
�� �� + σ3 − σ3′

�� �� + σ4 − σ4′
�� ��� �

:

ð116Þ

Hence, the hypothesis ð▲2Þ of Theorem 17 is justified
with ⅁ = 16. Therefore, the mapping Ĵ has a unique QFP
which in turn is considered the unique solution to (114).

6. Conclusion

One of the central problems in approximation theory is to
determine points that minimize the distance to a given point
or subset. The best approximation has always attracted ana-
lysts because it carries enough potential to be extended espe-
cially with the functional analytic approach in nonlinear
analysis. The best proximity point has many applications such
as obtaining the existence of a unique solution for a variational
inequality problem, integral and differential equations, and
many other directions. The fixed point method is considered
one of the distinguished methods for obtaining these points
under cyclic contraction mappings, due to its smoothness
and clarity. So, in this paper, the existence of a quadruple best
proximity point for a cyclic contractionmapping is introduced
in ordinary metric space. The validity of theoretical results in a
uniformly convex Banach space was also discussed. Moreover,
several examples are given to strengthen the theoretical results.
Finally, our paper has been provided with applications on the
existence and uniqueness of the solution to a system of func-
tional and integral equations.
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