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-is research paper explores the Atangana conformable nonlinear fractional Schrödinger equation’s optical soliton wave solutions
through three recently introduced computational schemes.-e simplest expanded equation, the generalized Kudryashov method,
and the sech-tanh expansion approaches are used for describing the structure of optical solitons by nonlinear optical fibers with
the modern fractional operator. Several formulas such as hyperbolic, trigonometric, logical, dim, light, moon-bright hybrid,
singular, combined singular, and regular wave solutions have been created. -e employed methods are effective and worthy of
being tested. -e features of the Hamiltonian process were used to analyze the stability properties of the solutions obtained.

1. Introduction

-e nonlinear partial differential equation is one of the most
exciting science types, as it can describe several nonlinear
phenomena as nonlinear partial distinctiveness equations
(NLPD) or a form of NLPD [1–3], including diffusion, heat,
electrostatics, fluid dynamics, electrodynamic, elasticity, and
quantum mechanics. Some equations include the uncertain
functions of multivariable and partial byproducts, including
integral and partial derivatives [4, 5]. Several investigators in
various fields have been studying the fractional order in the
NLPD equations [6].-is analysis is focused on the nonlocal
properties that only occur in such a derivative, as they are
not present in an integer derivative [7–9]. -is property is
generally used to describe a location, quantity, and nonlocal

Lagrangian behavior at a distance [10]. According to this
property, various forms of concepts are employed to
transform the NLPD equation into a standard differential
equation with an integer order, including Riemann–Liou-
ville, the two-scale fractal derivative, He fractional deriva-
tive, Caputo, and compliant fractional derivatives [11–13].
-e compliant fractional derivative of Atangana is used here
on the grounds of its supremacy over other concepts of
fractional derivatives [14, 15]. -is superiority is apparent in
its capacity to extend all organizational characteristics, such
as a chain law, quotient law, semigroup property, and ele-
ment rule, to the traditional first derivative [16, 17].

Many analytical and semianalytical schemes are derived
for the same purpose, such as Lie group method,
(G′/G)-expansion method, tanh-expansion method,
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extended tanh-expansion method, improved Bernoulli
subequation function, Riccati–Bernoulli sub-ODE method,
sinh-cosh method, simplest equation method, generalized
Kudryashov method, Adomian decomposition method,
homotopy perturbation method, general homotopy analysis
method, and so on [18–25].

-e rest of the paper’s sections are ordered as follows:
Section 2 studies the performance of the extended simplest
equation [26, 27], the generalized Kudryashov [28, 29], and
the sech-tanh expansion methods [30, 31] on the perturbed
time-fractional nonlinear Schrödinger equation. Moreover,
we study the stability property of obtained analytical wave
solutions. Section 3 represents some of the obtained solu-
tions in three & two-dimensional and contour plots. Section
4 gives the conclusion.

2. Application

In this section, we apply the Atangana conformable frac-
tional operator to the perturbed time-fractional nonlinear
Schrödinger equation that is given by [31–35].

i
z
ϑ
F

zt
ϑ + Fxx + cF|F|

2
+ i c1Fxxx + c2|F|

2
Fx􏽨

+ c3 |F|
2

􏼐 􏼑
x
F 􏽩 � 0,

(1)

where t> 0, 0< ϑ< 1, i �
���
− 1

√
,while α, c are the arbitrary

constants. Also, c1 represents the dispersion term, c2 is the
nonlinear dispersion, c3 is the nonlinear dispersion term and
F � F(x, t) describes the propagation of optical solitons in
optical fibers that exhibits a Kerr law nonlinearity. During
the evolution age of communications, many fundamentals’
applications are related to equation (1) such as plasma
physics and optical fiber communications. -is fiber is used
to transmit light between the two ends of the fiber and the
widespread use in fiber-optical links.-ey provide a broader
and higher range of communication (data) than electrical
cables. Typically crafted from drawing glass (silica) or plastic
of a much thicker diameter than a human scalp.

Handling equation (1) via the Atangana conformable
fractional in the next wave transformation
F(x, t) � ei(hx− Ωt)G(Z), Z � x − c/ϑ(t + (1/Γ(ϑ)))ϑ

where c is an arbitrary constant, yields

e
i(hx− tΩ)

G(Z) − h
2

+Ω + h
3
c1􏼐 􏼑 + G

3
(Z) c − hc2( 􏼁􏼐

− i c − 2h + 3h
2
c1􏼐 􏼑G′

(Z)
+ iG

2
(Z) c2 + 2c3( 􏼁G′

(Z)

+ 1 − 3hc1( 􏼁G″(Z) + ic1G
‴

(Z)􏼓 � 0.

(2)

Separating the real and imaginary part of equation (2)
and integrating the imaginary part once with zero constant
of integration lead to

− h
2

+Ω + h
3
c1􏼐 􏼑G + c − hc2( 􏼁G

3
+ 1 − 3hc1( 􏼁G″ � 0, (3)

− c − 2h + 3h
2
c1􏼐 􏼑G +

c2 + 2c3( 􏼁

3
G

3
+ c1G″ � 0. (4)

Comparing the coefficients ofG,G″,G3 in equations (3)
and (4) explains the equivalence between both equations
under the following constraint

− h
2

+Ω + h
3
c1

− c − 2h + 3h
2
c1􏼐 􏼑

�
3 c − hc2( 􏼁

c2 + 2c3
�
1 − 3hc1

c1
. (5)

-is relation leads to Ω � − c + 2h + 3chc1 − 8h2c1 +

8h3c2
1/c1, c2 � 3cc1 − 2c3 + 6hc1c3. Applying the homoge-

nous balance rule to equation (4) for determining the bal-
ance between the nonlinear and highest order derivative
terms.

2.1. Extended Simplest Equation Method. Applying this
scheme to equation (4) leads to the following general
solution

G(Z) � 􏽘
n

i�− n

aif(Z)
i

�
a− 1

f(Z)
+ a0 + f(Z) a1, (6)

where ai, (i � − 1, 0, 1) are arbitrary constants. Also, f(Z)

satisfies the next auxiliary equation [26, 27]

f′(Z) � α + λf(Z) + μf(Z)
2
, (7)

where α, λ, μ are arbitrary constants. Substituting equations
(6) along (7) into equation (4) and collecting all terms with
the same power of f(Z)j, (j � − 3, − 2, . . . , 2, 3) lead to a
system of algebraic equations. Solving this system yields the
following families.

2.1.1. Family I

a0 �

���
3/2

√
λ ��

c1
√

��������
− c2 − 2c3

􏽰 , a− 1 � 0, a1 �

�
6

√
μ ��

c1
√

��������
− c2 − 2c3

􏽰 , c

�
1
2

4h − 6h
2
c1 − λ2c1 + 4αμc1􏼐 􏼑,

(8)

where(− c2 − 2c3 > 0, c1 > 0).

2.1.2. Family II

a0 �

���
3/2

√
λ ��

c1
√

��������
− c2 − 2c3

􏽰 , a− 1 �

�
6

√
α ��

c1
√

��������
− c2 − 2c3

􏽰 , a1

� 0, c �
1
2

4h − 6h
2
c1 − λ2c1 + 4αμc1􏼐 􏼑,

(9)

where(− c2 − 2c3 > 0, c1 > 0).

-us, the optical solitary wave solutions of the Atangana
conformable fractional nonlinear Schrödinger equation are
given based on family I as follows:

When λ � 0,

for αμ> 0,
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F1(x, t) �

�
6

√
e

ihx− itΩ ���αμ√ ��
c1

√
Tan

���αμ√
x + θ +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏽨 􏽩

��������
− c2 − 2c3

􏽰 ,

F2(x, t) �

�
6

√
e

ihx− itΩ ���αμ√
Cot

���αμ√
x + θ +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏽨 􏽩

��
c1

√

��������
− c2 − 2c3

􏽰 .

(10)

For αμ< 0,

F3(x, t) �

�
6

√
eihx− itΩ ����

− αμ
√ ��

c1
√

Tanh
����
− αμ

√
x +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑∓Log[θ]/2􏽨 􏽩

��������
− c2 − 2c3

􏽰 , (11)

F4(x, t) �

�
6

√
eihx− itΩ ����

− αμ
√

Coth
����
− αμ

√
x +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑∓Log[θ]/2􏽨 􏽩

��
c1

√

��������
− c2 − 2c3

􏽰 . (12)

When α � 0; For λ> 0

F5(x, t) � −

���
3/2

√
eihx− itΩλ

��
c1

√

− 1 + eλ x+θ+(t+1/Γ(ϑ))ϑ − 4h+ 6h2+λ2( )c1( )/2ϑ( )μ􏼒 􏼓
��������
− c2 − 2c3

􏽰 −

���
3/2

√
eihx− itΩ+λ x+θ+(t+1/Γ(ϑ))ϑ − 4h+ 6h2+λ2( )c1( )/2ϑ( )λμ

��
c1

√

− 1 + eλ x+θ+(t+1/Γ(ϑ))ϑ − 4h+ 6h2+λ2( )c1( )/2ϑ( )μ􏼒 􏼓
��������
− c2 − 2c3

􏽰 . (13)

For λ< 0

F6(x, t) �

���
3/2

√
e

ihx− itΩλ
��
c1

√

��������
− c2 − 2c3

􏽰 −

�
6

√
e

ihx− itΩμ
��
c1

√

��������
− c2 − 2c3

􏽰 +

�
6

√
e

ihx− itΩμ
��
c1

√

1 + e
λ x+θ+(t+1/Γ(ϑ))ϑ − 4h+ 6h2+λ2( )c1( )/2ϑ( )μ􏼒 􏼓

��������
− c2 − 2c3

􏽰 . (14)

When 4αμ> λ2

F7(x, t) �
e

ihx− itΩ
�����������

− 3λ2/2 + 6αμ
􏽱

��
c1

√
Tan 1/2

���������

− λ2 + 4αμ
􏽱

x + θ +(t + 1/Γ(ϑ))
ϑ

− 4h + 6h
2

+ λ2 − 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏼔 􏼕
��������
− c2 − 2c3

􏽰 ,

F8(x, t) �
e

ihx− itΩ
�����������

− 3λ2/2 + 6αμ
􏽱

Cot 1/2
���������

− λ2 + 4αμ
􏽱

x + θ +(t + 1/Γ(ϑ))
ϑ

− 4h + 6h
2

+ λ2 − 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏼔 􏼕
��
c1

√

��������
− c2 − 2c3

􏽰

(15)

Additionally, the optical solitary wave solutions of the
Atangana conformable fractional nonlinear Schrödinger
equation are given based on family II by

When λ � 0,

for αμ> 0,

F9(x, t) �

�
6

√
eihx− itΩ ���

αμ
√

Cot
���
αμ

√
x + θ +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏽨 􏽩

��
c1

√

��������
− c2 − 2c3

􏽰 ,

F10(x, t) �

�
6

√
eihx− itΩ ���

αμ
√ ��

c1
√

Tan
���
αμ

√
x + θ +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏽨 􏽩

��������
− c2 − 2c3

􏽰 .

(16)
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For αμ< 0,

F11(x, t) � −

�
6

√
eihx− itΩ ����

− αμ
√

Coth
����
− αμ

√
x +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑∓Log[θ]/2􏽨 􏽩

��
c1

√

��������
− c2 − 2c3

􏽰 , (17)

F12(x, t) � −

�
6

√
e

ihx− itΩ ����
− αμ

√ ��
c1

√
Tanh

����
− αμ

√
x +(t + 1/Γ(ϑ))

ϑ
− 4h + 6h

2
− 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑∓Log[θ]/2􏽨 􏽩

��������
− c2 − 2c3

􏽰 . (18)

When 4αμ> λ2,

F13(x, t) �

���
3/2

√
eihx− itΩλ

��
c1

√

��������
− c2 − 2c3

􏽰 −
2

�
6

√
eihx− itΩαμ

��
c1

√

��������
− c2 − 2c3

􏽰
λ −

���������

− λ2 + 4αμ
􏽱

Tan 1/2
���������

− λ2 + 4αμ
􏽱

x + θ +(t + 1/Γ(ϑ))
ϑ

− 4h + 6h
2

+ λ2 − 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏼔 􏼕􏼒 􏼓
,

F14(x, t) �

���
3/2

√
eihx− itΩλ

��
c1

√

��������
− c2 − 2c3

􏽰 −
2

�
6

√
eihx− itΩαμ

��
c1

√

λ −

���������

− λ2 + 4αμ
􏽱

Cot 1/2
���������

− λ2 + 4αμ
􏽱

x + θ +(t + 1/Γ(ϑ))
ϑ

− 4h + 6h
2

+ λ2 − 4αμ􏼐 􏼑c1􏼐 􏼑/2ϑ􏼐 􏼑􏼔 􏼕􏼒 􏼓
��������
− c2 − 2c3

􏽰 .

(19)

2.2. Generalized Kudryashov Method. Applying this scheme
to equation (4) leads to the following general solution

G(Z) �
􏽐

m
i�0 aiQ(Z)

i

􏽐
n
j�0 bjQ(Z)

j
�

a0 + Q(Z)a1 + Q(Z)
2
a2

b0 + Q(Z)b1
, (20)

where aibj, (i � 0, 1, 2, j � 0, 1) are arbitrary constants. Also,
Q(Z) satisfies the next auxiliary equation [26, 27]:

Q′(Z) � Q(Z)
2

− Q(Z). (21)

Substituting equation (21) along (22) into equation (4)
and collecting all terms with the same power of Q(Z)j, ( j �

0, 1, . . . , 5, 6) lead to a system of algebraic equations. Solving
this system yields the following families.

2.2.1. Family I

a0 �
a1b0

− 2b0 + b1
, a2 � −

2a1b1

− 2b0 + b1
, c

�
1
2

4h − c1 − 6h
2
c1􏼐 􏼑, c3

�
− 12b

2
0c1 + 12b0b1c1 − 3b

2
1c1 − 2a

2
1c2

4a
2
1

.

(22)

2.2.2. Family II

a0 � −
a1

2
, a2 � − a1, b1 � − 2b0, c � 2h − 2c1 − 3h

2
c1, c3

�
− 24b

2
0c1 − a

2
1c2

2a
2
1

.

(23)

2.2.3. Family III

a0 � −
a1

4
, a2 � − a1, b1 � − 2b0, c �

1
2

4h − c1 − 6h
2
c1􏼐 􏼑, c3

�
− 24b

2
0c1 − a

2
1c2

2a
2
1

.

(24)

2.2.4. Family IV

a1 � 0, a2 � − 4a0, b1 � 2b0, c �
1
2

4h − c1 − 6h
2
c1􏼐 􏼑, c3

�
− 3b

2
0c1 − 2a

2
0c2

4a
2
0

.

(25)

Consequently, the optical solitary wave solutions of the
Atangana conformable fractional nonlinear Schrödinger
equation are given based on the above families respectively
by

F15(x, t) �
e

i(hx− tΩ)
− Ae

x
+ e

(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓a1

Ae
x

+ e
(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓 2b0 − b1( 􏼁

, (26)

F16(x, t) �
e

i(hx− tΩ)
A
2
e
2x

+ e
2(t+1/Γ(ϑ))ϑ 2h− 2c1− 3h2c1( )/ϑ􏼒 􏼓a1

2 − A
2
e
2x

+ e
2(t+1/Γ(ϑ))ϑ 2h− 2c1− 3h2c1( )/ϑ􏼒 􏼓b0

,

(27)
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F17(x, t) �
e

i(hx− tΩ)
− Ae

x
+ e

(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓a1

4 Ae
x

+ e
(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓b0

,

(28)

F18(x, t) � −
e

i(hx− tΩ)
− Ae

x
+ e

(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓a0

Ae
x

+ e
(t+1/Γ(ϑ))ϑ 4h− c1− 6h2c1( )/2ϑ􏼒 􏼓b0

.

(29)

2.3. Sech-Tanh Expansion Method. Applying this scheme to
equation (4) leads to the following general solution:

G(Z) � a0 + 􏽘
n

i�1
Sech(Z)

i− 1
aiSech(Z) + biTanh(Z)( 􏼁

� a0 + Sech(Z)a1 + b1Tanh(Z),

(30)

where aibj, (i � 0, 1, j � 1) are arbitrary constants.
Substituting equation (30) into equation (4) and collecting
all terms of Sech(Z), Sech(Z)2, Sech(Z)3, Tanh(Z),

Sech(Z)2Tanh(Z), Sech(Z)Tanh(Z) lead to a system of

algebraic equations. Solving this system yields the following
families.

2.3.1. Family I

a0 � 0, a1 �

�
6

√ ��
c1

√

�������
c2 + 2c3

􏽰 , b1 � 0, c � 2h + c1 − 3h
2
c1􏼠 􏼡,

where c2 + 2c3 > 0, c1 > 0( 􏼁.

(31)

2.3.2. Family II

a0 � 0, a1 � 0, b1 �

�
6

√ ��
c1

√

��������
− c2 − 2c3

􏽰 , c � 2h − 2c1 − 3h
2
c1􏼠 􏼡,

where c2 + 2c3 < 0, c1 > 0( 􏼁.

(32)

Consequently, the optical solitary wave solutions of the
Atangana conformable fractional nonlinear Schrödinger
equation are given based on the above families respectively
by

F19(x, t) �

�
6

√
ei(hx− tΩ)Sech x − (t + 1/Γ(ϑ))

ϑ 2h + c1 − 3h
2
c1􏼐 􏼑/ϑ􏽨 􏽩

��
c1

√

�������
c2 + 2c3

􏽰 ,

F20(x, t) �

�
6

√
ei(hx− tΩ) ��

c1
√

Tanh x − (t + 1/Γ(ϑ))
ϑ 2h − 2c1 − 3h

2
c1􏼐 􏼑/ϑ􏽨 􏽩

��������
− c2 − 2c3

􏽰 .

(33)

3. Stability Property of Solutions

-is part studies the stability property of each one of the
obtained solutions by using the Hamiltonian system
property since the momentum M in this system is given by
[36, 37]

M �
1
2

􏽚

l

− l

G
2
(Z) dZ, (34)

where G(Z) is the solution of the model. Consequently, the
condition for stability of the solutions can be formulated as

zM

zc
> 0, (35)

where c is the wave velocity. -e momentum in the
Hamiltonian system for equation (11) is given by

M �
1
c
2 c (− 1095.1320422182555 + 1337.3986588468201i) + 10799.999990891356 + 6.613092659621341 × 10− 14

i􏼐 􏼑c􏼐 􏼑􏼐

+ (− 67.49999939305316 + 10.602875127368723i) − 63.68904259247388 − 1.479114197289397 × 10− 31
i􏼐 􏼑c􏼐 􏼑

· Log 1. + 2.061153687919397 × 10− 9
− 2.524185266461253 × 10− 25

i􏼐 􏼑e
− 18.87082757451449c

􏽨 􏽩

+ (− 67.49999939305316 + 10.602875127368723i) + 63.68904259247388 − 1.479114197289397 × 10− 31
i􏼐 􏼑c􏼐 􏼑
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· Log 1. + 4.851651799965657 × 108 + 5.941559847405437 × 10− 8
i􏼐 􏼑e

− 18.87082757451449c
􏽨 􏽩

+((67.49999939305316 − 10.602875127368721i) + 3.482018748651115 × 10− 15
􏼐

+((67.49999939305316 − 10.602875127368721i) + 3.482018748651115 × 10− 15
− 2.524185266461253 × 10− 25

i􏼐 􏼑

· e
− 1.031709266497698×10− 15− 16.849090974083545i( )c

􏼕 +(67.49999939305316 − 10.602875127368723i)

· Log 1. + 4.851651799965657 × 108 + 5.941559847405437 × 10− 8
i􏼐 􏼑e

− 1.031709266497698×10− 15− 16.849090974083545i( )c
􏼔 􏼕

− 3.482018748651115 × 10− 15
+ 56.8656816165352i􏼐 􏼑c

· Log 1. + 4.851651799965657 × 108 + 5.941559847405437 × 10− 8
i􏼐 􏼑e

− 1.031709266497698×10− 15− 16.849090974083545i( )c
􏼔 􏼕

− (67.49999939305316 − 10.602875127368723i)

· Log Sin (1.5707963267948966 + 9.999999984115489i) − 8.424545487041772 − 5.158546332488493 × 10− 16
i􏼐 􏼑c􏽨 􏽩􏽨 􏽩

+(67.49999939305316 − 10.602875127368723i)

· Log[− 1.Sin[(1.5707963267948966 + 9.999999984115489i) − (0. + 9.435413787257245i)c]]

+(67.49999939305316 − 10.602875127368723i)

· Log[Sin[(1.5707963267948966 + 9.999999984115489i) +(0. + 9.435413787257245i)c]]

− (67.49999939305316 − 10.602875127368723i)

· Log − 1.Sin (1.5707963267948966 + 9.999999984115489i) + 8.424545487041772 − 5.158546332488493 × 10− 16
i􏼐 􏼑c􏽨 􏽩􏽨 􏽩

− 3.3749999750136808 − 3.081487911019577 × 10− 33
i􏼐 􏼑

· PolyLog 2., − 4.851651799965657 × 108 − 5.941559847405437 × 10− 8
i􏼐 􏼑e

− 18.87082757451449c
􏽨 􏽩

+ 3.3749999750136808 − 3.081487911019577 × 10− 33
i􏼐 􏼑

· PolyLog 2., − 2.061153687919397 × 10− 9
+ 2.524185266461253 × 10− 25

i􏼐 􏼑e
− 18.87082757451449c

􏽨 􏽩

+ 3.3749999750136808 − 3.081487911019577 × 10− 33
i􏼐 􏼑

· PolyLog 2., − 4.851651799965657 × 108 − 5.941559847405437 × 10− 8
i􏼐 􏼑e

− 1.031709266497698×10− 15− 16.849090974083545i( )c
􏼔 􏼕

− 3.3749999750136808 − 3.081487911019577 × 10− 33
i􏼐 􏼑

· PolyLog 2., − 2.061153687919397 × 10− 9
+ 2.524185266461253 × 10− 25

i􏼐 􏼑e
− 1.031709266497698×10− 15− 16.849090974083545i( )c

􏼔 􏼕􏼓

(36)
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and, thus

zM

zc
|c�− 176 > 0. (37)

We conclude that this solution is unstable on the interval
x ∈ [− 5, 5], t ∈ [− 5, 5] when [θ � 1, α � − 1, μ � 4, c1 �

9, ϑ � 0.5, c2 � − 9, c3 � 4, h � 2, λ � 0]. -is result shows
the ability of the solutions for their application. Applying the
previous steps to other obtained solutions leads to studying
the stability property of all solutions. -is process makes
choosing suitable stable solutions to use in model applica-
tions is very easy and interesting.

4. Representation of Obtained Solutions

-is part studies the physical interpretation of obtained
solutions under a suitable choice for the values of param-
eters. It represents each one of the selected solutions by
three- and two-dimensional plots. For each kind, we mean

the shape of the solution in real and imaginary plots to show
the similarities and differences between them in these cases.
We have plotted each of F3(x, t),F15(x, t), andF20(x, t),

Figures 1–6 under the following conditions:

Figure 1 illustrates the optical periodic solitary wave
solution of F3(x, t) in three-dimensional view when
[θ � 1, α � − 1, μ � 4, c1 � 9, ϑ � 0.5, c2 � − 9, c3 �

4, h � 2] in the next interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to
explain the perspective view of the solution.
Figure 2 describes the optical periodic solitary wave
solution of F3(x, t) in two-dimensional view when
[θ � 1, α � − 1, μ � 4, c1 � 9, ϑ � 0.5, c2 � − 9, c3 �

4, h � 2] in the next interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to
represent the wave propagation pattern of the wave
along the x-axis.

Figure 3 illustrates the optical periodic solitary wave
solution of F15(x, t) in three-dimensional view when
[A � 3, c1 � 1, A � − 2, a1 � 4, b0 � 5, b1 � − 1, h � 2] in
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Figure 1: Optical soliton wave solutions of the absolute (a), real (b), and imaginary (c) value of equation (8) in three-dimensional view when
(θ � 1,α � − 1, μ � 4, c1 � 9, ϑ � 0.5, c2 � − 9, c3 � 4, and h � 2).
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the next interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to explain the
perspective view of the solution.
Figure 4 presents the optical periodic solitary wave
solution of F15(x, t) in two-dimensional view when
[A � 3, c1 � 1, A � − 2, a1 � 4, b0 � 5, b1 � − 1, h � 2] in
the next interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to represent the
wave propagation pattern of the wave along the x-axis.

Figure 5 illustrates the optical periodic solitary wave
solution of F20(x, t) in three-dimensional view when
[c1 � 4, ϑ � 0.5, c2 � − 1, c3 � − 4, h � 2] in the next
interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to explain the per-
spective view of the solution.
Figure 6 illustrates the optical periodic solitary wave
solution of F20(x, t) in two-dimensional view when
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Figure 2: Optical soliton wave solutions of the absolute (a), real (b), and imaginary (c) value of equation (8) in two-dimensional view when
(θ � 1,α � − 1, μ � 4, c1 � 9, ϑ � 0.5, c2 � − 9, c3 � 4, and h � 2).
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Figure 3: Optical soliton wave solutions of the absolute (a), real (b), and imaginary (c) value of equation (18) in three-dimensional view
when (A � 3, c1 � 1, A � − 2, a1 � 4, b0 � 5, b1 � − 1, and h � 2).
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Figure 4: Continued.
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Figure 4: Optical soliton wave solutions of the absolute (a), real (b), and imaginary (c) value of equation (18) in two-dimensional view when
(A � 3, c1 � 1, A � − 2, a1 � 4, b0 � 5, b1 � − 1, and h � 2).
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Figure 5: Optical soliton wave solutions of the absolute, real, and imaginary value of equation (26) in three-dimensional view (c1 � 4,
ϑ � 0.5, c2 � − 1, c3 � − 4, and h � 2).
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[c1 � 4, ϑ � 0.5, c2 � − 1, c3 � − 4, h � 2] in the next
interval x ∈ [− 5, 5], t ∈∈[− 5, 5] to represent the wave
propagation pattern of the wave along the x-axis.

5. Conclusion

-e consistent fragmental derivative concept of Atangana
successfully enables us to introduce three recent computa-
tional systems for the disturbed time-fractional nonlinear
Schrödinger equation. -is model has been given modern
wave analytical solutions. We have researched the reliability
of strategies to illustrate their potential to work in the sample
implementations. -e robust and efficient implementation
of the computing schemes has been tested, demonstrating its
capacity with an integer or fractional order to handle many
nonlinear partial equations.
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