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Two fractional soliton equations are presented generated from the same spectral problem involved in a fractional potential by the
zero-curvature representations. They are a kind of special reductions of the famous AKNS system. The two equations are
integrable for they both possess explicit soliton solutions constructed by the N − fold Darboux transformation. As an
application of the obtained solutions, new soliton solutions of the classic ð2 + 1Þ-dimensional Kadometsev-Petviashvili (KP)
equation are soughed out by a cubic polynomial relation. Dynamic properties are analyzed in detail.

1. Introduction

Soliton equations occupy an important place in the field of
nonlinear science. An obvious character of this kind of equa-
tions is that they all have exact solutions. As we known, it is
not an easy job to research exact solutions for nonlinear partial
differential equations. However, for soliton equations, many
methods have been found to study their solutions. The first
is the inverse scattering transformation (IST) [1, 2] and the
Riemann-Hilbert method [3, 4] which is the modification of
the IST. Years of research have shown that the IST has closely
relations with other methods such as the algebra-geometric
method [5], the Hirota direct technique [6, 7], and the nonli-
nearization of Lax pairs [8, 9]. In recent years, it is found that
many methods actually can be crossed with each other such as
using the IST to obtain generalized matrix exponential solu-
tions [10, 11] and using the Hirota technique to solve the non-
linearization systems of Lax pairs [12, 13]. It is worth noting
that there have been a lot progress in the IST such as multi-
component IST [14], the classification of solutions [15], and
long-time asymptotics of soliton equations with nonzero
boundary conditions [16].

Among those approaches, the Darboux transformation
(DT) [17–27] turns out to be an efficient method to find
explicit solutions, particularly soliton solutions of nonlinear
partial systems. The soliton solutions usually are used to
describe the particle behavior of solitary waves when they
interact. To our surprise, even by a trivial seed complicated
solutions of some nonlinear differential equations can be
obtained [17–19].

In this paper, by means of the DT, we obtain exact solu-
tions of a fractional soliton hierarchy which actually is a spe-
cial reduction of the generalized D-AKNS hierarchy [28, 29].
As an application of the resulting solutions, the new solutions
to the classic ð2 + 1Þ-dimensional KP equation [30, 31] are
combined through a cubic polynomial relation.

The paper is organized as follows. In the next section,
beginning with a spectral problem with a fractional potential,
two coupled fractional equations are presented as well as the
two auxiliary problems. In Section 3, the DT for the resulting
fractional soliton equations are constructed. In Section 4,
based on a nonzero seed solution, explicit solutions of the frac-
tional soliton equations are obtained. Furthermore, via a cubic
polynomial of the obtained solutions, explicit solutions are
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given for the classic high-dimensional KP equation. Dynamic
characters of these solutions are shown in detail. We make
some conclusion and discussion of the paper in Section 5.

2. A Fractional Soliton Equation Hierarchy

First, let us introduce a fractional soliton equation hierarchy
from a 2 × 2 spectral problem with a fractional potential.

Consider the following spectral problem

Φx =UΦ, ð1Þ

with Φ = ðϕ1, ϕ2ÞT is a column vector and

U =
−λ + u 2v

2 v2 + δ

v

� �
λ − u

0
@

1
A, ð2Þ

where δ and λ are nonzero constant and spectral parameter,
respectively, and u, v as the potentials are smooth functions
owning variables x, y, t. It is a special reduction of D-AKNS
spectral problem [28, 29]

bϕ1bϕ2

 !
x

=
−λ + u p

q λ − u

 ! bϕ1bϕ2

 !
, ð3Þ

with the relation p = 2v, q = 2ðv2 + ðδ/vÞÞ. The Hamiltonian
structure of the D-AKNS equation was deduced through
the gauge transformation [28] and the trace identity [29],
respectively.

Actually, in [25, 32], a fractional spectral problem called
generalized coupled KdV one has been presented already

eϕ1eϕ2
 !

x

=
−λ + u 2v
2 l + r

v

� �
λ − u

 ! eϕ1eϕ2
 !

, ð4Þ

where l and r are constants. Our spectral problem and the
corresponding DT are obviously different with those in [25].

From the spectral problem (1), we could construct iso-
spectral and nonisospectral soliton equation hierarchies
which form the τ-symmetry algebra [33, 34] depending on
the relations between the spectral parameter λ and the time
variable t. Here, we only give the first two isospectral equa-
tions of the hierarchy. Considering the two auxiliary prob-
lems of the spectral problem (1)

Φy =V1Φ, ð5aÞ

Φt = V2Φ, ð5bÞ
with

V1 =
−λ2 + V 11ð Þ

10 2vλ + V 12ð Þ
10

2 v2 + δ

v

� �
λ +V 21ð Þ

10 λ2 − V 11ð Þ
10

0
B@

1
CA,

V2 =
−λ3 + 2 v3 + δ

� �
λ + V 11ð Þ

20 2vλ2 + 2uv − vxð Þλ + V 12ð Þ
20

2 v2 + δ

v

� �
λ2 +V 21ð Þ

21 λ +V 21ð Þ
20 λ3 − 2 v3 + δ

� �
λ −V 11ð Þ

20

0
B@

1
CA,

ð6Þ

where

V 12ð Þ
10 = 2uv − vx ,

V 21ð Þ
10 = 2u v2 + δ

v

� �
+ 2vvx −

δvx
v2

,

V 11ð Þ
10 = u2 −

ux
6v3 v3 − 2δ
� �

+ v2x
6v5 δ + v3
� �

−
vxx
6v4 δ − 2v3
� �

,

V 21ð Þ
21 = 2δu

v
+ 2uv2 − δvx

v2
+ 2vvx ,

V 12ð Þ
20 = 2u2v − 4δv − 4v4 − vux − 2uvx +

vxx
2 ,

V 11ð Þ
20 = u3 − 2δu − 2uv3 − uux

2 + δuux
v3

−
2δvx
v

+ v2vx −
δuxvx
2v4 + uxvx

v
+ δuv2x

2v5 + uv2x
2v2 −

δv3x
4v6 + uxx

4 −
δuvxx
2v4 + uvxx

v
+ δvxvxx

4v5 + vxvxx
4v2 ,

V 21ð Þ
20 = 2δu2

v
−
4δ2
v

− 8δv2 + 2u2v2 − 4v5 + δux
v

+ v2ux −
2δuvx
v2

+ 4uvvx + v2x −
δvxx
2v2 + δv2x

v3
+ vvxx:

ð7Þ
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Figure 1: One soliton solutions with û = 0, v̂ = −1, λ1 = −2:1, γ1 = −0:5, δ = 0:5, and t = 0.

–5

5

0t

5

0

–5

1
0 u (1)

y

(a)

–5

5

0t

5

0

–5

1
0 v (1)

y

(b)

–5

5

0t

5

0

–5

1
0 w (1)

y

(c)

Figure 2: Spreadings of one soliton solutions with û = 0, v̂ = −1, λ1 = 2:1, γ1 = −0:5, δ = 0:5, and x = 3.
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Figure 3: One-soliton solutions for different values of λ with û = 0, v̂ = −1,γ1 = −0:5, δ = 0:5, x = 3, and t = 0.
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Figure 4: Interactions of three-soliton solutions at t = 0 with û = 2, v̂ = −1, λ1 = −3, λ2 = 5, λ3 = −1:8, γ1 = −1:2, γ2 = −0:15, γ3 = 0:5, and
δ = 0:5.
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The zero-curvature equations

give the first two fractional soliton equations
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Figure 5: Spreadings of three-soliton solutions with û = 2, v̂ = −1, λ1 = −3, λ2 = 5, λ3 = −1:8, γ1 = −1:2, γ2 = −0:15, γ3 = 0:5, δ = 0:5, and x = 1.

Uy −V1x + U , V1½ � = 0
Ut −V2x + U , V2½ � = 0

ð8Þ

u

v

 !
y

=

1
6 ∂x

1
v2

g13 +
2
v
−

δ

v4

� �
g23

� 	

1
3v g

1
3 −

1
3 1 + δ

v3

� �
g23

0
BBB@

1
CCCA, ð9Þ

u

v

 !
t

=

1
6 ∂x

1
v2

g14 +
2
v
−

δ

v4

� �
g24

� 	

1
3v g

1
4 −

1
3 1 + δ

v3

� �
g24

0
BBB@

1
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where

and ∂−1x defined by ∂−1x f ðx, y, tÞ = Ð x−∞ f ðs, y, tÞds is the
inverse operator of ∂ under the decaying condition at
infinity.

Notice that (9) and (10) are two fractional soliton equa-
tions. It is very interesting that the N-soliton solutions of the
two equations can be acquired by the DT. So they are inte-
grable. Need to point out that our equations belong to classic
soliton equations rather than fractional order derivative sol-
iton equations.

3. The DT for the Two Fractional
Soliton Equations

Now, let us use the method in [35–37] to construct the gauge
transformations of the spectral problem (1). Assume a gauge
transformation of (1) is

�Φ = TΦ: ð12Þ

Then, the new spectral function �Φ should satisfy

�Φx = �UΦ,  ð13Þ

�Φy = �V1Φ,  ð14Þ
�Φt = �V2Φ,  ð15Þ

where �U , �V1 and �V2 are three matrices with the same form
as U , V1, V2, respectively. It is easy to find that T is deter-
mined by the following three matrix equations:

Tx + TU = �UT , ð16Þ

Ty + TV1 = �V1T , ð17Þ
Tt + TV2 = �V2T: ð18Þ

Assume

T = T λð Þ = α
λN + T11 T12

T21 T22

 !
, ð19Þ

where T jl =∑N−1
k=0 T

k
jlλ

kðj, l = 1, 2Þ and α, Tk
jl are functions of

variables x, y, and t.

Let λ = λj the spectral problem (1) is a matrix differential
equation. Since U is a 2 × 2 matrix, we can suppose that its
corresponding two basic vector solutions are

φ λj

� �
= φ1 λj

� �
, φ2 λj

� �� �T ,
ψ λj

� �
= ψ1 λj

� �
, ψ2 λj

� �� �T , ð20Þ

where T is an abuse notation meaning the transposition of a
matrix. From the gauge transformation (12), we know that
the basic solutions have following relations

λNj + T11
� �

φ1 λ j

� �
+ T12φ2 λ j

� �
− γj λNj + T11

� �
ψ1 λj

� �
+ T12ψ2 λj

� �h i
= 0,

T21φ1 λj

� �
+ T22φ2 λj

� �
− γj T21ψ1 λj

� �
+ T22ψ2 λj

� �� �
= 0,

8<
:

ð21Þ

where γjð1 ≤ j ≤ 2N − 1Þ is a constant.
Setting

σj =
φ2 λj

� �
− γjψ2 λj

� �
φ1 λj

� �
− γjψ1 λj

� � , j = 1, 2,⋯, 2N − 1, ð22Þ

the relation (21) can be translated into the following system
of linear algebraic equations

λNj + T11 + σjT12 = 0,
T21 + σjT22 = 0,

(
ð23Þ

i.e.,

〠
N−1

k=0
Tk
11 + σjT

k
12

� �
λkj = −λNj ,

〠
N−1

k=0
Tk
21 + σjT

k
22

� �
λkj = 0:

8>>>>><
>>>>>:

ð24Þ

In order to make equations (23) and (24) possess non-
zero solution, the spectral parameters λj and constants γj
(λk ≠ λj when k ≠ j) should be selected carefully. To this

g13 = v2x
δ

v3
+ 1

� �
−

δ

v2
− 2v

� �
2uvx +

vxx
2

� �
+ δ

v
+ v2

� �
ux + 2u2 − 4δ
� �

− 4v2 δ + v3
� �

,

g2
3 =

vxx
2 − 4δv + 2u2v − 4v4 − vux − 2uvx ,

g1
4 =

δ

v
+ v2

� � 3vx
v2

uvx +
vxx
2

� �
+ 2u3 − 12δu + 3uux +

uxx
2

� 	
− 12v2 δu + uv3 + v2vx

� �
+ 6δvx

δ

v2
− v

� �
−

δ

v2
− 2v

� �
3u2vx +

3uxvx
2 + vxxx

4 + 3uvxx
2

� �
−
3δv3x
2v4 ,

g24 = 12uv u2

6 − δ − v3 −
ux
4

� �
+ 6vx δ −

u2

2 + v3 + ux
4

� �
+ vuxx

2 + 3uvxx
2 −

vxxx
4 ,

ð11Þ
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end, taking TN−1
12 = −v, βN−1

21 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3 + TN−1

11,x /23
q

, and

−TN−1
21 = βN−1

21

� �2
+ δ

βN−1
21

, ð25Þ

from (23) and (24), the other element Tk
jl

ðj, l = 1, 2, k = 0, 1,⋯,N − 1Þ can be uniquely identified;
furthermore, α can be deduced out too.

Through equation (19), it is easily found that the
determinant of TðλÞ is a ð2N − 1Þ-th order polynomial of
λ. Especially,

detT λj

� �
= α2 λNj T22 λ j

� �
+ T11 λj

� �
T22 λj

� �
− T12 λj

� �
T21 λ j

� �h i
,

ð26Þ

where det means the determinant of a square matrix. But
from (23) and (24), we have the following relations:

λNj + T11 λj

� �
= −σjT12 λj

� �
,

T21 λj

� �
= −σjT22 λj

� �
,

ð27Þ

which implies that

detT λð Þ = β
Y2N−1

j=1
λ − λj

� �
: ð28Þ

In other words, λjðj = 1, 2,⋯,2N − 1Þ satisfies the equa-
tion detTðλÞ = 0 (where β has nothing with λ). In a way sim-
ilar to [35–37], we can verify the following propositions.

Proposition 1. Let α and TN−1
22 satisfy

α2TN−1
22 = const: ð29Þ

the matrix �U in (16) owns the following form:

�U =
−λ + �u 2�v

2 �v2 + δ

�v

� �
λ − �u

0
@

1
A, ð30Þ

which is just the form of U . The Bäcklund transformation
(BT) between the new potentials �u and �v and the old poten-
tials u and v is

�u = u −
1
2
∂x ln TN−1

22

� �
,

�v3 = v3 −
1
2
TN−1
11,x :

ð31Þ

Proof. Since T−1 detT = T∗, assume

Tx + TUð ÞT∗ =
f11 λð Þ f12 λð Þ
f21 λð Þ f22 λð Þ

 !
, ð32Þ

where T∗ andT−1 are the adjoint and inversematrix of T, respec-
tively. It is clear that f jlðλÞðj, l = 1, 2Þ is the polynomial of λ. Sim-
ple computation shows that f11ðλÞ and f22ðλÞ are 2N-th order
ones, while f12ðλÞ and f21ðλÞ are ð2N − 1Þ-th order ones.

On the other hand, because detTðλÞ is a ð2N − 1Þ-th
polynomial, we suppose

Tx + TUð ÞT∗ = P λð ÞdetT , ð33Þ

where

P λð Þ = λP 1ð Þ
11 + P 0ð Þ

11 P 0ð Þ
12

P 0ð Þ
21 λP 1ð Þ

22 + P 0ð Þ
22

0
@

1
A, ð34Þ

with Pð0Þ
kj and Pð1Þ

kk ðk, j ∈ f1, 2gÞ having no relation with λ. It
is easy to see that f slðλÞ = 0 has a solution λjðs, l = 1, 2Þ by
(33). Furthermore, we have

Tx + TU = P λð ÞT ð35Þ

by rewriting (33). The coefficient of λkðk =N − 1,N ,N + 1Þ
in (35) gives

P 1ð Þ
11 = −1,

P 1ð Þ
22 = 1,

P 0ð Þ
21 = −2TN−1

21 ,

P 0ð Þ
11 = u + ln αð Þx,

P 0ð Þ
12 T

N−1
21 = TN−1

11,x − 2 v3 + δ
� �

,

P 0ð Þ
22 = ln αð Þx + ∂x ln TN−1

22
� �

− u:

ð36Þ

From (29), we have ∂x ln α = −ð1/2Þ∂x ln ðTN−1
22 Þ. Sub-

mitting it into the above equations yields

P 0ð Þ
11 = �u,

P 0ð Þ
12 = 2�v,

P 0ð Þ
22 = −�u,

P 0ð Þ
21 = 2 �v2 + δ

�v

� �
:

ð37Þ

Noticing that PðλÞ and U have the same form, so we
conclude that �U = PðλÞ.

Next, let us suppose that φðλjÞ and ψðλ jÞ are solutions of
(5a) at the same time. We will prove that under the transfor-
mations (31), �V1 in (17) has the identical form as V1
through a similar way.
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Proposition 2. Suppose that α satisfies a differential equation

∂y ln α = �V 11ð Þ
1 −V 11ð Þ

1 + 2v3 − 2�v3, ð38Þ

where

�V 11ð Þ
1 = �u2 −

�ux
6

+ δ�ux
3�v3

+ δ�v2x
6�v5

+ �v2x
6�v2

−
δ�vxx
6�v4

+ �vxx
3�v

, ð39Þ

then �V ð11Þ
1 and �V1 have the same form as V ð11Þ

1 and V1 except
changing u, v as well as their derivatives into �u, �v and their
derivatives. That is, the new potentials �u and �v are obtained
from old potentials u and v according to the same BT (31).

Proof. Same as in Proposition 1, taking

Ty + TV1
� �

T∗ =
g11 λð Þ g12 λð Þ
g21 λð Þ g22 λð Þ

 !
, ð40Þ

the elements of the above matrix are polynomials of λ with
the diagonals are ð2N + 1Þ-th order and the off-diagonals

are ð2NÞ-th order. In consideration of (40), we suppose

Ty + TV1
� �

T∗ =Q λð ÞdetT , ð41Þ

where

Q λð Þ =
〠
2

l=0
q lð Þ
11λ

l 〠
1

l=0
q lð Þ
12λ

l

〠
1

l=0
q lð Þ
21λ

l 〠
2

l=0
q lð Þ
22λ

l

0
BBBBB@

1
CCCCCA, ð42Þ

where qðlÞkj ðk, j = 1, 2Þ has no relation with λ. Then, λj

ðj = 1,⋯,2N − 1Þ is the root of the polynomial gslðλÞ in the
matrix (41) ðs, l = 1, 2Þ. Now, let us rewrite (41) as

Ty + TV1 =Q λð ÞT: ð43Þ

The coefficients of λkðk =N − 1,N ,N + 1,N + 2Þ in (43)
generate

q 2ð Þ
11 = −1,

 q 2ð Þ
22 = 1,

q 1ð Þ
11 = q 1ð Þ

22 = 0,

q 1ð Þ
21 = −2TN−1

21 = 2 �v2 + δ

�v

� �
,

q 0ð Þ
11 + q 1ð Þ

12 + 1
� �

TN−2
11 + q 1ð Þ

12 T
N−1
21 = V 11ð Þ

1 + 2 v2 + δ

v

� �
TN−1
12 + ∂y ln α,

q 1ð Þ
11 T

N−1
12 + q 2ð Þ

11 − 1
� �

TN−2
12 + q 1ð Þ

12 T
N−1
22 = 2vTN−1

11 +V 12ð Þ
1 ,

q 0ð Þ
21 + q 1ð Þ

21 T
N−1
11 + q 1ð Þ

22 T
N−1
21 + q 2ð Þ

22 + 1
� �

TN−2
21 = 2 v2 + δ

v

� �
TN−1
22 ,

q 1ð Þ
21 T

N−1
12 + q 1ð Þ

22 T
N−1
22 + q 2ð Þ

22 − 1
� �

TN−2
22 = 2vTN−1

21 ,

q 0ð Þ
11 −V 11ð Þ

1
� �

TN−1
11 =V 21ð Þ

1 TN−1
12 − q 1ð Þ

11 T
N−2
11 − q 0ð Þ

12 T
N−1
21 − q 1ð Þ

12 T
N−2
21 − q 2ð Þ

11 + 1
� �

TN−3
11 + 2 v2 + r

v

� �
TN−2
12 +

αTN−1
11

� �
y

α
,

q 0ð Þ
12 T

N−1
22 = V 22ð Þ

1 − q 0ð Þ
11

� �
TN−1
12 − q 1ð Þ

11 T
N−2
12 − q 2ð Þ

11 − 1
� �

TN−3
12 − q 1ð Þ

12 T
N−2
22 + 2vTN−2

11 +V 12ð Þ
1 TN−1

11 +
αTN−1

12
� �

y

α
,

q 0ð Þ
21 T

N−1
11 = V 11ð Þ

1 − q 0ð Þ
22

� �
TN−1
21 − q 1ð Þ

21 T
N−2
11 + q 1ð Þ

22 T
N−2
21 − q 2ð Þ

22 + 1
� �

TN−3
21 +V 21ð Þ

1 TN−1
22 + 2 v2 + r

v

� �
TN−2
22 +

αTN−1
21

� �
y

α
,

q 0ð Þ
22 −V 22ð Þ

1
� �

TN−1
22 = −q 0ð Þ

21 T
N−1
12 − q 1ð Þ

21 T
N−2
12 − q 1ð Þ

22 T
N−2
22 − q 2ð Þ

22 − 1
� �

TN−3
22 + 2vTN−2

21 +V 12ð Þ
1 TN−1

21 +
αTN−1

22
� �

y

α
:

ð44Þ
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Furthermore, to balance the equality (35), we let the
coefficients of λN−1 and λN−2 satisfy

TN−1
11,x = 2�vTN−1

21 − 2 v2 + δ

v

� �
TN−1
12 ,

TN−1
12,x = 2uTN−1

12 − 2TN−2
12 − 2vTN−1

11 + 2�vTN−1
22 ,

TN−1
21,x = 2TN−2

21 + 2 �v2 + δ

�v

� �
TN−1
11 − 2 v2 + δ

v

� �
TN−1
22 − 2�uTN−1

21 ,

TN−1
22,x = 2 �v2 + δ

�v

� �
TN−1
12 − 2vTN−1

21 + 2uTN−1
22 − 2�uTN−1

22 ,

TN−2
12,x = 2uTN−2

12 − 2TN−3
12 − 2vTN−2

11 + 2�vTN−2
22 ,

TN−2
21,x = 2TN−3

21 − 2�uTN−2
21 − 2 v2 + δ

v

� �
TN−2
22 + 2 �v2 + δ

�v

� �
TN−2
11 :

ð45Þ

By (38), (25), and the above equalities, we find that

q 0ð Þ
11 = −q 0ð Þ

22 = �u2 −
�ux
6 + δ�ux

3�v3 + δ�v2x
6�v5 + �v2x

6�v2 −
δ�vxx
6�v4 + �vxx

3�v ,

q 0ð Þ
12 = 2�u�v − �vx,

q 1ð Þ
12 = 2�v,

q 0ð Þ
21 = 2�u �v2 + δ

�v

� �
−
δ�vx
�v2

+ 2�v�vx:

ð46Þ

By (17) and (43), one can assert that QðλÞ and V1 have
the same form, i.e., �V1 =QðλÞ.

According to Proposition 1 and Proposition 2, the Lax
pairs (1) and (7) are transformed into another Lax pairs
(13) and (14), respectively. Accordingly, a new zero curva-
ture equation �Uy − �V1,x + ½�U , �V1� = 0 is generated by the

compatibility condition �ϕxy = �ϕyx. Therefore, a couple new
solution �u, �v to the soliton equation (9) is constructed also.
That is, equation (9) can be deduced from both the old
Lax pairs and new ones. The transformation ðϕ, u, vÞ⟶
ðϕ, �u, �vÞ is named a DT of the fractional soliton equation (9).

Based on the above analysis, here is our theorem.

Theorem 3. Under the DT (12) and (31) , the new solution
ð�u, �vÞ of (9) is obtained from its old one ðu, vÞ, where TN−1

11

and TN−1
22 are determined by (25) and the linear algebraic

equations (23) and (24).

Utilizing the similar way of verifying Proposition 1 and
Proposition 2, we have a conclusion that �V2 has the same
form as V2 under the transformation (31).

Proposition 4. Let α be a solution of the following ordinary
differential equation

∂t ln α = �V 11ð Þ
2 −V 11ð Þ

2 − 4δ�u − 4�u�v3 + 2δ�vx
�v

− �v2�vx + 4δu

+ 4uv3 −
2δvx
v

+ v2vx ,

ð47Þ

with

�V 11ð Þ
2 = �u3 − 2δ�u − 2�u�v3 −

1
2
�u�ux +

δ�u�ux
�v3

−
2δ�vx
�v

+ �v2�vx

−
δ�ux�vx
2�v4

+ �ux�vx
�v

+ δ�u�v2x
2�v5

+ �u�v2x
2�v2

−
δ�v3x
4�v6

+ �uxx
4

−
δ�u�vxx
2�v4

+ �u�vxx
�v

+ δ�vx�vxx
4�v5

+ �vx�vxx
4�v2

,

ð48Þ

then �V ð11Þ
2 and the matrix �V2 possess the same form as V ð11Þ

2
and V2, except changing u, v and their derivatives into �u, �v
and their derivatives. Thus, the new potentials �u and �v are
obtained according to the BT (31) from the old ones.

Proof. For T−1 = T∗/detT , setting

Tt + TV2ð ÞT∗ =
r11 λð Þ r12 λð Þ
r21 λð Þ r22 λð Þ

 !
, ð49Þ

one can easily find that the element rjjðλÞ is ð2N + 2Þ-th
order polynomial, while rjlðλÞðj ≠ lÞ is ð2N + 1Þ-th order
one through similar discussion as before. Therefore, we can
assume

Tt + TV2ð ÞT∗ = detTð ÞR λð Þ, ð50Þ

i.e.,

Tt + TV2 = R λð ÞT , ð51Þ

with

R λð Þ =
〠
3

l=0
r lð Þ
11λ

l 〠
2

l=0
r lð Þ
12λ

l

〠
2

l=0
r lð Þ
21λ

l 〠
3

l=0
r lð Þ
22λ

l

0
BBBBB@

1
CCCCCA, ð52Þ

where rðlÞkj is independent of λ.
Considering the first few coefficients of the polynomial

of λ in (51), we have
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On the other side, the coefficients in (35) give

TN−2
22,x = 2 �v2 + δ

�v

� �
TN−2
12 − 2vTN−2

21 − 2 ∂x ln αð ÞTN−2
22 ,

TN−3
12,x = −2vTN−3

11 + 2uTN−3
12 − 2TN−4

12 + 2�vTN−3
22 :

ð54Þ

Through the similar discussions in Proposition 1 and
Proposition 2, we find that

r 0ð Þ
12 = −4δ�v + 2�u2�v − 4�v4 − �v�ux − 2u�vx +

�vxx
2 ,

r 3ð Þ
11 = −r 3ð Þ

22 = −1,

r 2ð Þ
11 = r 2ð Þ

22 = 0,

r 2ð Þ
12 = 2�v,

r 2ð Þ
21 = 2 �v2 + δ

�v

� �
,

r 1ð Þ
11 = −r 1ð Þ

22 = 2�v3 + δ,

r 1ð Þ
12 = 2�u�v − �vx,

r 1ð Þ
21 = 2�v − δ

�v2

� �
�vx + 2�u �v2 + δ

�v

� �
,

r 0ð Þ
11 = −r 0ð Þ

22 = −2δ�u + �u3 − 2�u�v3 − 1
2 �u�ux +

δ�u�ux
�v3

−
2δ�vx
�v

+ �v2�vx −
δ�ux�vx
2�v4 + �ux�vx

�v
+ δ�u�v2x

2�v5 + �u�v2x
2�v2 −

δ�v3x
4�v6 + �uxx

4 −
δ�u�vxx
2�v4 + �u�vxx

�v
+ δ�vx�vxx

4�v5 + �vx�vxx
4�v2 ,

r 0ð Þ
21 = −

4δ2
�v

+ 2δ�u2
�v

− 8δ�v2 + 2�u2�v2 − 4�v5 + δ�ux
�v

+ �v2�ux −
2δ�u�vx
�v2

+ 4�u�v�vx + �v2x +
δ�v2x
�v3

−
δ�vxx
2�v2 + �v�vxx:

ð55Þ

r 3ð Þ
11 = −1,

r 3ð Þ
22 = 1,

r 2ð Þ
11 = r 2ð Þ

22 = 0,

r 2ð Þ
21 = −2TN−1

21 = 2 �v2 + δ

�v

� �
,

r 1ð Þ
11 + r 2ð Þ

11 T
N−1
11 + r 3ð Þ

11 T
N−2
11 + r 2ð Þ

12 T
N−1
21 = 2 v3 + δ

� �
− TN−2

11 + 2 v2 + δ

v

� �
TN−1
12 ,

r 2ð Þ
11 T

N−1
12 + r 3ð Þ

11 T
N−2
12 + r 2ð Þ

12 T
N−1
22 = 2uv − vx + 2vTN−1

11 + TN−2
12 ,

r 1ð Þ
21 + r 2ð Þ

21 T
N−1
11 + r 2ð Þ

22 T
N−1
21 + r 3ð Þ

22 T
N−2
21 = −TN−2

21 + 2 v2 + δ

v

� �
TN−1
22 ,

r 2ð Þ
21 T

N−1
12 + r 2ð Þ

22 T
N−1
22 + r 3ð Þ

22 T
N−2
22 = 2vTN−1

21 + TN−2
22 ,

r 0ð Þ
11 = 2v3 + δ − r 1ð Þ

11
� �

TN−1
11 − r 2ð Þ

11 T
N−2
11 − r 3ð Þ

11 + 1
� �

TN−3
11 − r 1ð Þ

12 T
N−1
21 − r 2ð Þ

12 T
N−2
21 + 2v − δ

v2

� �
vx + 2u v2 + δ

v

� �� 	
TN−1
12 + 2 v2 + δ

v

� �
TN−2
12 + ∂t ln αð Þ + V 11ð Þ

2 ,

r 0ð Þ
21 = −r 1ð Þ

21 T
N−1
11 − r 2ð Þ

21 T
N−2
11 − r 1ð Þ

22 T
N−1
21 − r 2ð Þ

22 T
N−2
21 − r 3ð Þ

22 T
N−3
21 + 2 v3 + δ

� �
TN−1
21 − TN−3

21 + 2 v2 + δ

v

� �
TN−2
22 + 2v − δ

v2

� �
vx + 2u v + δ

v

� �� 	
TN−1
22 ,

r 1ð Þ
12 T

N−1
22 = −r 1ð Þ

11 T
N−1
12 − r 2ð Þ

11 T
N−2
12 − r 3ð Þ

11 T
N−3
12 − r 2ð Þ

12 T
N−2
22 + 2uv − vxð ÞTN−1

11 + 2vTN−2
11 − 2v3 + δ

� �
TN−1
12 + TN−3

12 + V 12ð Þ
2 ,

r 1ð Þ
21 T

N−1
12 = −r 1ð Þ

22 T
N−1
22 − r 2ð Þ

21 T
N−2
12 − r 2ð Þ

22 T
N−2
22 − r 3ð Þ

22 T
N−3
22 + 2uv − vxð ÞTN−1

21 + 2vTN−2
21 − 2 v3 + δ

� �
TN−1
22 + TN−3

22 ,

r 0ð Þ
12 T

N−1
22 = V 12ð Þ

2 TN−1
11 + 2uv − vxð ÞTN−2

11 + 2vTN−3
11 + ∂t ln α − r 0ð Þ

11 + V 22ð Þ
2

� �
TN−1
12 + TN−1

12,t − 2v3 + δ + r 1ð Þ
11

� �
TN−2
12 − r 2ð Þ

11 T
N−3
12 + 1 − r 3ð Þ

11
� �

TN−4
12 − r 1ð Þ

12 T
N−2
22 − r 2ð Þ

12 T
N−3
22 ,

r 0ð Þ
22 T

N−1
22 = r 0ð Þ

21 T
N−1
12 − r 1ð Þ

21 T
N−2
12 − r 2ð Þ

21 T
N−3
12 +V 12ð Þ

2 TN−1
21 + 2uv − vxð ÞTN−2

21 + 2vTN−3
21 + TN−1

22,t + V 22ð Þ
2 + ∂t ln α

� �
TN−1
22 − 2v3 + δ + r 1ð Þ

22
� �

TN−2
22 − r 2ð Þ

22 T
N−3
22 + 1 − r 2ð Þ

23
� �

TN−4
22 :

ð53Þ
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By (18) and (51), we conclude that �V2 = RðλÞ.

According to Proposition 1, Proposition 2, and Proposi-
tion 4, based on the transformations (12) and (31), the new
Lax pairs (13), (14), and (15) are constructed from the old
ones (1), (7), and (9), respectively. By directly computing,
both new and old Lax pairs generate the same equations
(9) and (10). Then, the following assertion can be gained
immediately.

Theorem 5. The potentials ð�u, �vÞ determined by the DT (12)
and (31) are new solutions of equations (9) and (10),
respectively.

4. Explicit Solutions and their Application

We will apply the DT of the fractional soliton equations (9),
(10) to yield their corresponding soliton solutions in this
section. Furthermore, as an application of the yielded solu-
tions, the solitonic solutions of the ð2 + 1Þ-dimensional KP
will also be presented.

When u = û and v = v̂ ≠ 0 are constants, it is obviously
that ðû, v̂Þ satisfies the soliton equations (9) and (10). Taking
it nonzero trivial solution as a seed solution, we can produce
nontrivial explicit solutions.

If λ = λj, we get two basic solutions of (1), (7), and (9)

φ λj

� �
=

cosh ξj

cj
2v̂ sinh ξj +

λj − û

2v̂ cosh ξj

0
B@

1
CA,

 ψ λ j

� �
=

sinh ξj

cj
2v̂ cosh ξj +

λj − û

2v̂ sinh ξj

0
B@

1
CA,

ð56Þ

with ðu, vÞT = ðû, v̂ÞT is constant vector, where

ξj = cj x + λj + û
� �

y + û2 − 2 v̂3 + δ
� �� �

t
 �

,

c2j = λj − û
� �2 + 4 v̂3 + δ

� �
,  j = 1,⋯,2N − 1ð Þ:

ð57Þ

Taking advantage of (22), we obtain

σj =
cj
2v

1 − γj coth ξj
coth ξj − γj

+
λj − û

2v̂ ,  j = 1,⋯,2N − 1ð Þ: ð58Þ

According to Cramer’s rule, some solutions of (25) and
the linear algebraic equations (23) and (24) are

TN−1
11 =

ΔTN−1
11

Δ
,

TN−1
21 = v̂3 − 1/2ð ÞTN−1

11,x + δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂3 − 1/2ð ÞTN−1

11,x
3
q ,

TN−1
22 =

~ΔTN−1
22

~Δ
,

~ΔTN−1
22

= −TN−1
21 Δ,

ð59Þ

where

Δ =

1 σ1 ⋯ λN−2
1 σ1λ

N−2
1 λN−1

1

1 σ2 ⋯ λN−2
2 σ2λ

N−2
1 λN−1

2

1 σ3 ⋯ λN−2
3 σ3λ

N−2
1 λN−1

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 σ2N−1 ⋯ λN−2
2N−1 σ2N−1λ

N−2
2N−1 λN−1

2N−1

��������������

��������������
,

ΔTN−1
11

=

1 σ1 ⋯ λN−2
1 σ1λ

N−2
1 vσ1λ

N−1
1 − λN1

1 σ2 ⋯ λN−2
2 σ2λ

N−2
1 vσ2λ

N−1
2 − λN2

1 σ3 ⋯ λN−2
3 σ3λ

N−2
1 vσ3λ

N−1
3 − λN3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 σ2N−1 ⋯ λN−2
2N−1 σ2N−1λ

N−2
2N−1 vσ2N−1λ

N−1
2N−1 − λN2N−1

��������������

��������������
,

~Δ =

1 σ1 ⋯ λN−2
1 σ1λ

N−2
1 σ1λ

N−1
1

1 σ2 ⋯ λN−2
2 σ2λ

N−2
1 σ2λ

N−1
2

1 σ3 ⋯ λN−2
3 σ3λ

N−2
1 σ3λ

N−1
3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 σ2N−1 ⋯ λN−2
2N−1 σ2N−1λ

N−2
2N−1 σ2N−1λ

N−1
2N−1

��������������

��������������
:

ð60Þ

Therefore, explicit solutions of (9) and (10) are obtained
by the BT (31).

�u N½ � = −
1
2 ∂x ln TN−1

22
� �

− 2û
� �

,

�v N½ �ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂3 −

1
2 ∂xT

N−1
11

3

r
:

8>><
>>: ð61Þ

Next, we will elaborate on the two special cases.

(i) When N = 1, let λ = λ1, for arbitrary constants û and
v̂ ≠ 0, the solutions of (25) and the linear algebraic
equations (23) and (24) are given by

T0
11 = v̂σ1 − λ1,

T0
22 =

1ffiffiffi
43

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 v̂3 + δ
� �

+ v̂σ3
1,x

3
q
σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v̂3 − v̂σ1,x

3
q :

ð62Þ

Then, making use of the DT (31) and the Theorem 5, one-
soliton solutions of equations (9) and (10) are expressed as
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(ii) When N = 2, taking λ = λ1, λ2, λ3, for arbitrary con-
stants û and v̂ ≠ 0, the solution of (25) and the linear
algebraic equations (23) and (24) are given by

T1
11 =

ΔT1
11

Δ
,

T1
21 =

2v̂3 − T1
11,x + 2δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8v̂3 − 4T1
11,x

3
q ,

T1
22 =

~ΔT1
22

~Δ
,

~ΔT1
22
= −T1

21Δ,

ð64Þ

with

Δ =
1 1 1
σ1 σ2 σ3

λ1 λ2 λ3

��������

��������
,

ΔT1
11
=

1 1 1
σ1 σ2 σ3

v̂λ1σ1 − λ21 v̂λ2σ2 − λ22 v̂λ3σ3 − λ23

��������

��������
,

~Δ =
1 1 1
σ1 σ2 σ3

λ1σ1 λ2σ2 λ3σ3

��������

��������
ð65Þ

Thus, by the BT (31), we obtain the 3-soliton solutions
for equations (9) and (10)

�u 2½ � = û −
1
2 ∂x ln T1

22
� �

,

�v 2½ �ð Þ3 = v̂3 −
1
2 ∂xT

1
11:

8>><
>>: ð66Þ

It is well known that the KP equation is a famous ð2 + 1Þ
soliton equation. In the last few years, lump solutions for
ð2 + 1Þ soliton equations have been intense research [38,
39]. Now, let us deduce solutions of the KP equation from

the obtained ones. From the following theorem, we can see
the relation among them.

Theorem 6. If u, v are solutions of equations (9) and (10),
wðx, y, tÞ = ðvðx, y, tÞÞ3 + δ solves the classic KP equation

wt =
3
4
∂−1x wyy +

1
16

wxx −
3
2
w2

� �
x

: ð67Þ

Proof. Since u, v satisfy (9) and (10), through directly com-
puting, we conclude that ðvðx, y, tÞÞ3 + δ is a solution of
equation (67).

With the help of Theorem 6, substituting �v½N� into ω
ðx, y:tÞ, we can obtain N-soliton solutions of the KP equa-
tion as follows

�ω N½ � = �v N½ �ð Þ3 + δ: ð68Þ

For example, its 1-soliton solution and 3-soliton solution
are �ω½1� = ð�v½1�Þ3 + δ and �ω½2� = ð�v½2�Þ3 + δ, respectively.

As the parameters are carefully chosen, the figures of the
one-soliton solution are plotted in Figure 1. In Figure 2, the
spreadings for one-soliton wave packets are plotted for sev-
eral t. In Figure 3, we also draw corresponding images for
different eigenvalues.

The 3-dimensional graphs of u½2�, v½2�, and w½2� are
drawn as Figure 4, and their spreadings for several t are plot-
ted in Figure 5.

5. Discussion and Conclusion

In the present paper, we investigate a fractional soliton hierar-
chy which is a special reduction of the D-AKNS system based
on the DT method. It is well known that many famous equa-
tions with physical meaning can be reduced from the AKNS
soliton hierarchy such as the KdV equation, the mKdV equa-
tion, and local and nonlocal nonlinear Schrödinger equation.
The fractional soliton equation given in the paper is a special
case of the D-AKNS hierarchy with p = 2v, q = 2ðv2 + ðδ/vÞÞ
in (3). Then, we get another reduction of the AKNS hierarchy.

Form the spectral problem with a fractional potential,
the N-times DT is constructed with the N-soliton solution
formula given, which has been determined by the linear
algebraic system. By choosing proper parameters and avoid-
ing singularities of solutions, we draw several soliton images.

�u 1½ � = û −
6 2v̂3 + δ − v̂σx/2ð Þ� �

σ21,x − 12v̂2 v̂3 + δ
� �

σ1,x + 2 δ − 2v̂3 − v̂σ1,x
� �

σ1σ1,xx
2σ1 6v̂2 − 3σ1,x
� �

2v̂3 + 2δ − v̂σ1,x
� � ,

�v 1½ � =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂3 −

1
2σ1,x

3

r
8>>>><
>>>>:

ð63Þ
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Because of the form of two groups of fundamental solutions
of spectral problems, we cannot select the basic solution
group as literatures do because the corresponding parameter
σj is an exponential form. Therefore, we can neither simplify
the soliton obtained into a simpler form [40] nor conduct a
regular analysis [41]. Finally, through a cubic variable trans-
formation, the first two equations in the fractional soliton
hierarchy are changed into the ð2 + 1Þ-dimensional KP
equation, which provides a method for generating solutions
of high-dimensional equations from solutions of low-
dimensional equations.

It should be noted that the DT has been proved to be one
of most fruitful algorithmic procedures to obtain soliton
solutions, so we believe that the DT can be implemented into
much more ð2 + 1Þ-dimensional equations in mathematical
physics.
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