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Covering, matching, and domination are the basic concepts in graphs that play a decisive role in the properties of graphs.
Calculating these parameters is one of the difficulties in fuzzy graphs when it is not possible to accurately determine the values
of the vertices of a graph. The interval-valued intuitionistic fuzzy graph (IVIFG) is one of the fuzzy graphs which can play an
important role in solving uncertain problems in different sciences such as psychology, biological sciences, medicine, and social
networks. The necessity of using a range of value instead of one number caused them to help researchers in optimizing and
saving time and cost. In this study, we introduce some of the specific concepts such as covering, matching, and paired
domination using strong arc or effective edges by giving appropriate examples. In addition, we have calculated strong node
covering number, strong independent number, and other parameters of complete bipartite IVIFGs with several examples.
Finally, we have presented an application of IVIFG in social networks.

1. Introduction

Graphs are an inevitable tool in applied mathematics.
Among the various concepts in graphs, some concepts are
more important such as covering, matching, and domina-
tion. These concepts are closely related to vertices, as one
of the most important components of the graph, and cause
them to participate in many analyses related to vertices.
Many studies have been done by researchers on various
graphs. It is difficult to examine these concepts when the
exact values for the vertices cannot be considered.

In 1965, Zadeh [1] presented the basic idea of fuzzy set
(FS) where its prominent feature was the allocation of mem-
bership degree between 0 and 1 to each element in a set.
Zadeh [2] also introduced the interval-valued fuzzy set
(IVFS) in 1975, in which membership degrees were intervals
of numbers. Roselfeld [3] defined a new concept called the
fuzzy graph (FG) by employing fuzzy relations on FS. FGs
were considered by researchers in the fields related to ambig-

uous and uncertain problems. They were able to find numer-
ous applications in solving and modeling problems in
computer science, engineering, system analysis, economics,
network routing, transportation, and so on. With the advent
of new indefinite problems, it became clear that a member-
ship function could not well express the ambiguity in subjec-
tive perceptions and the complexity of data. To overcome
this shortcoming of the FS, Atanassov [4] proposed an
extension of FS by introducing nonmembership function
and defined intuitionistic fuzzy set (IFS). IFGs were first
introduced by Atanassov [5] in 1999 and was further dis-
cussed in [6]. Mahapatra et al. [7–9] explored concepts on
fuzzy graphs. Rashmanlou and Pal [10, 11] studied different
kinds of FGs. Kosari et al. [12] presented vague graph struc-
ture with an application in medical diagnosis. Kou et al. [13]
studied some properties of vague graph (VG). Krishna et al.
[14] studied new results in cubic graphs. Talebi et al. [15, 16]
defined Cayley-FGs and some operations on level graphs of
bipolar FGs. Atanassov [17] recently introduced some new
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topological operators over IFSs. Mathew et al. [18] conducted
research on vertex rough graphs. Some concepts in IVFGs and
neutrosophic graphs are studied by Jan et al. [19]. Voskoglou
[20] used a combination of soft sets and gray numbers in
decision-making. Mahapatra et al. [21–23] introduced con-
cepts of neutrosophic graphs used in social networks.

The decision to determine accurate numerical values in
uncertain and inaccurate evaluations of information, which
often occur in practical situations, is associated with difficul-
ties. Thus, in 1989, Atanassov and Gargov [24] introduced
the idea of the interval-valued intuitionistic fuzzy set (IVIFS)
in order to unify perceptions and quantify the uncertain
nature of the mind. This concept is defined by a membership
function, a nonmembership function, and a hesitant func-
tion whose values are intervals between 0 and 1 instead of
exact numbers. IVIFS has been widely used in many areas,
such as decision-making [25], pattern recognition [26],
medical diagnosis [27], and graph theory [28]. The concept
of interval-valued fuzzy graphs (IVFGs) is presented by
Hongmei and Lianhua in [29]. Akram et al. [30, 31] defined
certain types of IVFGs. The product of IVIFGs was proposed
by Mishra and Pal in [32]. The strong IVIFG concept is
described by Ismayil and Ali [33]. Rashmanlou et al. [25,
34–36] studied some IVIFG concepts.

The purpose of this paper is to find a way to determine the
concepts of vertex covering, matching, and paired domination
in IVIFGs where we are dealing with interval-valued numbers
instead of fuzzy numbers. The previous definition limitations
in the vertex covering, matching, and paired domination of
FGs have directed us to offer new classifications in terms of
IVIFG. These concepts have already been studied by some
researchers in a variety of FGs. Sahoo et al. [37] investigated
covering and paired domination in IFGs.

The rest of this article is organized as follows: Section 2
briefly reviews related basic concepts to IVIFGs. In Section
3, we introduced the concepts of strong vertex covering,
independent vertex covering, and perfect strong matching
in an IVIFG by strong edges and defined some of its proper-
ties in specific types of IVIFGs. In this section, we introduce
paired domination in IVIFG and examine its implications.
Finally, we present an application of IVIFG on social net-
works in Section 4.

2. Preliminaries

In this section, we briefly define some of the basic concepts
for entering the main discussion.

Definition 1 (see [24]). An IVIFS A in X can be described as

A = x, μLA xð Þ, μUA xð Þ� �
, νLA xð Þ, νUA xð Þ� �� �

x ∈ Xj� �
, ð1Þ

where 0 ≤ μLAðxÞ ≤ μUA ≤ 1, 0 ≤ νLAðxÞ ≤ νUA ≤ 1, and 0 ≤ μUA ðxÞ
+ νUA ðxÞ ≤ 1, for all x ∈ X.

Similarly, the intervals ½μLAðxÞ, μUA ðxÞ� and ½νLAðxÞ, νUA ðxÞ�
denoted the MV and non-MV of an element x, respectively.
If each of the intervals contains only one value for each x ∈
X, we have

μA xð Þ = μLA xð Þ = μUA xð Þ, νA xð Þ = νLA xð Þ = νUA xð Þ: ð2Þ

Furthermore, the hesitancy degree of each element x is as
follows:

1 − μLA xð Þ − νLA xð Þ, 1 − μUA xð Þ − νUA xð Þ� �
: ð3Þ

Definition 2 (see [33]). An IVIFG of an underlying graph G∗

= ðV , EÞ is a pair G = ðV , A, BÞ so that

A = μLA xð Þ, μUA xð Þ� �
, νLA xð Þ, νUA xð Þ� �� �

x ∈ Vj� �
, ð4Þ

is an IVIFS in V and

B = μLB xyð Þ, μUB xyð Þ� �
, νLB xyð Þ, νUB xyð Þ� �� �

xy ∈ Ej� �
, ð5Þ

is an interval-valued intuitionistic fuzzy relation (IVIFR) V
×V so that

μB : E ⊆V ×V ⟶D 0, 1½ �,
νB : E ⊆ V ×V ⟶D 0, 1½ �,

μLB xyð Þ ≤min μLA xð Þ, μLA yð Þ� �
,

μUB xyð Þ ≤min μUA xð Þ, μUA yð Þ� �
,

νLB xyð Þ ≥max νLA xð Þ, νLA yð Þ� �
,

νUB xyð Þ ≥max νUA xð Þ, νUA yð Þ� �
,

ð6Þ

and μUB ðxyÞ + νUB ðxyÞ ≤ 1, for each xy ∈ E.

Definition 3 (see [34]). An edge xy of an IVIFG, G is named
a strong arc (SA) or effective edge if

μLB xyð Þ =min μLA xð Þ, μLA yð Þ� �
,

μUB xyð Þ =min μUA xð Þ, μUA yð Þ� �
,

νLB xyð Þ =max νLA xð Þ, νLA yð Þ� �
,

νUB xyð Þ =max νUA xð Þ, νUA yð Þ� �
:

ð7Þ

Definition 4 (see [34]). An IVIFG is complete, if

μLB xyð Þ =min μLA xð Þ, μLA yð Þ� �
,

νLB xyð Þ =max νLA xð Þ, νLA yð Þ� �
,

μUB xyð Þ =min μUA xð Þ, μUA yð Þ� �
,

νUB xyð Þ =max νUA xð Þ, νUA yð Þ� �
,

ð8Þ

for all xy ∈ V ×V .

As a result of the above definition, the following defini-
tion can be provided.

Definition 5. An IVIFG G is named bipartite whenever the
vertex set V can be partitioned into two nonempty sets V1
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and V2 so that μ
L
BðxyÞ = μUB ðxyÞ = 0 and νLBðxyÞ = νUB ðxyÞ = 0

, for xy ∈ V1 or xy ∈ V2. If

μLB xyð Þ =min μLA xð Þ, μLA yð Þ� �
,

μUB xyð Þ =min μUA xð Þ, μUA yð Þ� �
,

νLB xyð Þ =max νLA xð Þ, νLA yð Þ� �
,

νUB xyð Þ =max νUA xð Þ, νUA yð Þ� �
,

ð9Þ

for all x ∈ V1 and y ∈ V2; then, G is named a complete bipar-
tite IVIFG (CB-IVIFG) and is shown by Kσ1,σ2 .

All the basic notations are shown in Table 1.

3. Covering, Matching, and Paired
Domination in the IVIFGs

In this section, we introduce covering, matching, and paired
domination in the IVIFGs by the weight of strong edges and
examine some of its properties and results.

Definition 6. Let G = ðV , A, BÞ be an IVIFG. An SNC in an
IVIFG G is the set D of nodes that cover all SAs of G. The
weight of an SNC D is denoted as

Wnc = W
Lμ
nc Dð Þ,WUμ

nc Dð Þ
h i

, WLν
nc Dð Þ,WUν

nc Dð Þ� �D E
,

Wnc = 〠
x∈D

μLB xyð Þ, 〠
x∈D

μUB xyð Þ
" #

, 〠
x∈D

νLB xyð Þ, 〠
x∈D

νUB xyð Þ
" #* +

,

ð10Þ

so that μLBðxyÞ and μUB ðxyÞ are the minimum of the lower
and upper of IVMBs and νLBðxyÞ and νUB ðxyÞ are the maxi-
mum of the lower and upper of IVNMBs of all SAs incident
on x, respectively.

An SNCN of an IVIFG G is shown as follows αs0ðGÞ =
αs0 = h½αLμs0 , α

Uμ
s0 �, ½αLνs0 , αUν

s0 �i so that

α
Lμ
s0 = min W

Lμ
nc

���D is the weight of SNCs of G
n o

,

α
Uμ
s0 = min W

Uμ
nc

���D is the weight of SNCs of G
n o

,

αLνs0 = max WLν
nc

��D is the weight of SNCs of G
� �

,

αUν
s0

= max WUν
nc

��D is the weight of SNCs of G
� �

:

ð11Þ

A minimum SNC in an IVIFG G is an SNC of minimum
IVMBs and maximum IVNMBs.

Theorem 7. Let G = ðV , A, BÞ be a CIVIFG. Then,

α
Lμ
s0 = r − 1ð ÞμLB xyð Þ,

αLνs0 = r − 1ð ÞνLB xyð Þ,

α
Uμ
s0 = r − 1ð ÞμUB xyð Þ,

αUν
s0

= r − 1ð ÞνUB xyð Þ,

ð12Þ

where μLBðxyÞ and μUB ðxyÞ are the lower and upper of IVMBs
and νLBðxyÞ and νUB ðxyÞ are the lower and upper of IVNMBs
of the weakest arc in G. Note that r is the number of vertex
in G.

Proof. Since G is a CIVIFG, all arcs are strong, and every
node is neighbor to all other vertices. So, any set includes
ðr − 1Þ nodes forming an SNC of G.

Let x be a vertex having minimum of IVMBs and
maximum of IVNMBs in G. Suppose y1, y2 ⋯ , yn−1 is
the node neighbor to x. Then, the ðr − 1Þ arcs xy1, xy2,
⋯, xyr−1 are all weakest arcs of G, and strength of each
arcs is equal to h½μLBðxyÞ, μUB ðxyÞ�, ½νLBðxyÞ, νUB ðxyÞ�i, which
y ∈ fy1, y2,⋯,yr−1g.

Table 1: Some basic notations.

Notation Meaning

IVFS Interval-valued fuzzy set

IFG Intuitionistic fuzzy graph

IVIFS Interval-valued intuitionistic fuzzy set

IVIFG Interval-valued intuitionistic fuzzy graph

CIVIFG Complete interval-valued intuitionistic fuzzy graph

SA Strong arc

CB Complete bipartite

SC Strong cover

SCN Strong covering number

SNC Strong node cover

ISA Incident strong arc

SNCN Strong node covering number

IVMB Interval-valued membership bound

IVNMB Interval-valued nonmembership bound

SI Strong independent

SIS Strong independent set

SIN Strong independent number

IN Isolated node

SAC Strong arc cover

PD Paired domination

SPDN Strong paired domination number

SM Strong matching

SMN Strong matching number

SIAC Strong independent arc cover

PSM Perfect strong matching

SDS Strong dominating set

SPDS Strong paired dominating set
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Hence, the set D = fy1, y2,⋯,yr−1g of ðr − 1Þ vertices
forms an SNC of G with

W
Lμ
nc Dð Þ = 〠

yi∈D
μLB xyið Þ = μLB xy1ð Þ + μLB xy2ð Þ+⋯+μLB xyr−1ð Þ,

W
Uμ
nc Dð Þ = 〠

yi∈D
μUB xyið Þ = μUB xy1ð Þ + μUB xy2ð Þ+⋯+μUB xyr−1ð Þ,

ð13Þ

where μLBðxyiÞ, i = 1, 2,⋯, ðr − 1Þ is the minimum lower of
IVMB and μUB ðxyiÞ, i = 1, 2,⋯, ðr − 1Þ is the minimum
upper of IVNMB of SAs incident on yi. Then,

α
Lμ
s0 = μLB xyð Þ + μLB xyð Þ+⋯+μLB xyð Þ,

α
Uμ
s0 = μUB xyð Þ + μUB xyð Þ+⋯+μUB xyð Þ,

ð14Þ

where μLBðxyÞ and μUB ðxyÞ are the lower and upper of IVMBs
of a weakest arc in G.

Hence, α
Lμ
s0 = ðr − 1ÞμLBðxyÞ and α

Uμ
s0 = ðr − 1ÞμUB ðxyÞ.

Similarly,

WLν
nc Dð Þ = 〠

yi∈D
νLB xyið Þ = νLB xy1ð Þ + νLB xy2ð Þ+⋯+νLB xyr−1ð Þ,

WUν
nc Dð Þ = 〠

yi∈D
νUB xyið Þ = νUB xy1ð Þ + νUB xy2ð Þ+⋯+νUB xyr−1ð Þ,

ð15Þ

where νLBðxyiÞ and νUB ðxyiÞ, i = 1, 2,⋯, ðr − 1Þ are the maxi-
mum lower and upper of IVNMBs of all SAs incident on yi.
Then,

αLνs0 = νLB xyð Þ + νLB xyð Þ+⋯+νLB xyð Þ,
αUν
s0

= νUB xyð Þ + νUB xyð Þ+⋯+νUB xyð Þ,
ð16Þ

where νLBðxyÞ and νUB ðxyÞ are the lower and upper of

IVNMBs of a weakest arc in G. Hence, αLνs0 = ðr − 1ÞνLBðxyÞ
and αUν

s0 = ðr − 1ÞνUB ðxyÞ.

Theorem 8. For a CB-IVIFG Kσ1 ,σ2 with partite set V1 and
V2,

α
Lμ
s0 Kσ1 ,σ2
	 


=min W
Lμ
nc V1ð Þ,WLμ

nc V2ð Þ
n o

,

α
Uμ
s0 Kσ1 ,σ2
	 


=min W
Uμ
nc V1ð Þ,WUμ

nc V2ð Þ
n o

,

αLνs0 Kσ1 ,σ2
	 


=max WLν
nc V1ð Þ,WLν

nc V2ð Þ� �
,

αUν
s0

Kσ1 ,σ2
	 


=max WUν
nc V1ð Þ,WUν

nc V2ð Þ� �
:

ð17Þ

Proof. All arcs in Kσ1,σ2 are strong, and each node in V1 is
neighbor with all nodes in V2 and contrariwise. The set of
all arcs of Kσ1,σ2 is a set of all arcs incident on each node

of V1 or a set of all arcs incident on each node of V2. Hence,

all SNCs in Kσ1,σ2 are V1, V2, and V1 ∪V2. Clearly, W
Lμ
nc

ðV1 ∪V2Þ is greater than W
Lμ
ncðV1Þ and W

Lμ
ncðV2Þ. Hence,

α
Lμ
s0 Kσ1,σ2
	 


=min W
Lμ
nc V1ð Þ,WLμ

nc V2ð Þ
n o

: ð18Þ

Similarly, α
Uμ
s0 ðKσ1,σ2Þ =min fWUμ

nc ðV1Þ,W
Uμ
nc ðV2Þg.

Also, WLν
ncðV1 ∪V2Þ is less than WLν

ncðV1Þ and WLν
ncðV2Þ.

So,

αLνs0 Kσ1,σ2
	 


=max WLν
nc V1ð Þ,WLν

nc V2ð Þ� �
: ð19Þ

In the same way, we have αUν
s0 ðKσ1,σ2Þ =max fWUν

nc ð
V1Þ,WUν

nc ðV2Þg.

Definition 9. In an IVIFG G, two nodes are said to be SI if
there is no SA between them. A set of nodes in G is an SI
if and only if two nodes are in an SI set.

Definition 10. The weight of an SIS D in an IVIFG G is
described as

W is Dð Þ = W
Lμ
is Dð Þ,WUμ

is Dð Þ
h i

, WLν
is Dð Þ,WUν

is Dð Þ
h iD E

,

ð20Þ

i.e.,

W is Dð Þ = 〠
x∈D

μLB xyð Þ, 〠
x∈D

μUB xyð Þ
" #

, 〠
x∈D

νLB xyð Þ, 〠
x∈D

νUB xyð Þ
" #* +

,

ð21Þ

where μLBðxyÞ and μUB ðxyÞ are minimum of the lower and
upper of IVMBs and νLBðxyÞ and νUB ðxyÞ are maximum of
the lower and upper of IVNMBs of all SAs incident on x,
respectively.

An SIN of an IVIFG G is shown by βs0
ðGÞ = βs0

= h½
β
Lμ
s0 , β

Uμ
s0 �, ½βLν

s0
, βUν

s0
�i, which

β
Lμ
s0 = max W

Lμ
is Dð Þ

���D is the SISs of nodes inG
n o

,

β
Uμ
s0 = max W

Uμ

is Dð Þ
���D is the SISs of nodes inG

n o
,

βLν
s0
= min WLν

is Dð Þ
���D is the SISs of nodes inG

n o
,

βUν
s0

= min WUν
is Dð Þ

���D is the SISs of nodes inG
n o

:

ð22Þ

A maximum SIS in an IVIFG G is an SIS with the
maximum IVMBs and minimum IVNMBs.
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Theorem 11. Let G be a CIVIFG. Then,

βs0
Gð Þ = μLB xyð Þ, μUB xyð Þ� �

, νLB xyð Þ, νUB xyð Þ� �� �
, ð23Þ

where μLBðxyÞ and μUB ðxyÞ are the lower and upper of IVMBs
and νLBðxyÞ and νUB ðxyÞ are the lower and upper of IVNMBs
of a weakest arc in G.

Proof. Since G is a CIVIFG, so all arcs are strong, and also,
each arc is neighbor to all other nodes. Hence, D = fxg is
the only SIS for each x ∈ V . Thus, the result is true.

Theorem 12. Let Kσ1 ,σ2 be a CB-IVIFG with partite set V1

and V2. Then,

β
Lμ
s0 Kσ1 ,σ2
	 


=max W
Lμ
is V1ð Þ,WLμ

is V2ð Þ
n o

,

β
Uμ
s0 Kσ1 ,σ2
	 


=max W
Uμ

is V1ð Þ,WUμ

is V2ð Þ
n o

,

βLν
s0

Kσ1 ,σ2
	 


=min WLν
is V1ð Þ,WLν

is V2ð Þ
n o

,

βUν
s0

Kσ1 ,σ2
	 


=min WUν
is V1ð Þ,WUν

is V2ð Þ
n o

:

ð24Þ

Proof. In Kσ1,σ2 all arcs are strong. Also, each node in V1 is
neighbor with all nodes in V2 and contrariwise. Therefore,
all SISs in Kσ1,σ2 are V1 and V2. Hence, the result is true.

Example 1. Consider an IVIFG G is drawn in Figure 1.
Clearly, all arcs are strong, and all SNCs of G are as

follows:

D1 = y, tf g,
D2 = x, y, zf g,
D3 = x, z, tf g,
D4 = y, z, tf g,
D5 = x, y, tf g,
D6 = x, y, z, tf g:

ð25Þ

Table 2 shows the method of calculating the weight of
SISs.

Thus, αs0 = h½0:2,0:4�, ½0:8,2�i.

Example 2. Consider a strong IVIFG G is drawn in Figure 2.
All SISs in G are D1 = fx, zg,D2 = fy, tg. The calculation
of the weight of SIS is shown in Table 3. Therefore, βs0

=
h½0:4,1�, ½0:7,0:9�i.

Definition 13. Let G be an IVIFG without INs. The weight of

an SAC Y is described as WacðYÞ = h½WLμ
ac ðYÞ,WUμ

ac ðYÞ�,
½WLν

ac ðYÞ,WUν
ac ðYÞ�i, which WacðYÞ = h½∑xy∈Yμ

L
BðxyÞ,∑xy∈Y

μUB ðxyÞ�, ½∑xy∈Yν
L
BðxyÞ,∑xy∈Yν

U
B ðxyÞ�i.

An SACN of an IVIFG G is denoted by αs1ðGÞ = αs1 =
h½αLμs1 , α

Uμ
s1 �, ½αLνs1 , αUν

s1 �i, where

α
Lμ
s1 = min W

Lμ
ac Yð Þ

���Y is the SACs of G
n o

,

α
Uμ
s1 = min W

Uμ
ac Yð Þ

���Y is the SACs of G
n o

,

αLνs1 = max WLν
ac Yð Þ��Y is the SACs of G

� �
,

αUν
s1

= max WUν
ac Yð Þ��Y is the SACs of G

� �
:

ð26Þ

A minimum SAC in an IVIFG G is an SAC with
minimum IVMBs and maximum IVNMBs.

Theorem 14. If G is a complete IVIFG, then

α
Lμ
s1 =min W

Lμ
ac Yð Þ

���Y is a SAC inGwith Yj j ≥ n
2

l mn o
,

α
Uμ
s1 =min W

Uμ
ac Yð Þ

���Y is a SAC inGwith Yj j ≥ n
2

l mn o
,

αLνs1 =max WLν
ac Yð Þ��Y is a SAC inGwith Yj j ≥ n

2

l mn o
,

αUν
s1

=max WUν
ac Yð Þ��Y is a SAC inGwith Yj j ≥ n

2

l mn o
:

ð27Þ

Proof. Since G is a CIVIFG, so all arcs are SA, and each ver-
tex is neighbor to all others vertices. Also, the number of arcs
in SAC of both G and G∗ is identical because each arc in
both graphs is strong. Now, the SACN of G∗ is dn/2e. There-
fore, the minimum number of arcs in an SAC of G is dn/2e.
This completes the proof.

Theorem 15. If Kσ1 ,σ2 is a CB-IVIFG with partite set V1 and
V2. Then,

α
Lμ
s1 Kσ1 ,σ2
	 


=min
n
W

Lμ
ac Yð Þ

���Y is a SAC inKσ1 ,σ2 with Yj j

≥max V1j j, V2j jf g
o
,

α
Uμ
s1 Kσ1 ,σ2
	 


=min
n
W

Uμ
ac Yð Þ

���Y is a SAC inKσ1 ,σ2 with Yj j

≥max V1j j, V2j jf g
o
,

αLνs1 Kσ1 ,σ2
	 


=max
�
WLν

ac Yð Þ��Y is a SAC inKσ1 ,σ2 with Yj j
≥max V1j j, V2j jf g�,

αUν
s1

Kσ1 ,σ2
	 


=max
�
WUν

ac Yð Þ��Y is a SAC inKσ1 ,σ2 with Yj j
≥max V1j j, V2j jf g�:

ð28Þ

Proof. In Kσ1,σ2 , all arcs are strong. Also, each node in V1 is
neighbor with all nodes in V2 and contrariwise. Also, the
number of arcs in an SAC of both G and G∗ is identical
because each arc in both graph is strong. Now, the arc

5Advances in Mathematical Physics
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Figure 2: A strong IVIFG G for a strong independent set (SIS).

Table 3: Calculating the weight of SISs.

D W
Lμ
nc Dð Þ W

Uμ
nc Dð Þ WLν

nc Dð Þ WUν
nc Dð Þ Wnc Dð Þ

x, tf g 0:2 + 0:2 0:5 + 0:4 0:4 + 0:4 0:5 + 0:5 0:4,0:9½ �, 0:8,1½ �h i
y, tf g 0:2 + 0:2 0:5 + 0:5 0:3 + 0:4 0:4 + 0:5 0:4,1½ �, 0:7,0:9½ �h i

Table 2: Calculating the weight of SISs.

D W
Lμ
nc Dð Þ W

Uμ
nc Dð Þ WLν

nc Dð Þ WUν
nc Dð Þ Wnc Dð Þ

y, tf g 0:1 + 0:1 0:2 + 0:2 0:2 + 0:2 0:5 + 0:5 0:2,0:4½ �, 0:4,1½ �h i
x, y, zf g 0:1 + 0:1 + 0:2 0:2 + 0:2 + 0:4 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 0:4,0:8½ �, 0:6,1:5½ �h i
x, z, tf g 0:1 + 0:1 + 0:2 0:2 + 0:2 + 0:4 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 0:4,0:8½ �, 0:6,1:5½ �h i
y, z, tf g 0:1 + 0:2 + 0:1 0:2 + 0:4 + 0:2 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 0:4,0:8½ �, 0:6,1:5½ �h i
x, y, tf g 0:1 + 0:1 + 0:1 0:2 + 0:2 + 0:2 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 0:3,0:6½ �, 0:6,1:5½ �h i
x, y, z, tf g 0:1 + 0:1 + 0:2 + 0:1 0:2 + 0:2 + 0:4 + 0:2 0:2 + 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 + 0:5 0:5,1½ �, 0:8,2½ �h i
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Figure 1: An IVIFG G for a strong node cover (SNC).
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covering number of K∗
σ1,σ2 is max fjV1j, jV2jg. Therefore,

the minimum number of arcs in an SAC of Kσ1,σ2 is max f
jV1j, jV2jg. Thus, the result is obtained.

Definition 16. Let G be an IVIFG. A set T of SAs in G so that
no two arcs in T have a common node is named an SIS of
arcs or an SM in G.

Definition 17. Let T be an SM in IVIFG G. If xy ∈ T , then, we
say that T strongly matches x to y. The weight of an SM is
described as

Wsm Tð Þ = W
Lμ
sm Tð Þ,WUμ

sm Tð Þ
h i

, WLν
sm Tð Þ,WUν

sm Tð Þ� �D E
,

Wsm Tð Þ = 〠
xy∈T

μLB xyð Þ, 〠
xy∈T

μUB xyð Þ
" #

, 〠
xy∈T

νLB xyð Þ, 〠
xy∈T

νUB xyð Þ
" #* +

:

ð29Þ

An SMN of an IVIFG G is shown by βs1
ðGÞ = βs1

=
h½βLμ

s1 , β
Uμ
s1 �, ½βLν

s1
, βUν

s1
�i, which

β
Lμ
s1 = max W

Lμ
sm Tð Þ

���T is the SMof G
n o

,

β
Uμ
s1 = max W

Uμ
sm Tð Þ

���T is the SMof G
n o

,

βLν
s1
= min WLν

sm Tð Þ��T is the SMof G
� �

,

βUν
s1

= min WUν
sm Tð Þ��T is the SMof G

� �
:

ð30Þ

A maximum SM in an IVIFG G is an SM of maxi-
mum IVMBs and minimum IVNMBs.

Theorem 18. If G is a CIVIFG, then

β
Lμ
s1 =max W

Lμ
sm Tð Þ

���T is a SM with Tj j ≤ n
2

j kn o
,

β
Uμ
s1 =max W

Uμ
sm Tð Þ

���T is a SM with Tj j ≤ n
2

j kn o
,

βLν
s1
=min WLν

sm Tð Þ��T is a SM with Tj j ≤ n
2

j kn o
,

βUν
s1

=min WUν
sm Tð Þ��T is a SM with Tj j ≤ n

2

j kn o
:

ð31Þ

Proof. Since G is a CIVIFG, all arcs are strong, and each node
is neighbor to all other nodes. Also, the number of arcs in an
SM of both G and G∗ is identical because each arc in both
graph is strong. Now, the SMN of G∗ is bn/2c. Therefore,
the maximum number of arcs in an SM of G is bn/2c. Hence,
the result follows.

Theorem 19. For a CB-IVIFG Kσ1 ,σ2 with partite set V1 and
V2,

β
Lμ
s1 Kσ1 ,σ2
	 


=max
n
W

Lμ
sm Tð Þ

���T is a SM inKσ1 ,σ2with Tj j

≤min V1j j, V2j jf g
o
,

β
Uμ
s1 Kσ1 ,σ2
	 


=max
n
W

Uμ
sm Tð Þ

���T is a SM inKσ1 ,σ2 with Tj j

≤min V1j j, V2j jf g
o
,

βLν
s1

Kσ1 ,σ2
	 


=min
�
WLν

sm Tð Þ��T is a SM inKσ1 ,σ2 with Tj j
≤min V1j j, V2j jf g�,

βUν
s1

Kσ1 ,σ2
	 


=min
�
WUν

sm Tð Þ��T is a SM inKσ1 ,σ2 with Tj j
≤min V1j j, V2j jf g�:

ð32Þ

Proof. In Kσ1,σ2 , all arcs are strong. Also, each node in V1 is
neighbor with all nodes in V2 and contrariwise. Thus, the
number of arcs in an SM of both Kσ1,σ2 and K

∗
σ1,σ2 is identical

because each arc in both graphs is strong. Now, the SMN of
K∗

σ1,σ2 is max fjV1j, jV2jg. Therefore, the maximum number
of arcs in an SM of Kσ1,σ2 is max fjV1j, jV2jg.

Hence, the result is obtained.

Example 3. Consider a strong IVIFG G is drawn in Figure 3.
All arcs are strong, and the SACs are as follows:

Y1 = xy, tzf g,
Y2 = xt, yzf g,

Y3 = yt, tx, yzf g,
Y4 = yt, xy, tzf g,
Y5 = xy, yz, ztf g,
Y6 = xy, xt, tzf g,
Y7 = xt, xy, yzf g,
Y8 = xt, zt, yzf g:

ð33Þ

The calculation of the weight of SACs is shown in
Table 4.

So, αs1 = h½0:3,0:6�, ½0:6,1:4�i.
Again, the two sets Y1 and Y2 are the only SAC and SM

in G. So,

Wsm Y1ð Þ = 0:3,0:6½ �, 0:3,0:8½ �h i,
Wsm Y2ð Þ = 0:3,0:7½ �, 0:4,0:9½ �h i:

ð34Þ

Hence, βs1
= h½0:3,0:7�, ½0:3,0:8�i.
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Example 4. Consider an IVIFG G is drawn in Figure 4.
All SAs are xt, zt, and yz, and all SACs are as follows:

Y1 = xt, yzf g,
Y2 = xt, tz, yzf g:

ð35Þ

The calculation of the weight of SACs is shown in
Table 5. So, αs1 = h½0:4,1�, ½1:1,1:4�i.

The set Y1 = fxt, yzg is the only SIAC. So, βs1
=Wsmð

Y1Þ = h½0:4,1�, ½0:7,0:9�i.

Theorem 20. Let G be an IVIFG containing no IN. Then,

α
Lμ
s0 + β

Lμ
s0 =WLμ Vð Þ,

αLνs0 + βLν
s0
=WLν Vð Þ,

α
Uμ
s0 + β

Uμ
s0 =WUμ Vð Þ,

αUν
s0

+ βUν
s0

=WUν Vð Þ:

ð36Þ

Proof. Let Ms0
be a minimum SNC of G, which

α
Lμ
s0 =WLμ Ms0

	 

,

αLνs0 =WLν Ms0

	 

,

α
Uμ
s0 =WUμ Ms0

	 

,

αUν
s0

=WUν Ms0

	 

:

ð37Þ

Then, V −Ms0
is an SIS of nodes. In other words, the

nodes in V −Ms0
are incident on SAs of G. Thus,

β
Lμ
s0 ≥WLμ V −Ms0

	 

=WLμ Vð Þ − α

Lμ
s0 ⇒ α

Lμ
s0 + β

Lμ
s0 ≥WLμ Vð Þ,

β
Uμ
s0 ≥WUμ V −Ms0

	 

=WUμ Vð Þ − α

Uμ
s0 ⇒ α

Uμ
s0 + β

Uμ
s0 ≥WUμ Vð Þ,

βLν
s0
≤WLν V −Ms0

	 

=WLν Vð Þ − αLνs0 ⇒ αLνs0 + βLν

s0
≤WLν Vð Þ,

βUν
s0

≤WUν V −Ms0

	 

=WUν Vð Þ − αUν

s0
⇒ αUν

s0
+ βUν

s0
≤WUν Vð Þ:

ð38Þ

Let β
Lμ
s0 =WðQs0

Þ, where Qs0
is a maximum SIS of nodes

in G. That is, no two nodes in Qs0
are neighbor to each other

< [0.1, 0.2], [0.2, 0.4] >

x y

t z

< [0.1, 0.2], [0.2, 0.5] >
< [0.3, 0.5], [0.2, 0.5] >

< [0.2, 0.4], [0.1, 0.3] >

< [0.2, 0.4], [0.1, 0.3] > < [0.2, 0.6], [0.1, 0.3] >

< [0.2, 0.4], [0
.2, 0.5] >

< 
[0

.1
, 0

.2
], 
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] >

< 
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Figure 3: A strong IVIFG G for strong maching (SM).

Table 4: Calculating the weight of strong arc cover sets Y .

Y W
Lμ
ac Yð Þ W

Uμ
ac Yð Þ WLν

ac Yð Þ WUν
ac Yð Þ Wac Yð Þ

Y1 0:1 + 0:2 0:2 + 0:4 0:2 + 0:1 0:5 + 0:3 0:3,0:6½ �, 0:3,0:8½ �h i
Y2 0:1 + 0:2 0:2 + 0:5 0:2 + 0:2 0:4 + 0:5 0:3,0:7½ �, 0:4,0:9½ �h i
Y3 0:2 + 0:1 + 0:2 0:4 + 0:2 + 0:5 0:2 + 0:2 + 0:2 0:5 + 0:4 + 0:5 0:5,1:1½ �, 0:6,1:4½ �h i
Y4 0:2 + 0:1 + 0:2 0:4 + 0:2 + 0:4 0:2 + 0:2 + 0:1 0:5 + 0:5 + 0:3 0:5,1½ �, 0:5,1:3½ �h i
Y5 0:1 + 0:2 + 0:2 0:2 + 0:5 + 0:4 0:2 + 0:2 + 0:1 0:5 + 0:5 + 0:3 0:5,1:1½ �, 0:5,1:3½ �h i
Y6 0:1 + 0:1 + 0:2 0:2 + 0:2 + 0:4 0:2 + 0:2 + 0:1 0:5 + 0:4 + 0:3 0:4,0:8½ �, 0:5,1:2½ �h i
Y7 0:1 + 0:1 + 0:2 0:2 + 0:2 + 0:5 0:2 + 0:2 + 0:2 0:4 + 0:5 + 0:5 0:4,0:9½ �, 0:6,1:4½ �h i
Y8 0:1 + 0:2 + 0:2 0:2 + 0:4 + 0:5 0:2 + 0:1 + 0:2 0:4 + 0:3 + 0:5 0:4,1:1½ �, 0:5,1:2½ �h i
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by an SA, and thus, the node in V −Qs0
strongly covers all

SAs of G. Hence, V −Qs0
is an SNC of G, and α

Lμ
s0 and α

Uμ
s0

are the minimum lower and upper of IVMBs, and α
Lν
s0 and

α
Uν
s0 are the maximum lower and upper of IVNMBs. So,

α
Lμ
s0 ≤WLμ V −Qs0

	 

=WLμ Vð Þ − β

Lμ
s0 ⇒ α

Lμ
s0 + β

Lμ
s0 ≤WLμ Vð Þ,

α
Uμ
s0 ≤WUμ V −Qs0

	 

=WUμ Vð Þ − β

Uμ
s0 ⇒ α

Uμ
s0 + β

Uμ
s0 ≤WUμ Vð Þ,

αLνs0 ≥WLν V −Qs0

	 

=WLν Vð Þ − βLν

s0
⇒ αLνs0 + βLν

s0
≥WLν Vð Þ,

αUν
s0

≥WUν V −Qs0

	 

=WUν Vð Þ − βUν

s0
⇒ αUν

s0
+ βUν

s0
≥WUν Vð Þ:

ð39Þ

From (38) and (39), we have

α
Lμ
s0 + β

Lμ
s0 =WLμ Vð Þ, αUμ

s0 + β
Uμ
s0 =WUμ Vð Þ,

αLνs0 + βLν
s0
=WLν Vð Þ, αUν

s0
+ βUν

s0
=WUν Vð Þ:

ð40Þ

Definition 21. Let G be an IVIFG and M be an SM in G.
Then, M is named a PSM if M strongly matches each node
of G to some nodes of G.

Example 5. Consider an IVIFG G is drawn in Figure 5. All
arcs are strong, and the sets M1 and M2 are PSMs. The cal-

culation of the weight of PSMs is given in Table 6.

M1 = xt, yzf g,
M2 = xz, ytf g,

M3 = xt, xz, yzf g,
M4 = xt, ty, yzf g:

ð41Þ

So, βs1
= h½0:6,1:3�, ½0:7,0:9�i.

Hence, αs1 = h½0:3,0:7�, ½1:2,1:6�i.
Now, we introduced PD in IVIFGs using SAs based on

PSM. Also, some useful results are established.

Definition 22. A set D of nodes of IVIFG G is an SDS of G if
every node of V −D is a strong neighbor of some nodes in D.

Definition 23. The weight of an SDS D is defined as

Wsd Dð Þ = W
Lμ
sd Dð Þ,WUμ

sd Dð Þ
h i

, WLν
sd Dð Þ,WUν

sd Dð Þ
h iD E

,

ð42Þ

or

Wsd Dð Þ = 〠
x∈D

μLB xyð Þ, 〠
x∈D

μUB xyð Þ
" #

, 〠
x∈D

νLB xyð Þ, 〠
x∈D

νUB xyð Þ
" #* +

,

ð43Þ

where μLBðxyÞ and μUB ðxyÞ are the minimum lower and upper
of IVMBs and νLBðxyÞ and νUB ðxyÞ are the maximum lower
and upper of IVNMBs of SAs incident on x, respectively.

Table 5: Calculating the weight of strong arc cover sets Y .

Y W
Lμ
ac Yð Þ W

Uμ
ac Yð Þ WLν

ac Yð Þ WUν
ac Yð Þ Wac Yð Þ

Y1 0:2 + 0:2 0:5 + 0:5 0:4 + 0:3 0:5 + 0:4 0:4,1½ �, 0:7,0:9½ �h i
Y2 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 0:4 + 0:4 + 0:3 0:5 + 0:5 + 0:4 0:6,1:5½ �, 1:1,1:4½ �h i
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< 
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], 
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] >
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Figure 4: An IVIFG G for strong independent arc cover (SIAC).
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An SDN of an IVIFG G is denoted by γsðGÞ = γs =
h½γLμs , γUμ

s �, ½γLνs , γUν
s �i, where

γ
Lμ
s =min W

Lμ
sd Dð Þ

���D is the SDSs of G
n o

,

γ
Uμ
s =min W

Uμ

sd Dð Þ
���D is the SDSs of G

n o
,

γLνs =max WLν
sd Dð Þ

���D is the SDSs of G
n o

,

γUν
s =max WUν

sd Dð Þ
���D is the SDSs of G

n o
:

ð44Þ

Definition 24. Let G be an IVIFG. A set D of nodes is
named to be an SPDS if D is an SDS and the IVIF-
subgraph induced by D has a PSM. The weight of an

SPDS D is described as WspdðDÞ = h½WLμ
spdðDÞ,W

Uμ

spdðDÞ�, ½
WLν

spdðDÞ,WUν

spdðDÞ�i, which

Wspd Dð Þ = 〠
x∈D

μLB xyð Þ, 〠
x∈D

μUB xyð Þ
" #

, 〠
x∈D

νLB xyð Þ, 〠
x∈D

νUB xyð Þ
" #* +

:

ð45Þ

An SPDN of an IVIFG G is denoted by γspdðGÞ =

γspd = h½γLμspd , γ
Uμ

spd�, ½γLνspd , γUν

spd�i, that

γ
Lμ
spd =min W

Lμ
spd Dð Þ

���D is the SPDSs of G
n o

,

γ
Uμ

spd =min W
Uμ

spd Dð Þ
���D is the SPDSs of G

n o
,

γ
Lν
spd =max WLν

spd Dð Þ
���D is the SPDSs of G

n o
,

γ
Uν

spd =max WUν

spd Dð Þ
���D is the SPDSs of G

n o
:

ð46Þ

Example 6. Consider an IVIFG G is drawn in Figure 6.
All SAs are xt, zt, and yz. The PDs in G are D1, D2,
and D3. The weights of these sets are calculated as
follows:

D2 = x, yf g,
D2 = z, tf g,

D3 = x, y, z, tf g:
ð47Þ

Table 7 shows the calculation of the weight of PDs.
Hence, γspdðGÞ = h½0:4,1�, ½1:4,1:9�i.
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x y

t z
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Figure 5: An IVIFG G for perfect strong matching (PSM).

Table 6: Calculating the weight of perfect strong matchings M.

M W
Lμ
sm Mð Þ W

Uμ
sm Mð Þ WLν

sm Mð Þ WUν
sm Mð Þ Wsm Mð Þ

M1 0:3 + 0:1 0:6 + 0:2 0:2 + 0:5 0:4 + 0:6 0:4,0:8½ �, 0:7,1½ �h i
M2 0:1 + 0:2 0:2 + 0:5 0:5 + 0:2 0:6 + 0:3 0:3,0:7½ �, 0:7,0:9½ �h i
M3 0:3 + 0:1 + 0:1 0:6 + 0:2 + 0:2 0:2 + 0:5 + 0:5 0:4 + 0:6 + 0:6 0:5,1½ �, 1:2,1:6½ �h i
M4 0:3 + 0:2 + 0:1 0:6 + 0:5 + 0:2 0:2 + 0:2 + 0:5 0:4 + 0:3 + 0:6 0:6,1:3½ �, 0:9,1:3½ �h i
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Theorem 25. Let G be a CIVIFG. Then,

γ
Lμ
spd = 2μLB xyð Þ,

γ
Lν
spd = 2νLB xyð Þ,

γ
Uμ

spd = 2μUB xyð Þ,

γ
Uν

spd = 2νUB xyð Þ,

ð48Þ

where μLBðxyÞ and μUB ðxyÞ are the lower and upper of IVMB
and νLBðxyÞ and νUB ðxyÞ are the lower and upper of IVNMB
of any weakest arc in G, respectively.

Proof. Since G is a CIVIFG, all arcs are strong, and every ver-
tex is neighbor to all other vertices. Then, any set consisting
of two nodes fx1, x2g in G forms an SPDS. Hence,

γ
Lμ
spd = μLB xyð Þ + μLB xyð Þ = 2μLB xyð Þ,

γ
Uμ

spd = μUB xyð Þ + μUB xyð Þ = 2μUB xyð Þ,

γLνspd = νLB xyð Þ + νLB xyð Þ = 2νLB xyð Þ,

γ
Uν

spd = νUB xyð Þ + νUB xyð Þ = 2νUB xyð Þ,

ð49Þ

where xy is the weakest arc in G.

Table 7: Calculating the weight of paired dominating sets.

D W
Lμ
spd Dð Þ W

Uμ

spd Dð Þ WLν
spd Dð Þ WUν

spd Dð Þ Wspd Dð Þ
D1 0:2 + 0:2 0:5 + 0:5 0:4 + 0:2 0:5 + 0:4 0:4,1½ �, 0:6,0:9½ �h i
D2 0:2 + 0:2 0:5 + 0:5 0:4 + 0:4 0:5 + 0:5 0:4,1½ �, 0:8,1½ �h i
D3 0:2 + 0:2 + 0:2 + 0:2 0:5 + 0:5 + 0:5 + 0:5 0:4 + 0:2 + 0:4 + 0:4 0:5 + 0:4 + 0:5 + 0:5 0:8,2½ �, 1:4,1:9½ �h i

< [0.2, 0.7], [0.1, 0.3] >

x y

t z

< [0.1, 0.4], [0.5, 0.6] >
< [0.5, 0.6], [0.3, 0.4] >

< [0.2, 0.5], [0.4, 0.5] >

< [0.3, 0.5], [0.4, 0.5] > < [0.2, 0.5], [0.2, 0.4] >

< 
[0

.2
, 0

.5
], 

[0
.4

, 0
.5

] >

< 
[0

.2
, 0

.5
], 

[0
.2

, 0
.4

] >

Figure 6: An IVIFG G for strong paired dominating set (SPDS).

Figure 7: Scientific community network of researchers.
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4. Application

Social networks are a group of individuals or organizations
with common tastes or interests that come together to achieve
specific goals. Each member is named an actor. Social net-
works are characterized by complex relationships and interac-
tions between actors. The main reasons for creating social
networks are individual relationships, labor relations, scientific
relations, shared tastes, interests and hobbies, sociopolitical
motives, and virtual network analysis.

Graphs are used as a mathematical tool to represent and
analyze a social network by visually representing social net-
works. In these graphs, the actors are considered as vertices
of the graph, and the connections between them are dis-
played by the edges of the graph. Intuitively, the edges are
distributed on social networks locally. This means that the
number of edges distributed among a group of vertices is
much greater than the number of distribution edges among
this group of vertices and the rest of the vertices of the graph.
This feature, which can be seen in graphs related to real data,
is called a community. In some sources, the community is
also called a cluster or module. In other words, communities
are a set of vertices that are more likely to share common
features than the rest of the graph. Since people in forums
on a social network are more likely to have common interests,
this information can be used to promote specific products by
finding their interests. Most online social networks have over-
lapping communities. This means that these networks are
made up of overlapping communities, and one vertex can
belong to more than one community. Figure 7 illustrates the
social network of researchers in a country that is a member
of different scientific communities according to the subjects
under study. These communities include chemistry, biology,
engineering, information technology (IT), mathematics, med-
icine, physics, and social sciences. Table 8 shows the number
of members of each community and the average number of
members present at the meetings.

In the evaluations made by the members on the effect
of community on the scientific promotion of members,
since the mentioned variables have uncertain values, so
for each community, we considered an interval-valued
intuitionistic fuzzy number as the amount of influence of
community on its members. Since the presence of

a

b

c

f

g

h

e

d

Figure 8: The scientific communities IVIFG.

Table 10: IVIFNs of relations between scientific communities.

Edges IVIFNs Edges IVIFNs

ab 0:97,0:89½ �, 0:11,0:21½ �h i df 0:75,0:85½ �, 0:10,0:15½ �h i
ac 0:76,0:86½ �, 0:14,0:16½ �h i dg 0:75,0:85½ �, 0:10,0:15½ �h i
ad 0:75,0:85½ �, 0:10,0:15½ �h i dh 0:75,0:85½ �, 0:10,0:15½ �h i
be 0:75,0:85½ �, 0:11,0:21½ �h i ef 0:75,0:85½ �, 0:10,0:15½ �h i
bf 0:79,0:89½ �, 0:11,0:21½ �h i eh 0:75,0:85½ �, 0:10,0:15½ �h i
cd 0:75,0:85½ �, 0:14,0:16½ �h i fh 0:77,0:87½ �, 0:10,0:13½ �h i
cf 0:76,0:86½ �, 0:14,0:16½ �h i gh 0:75,0:85½ �, 0:10,0:15½ �h i
ce 0:75,0:85½ �, 0:14,0:16½ �h i cg 0:75,0:85½ �, 0:14,0:16½ �h i

Table 8: Data set.

Vertices Communities
Number of
members

Average attendance
of members

a Biology 35 30

b Chemistry 25 21

c Engineering 55 45

d
Information

technology (IT)
75 60

e Mathematics 40 32

f Medicine 50 45

g Physics 30 24

h Social sciences 45 37

Table 9: The IVIFNs of scientific communities.

Vertices Communities
The IVIFNs corresponding to

each community.

a Biology 0:80,0:90½ �, 0:05,0:10½ �h i
b Chemistry 0:79,0:89½ �, 0:11,0:21½ �h i
c Engineering 0:76,0:86½ �, 0:14,0:16½ �h i

d
Information

technology (IT)
0:75,0:85½ �, 0:10,0:15½ �h i

e Mathematics 0:75,0:85½ �, 0:10,0:15½ �h i
f Medicine 0:80,0:90½ �, 0:5,0:10½ �h i
g Physics 0:75,0:85½ �, 0:10,0:15½ �h i
h Social sciences 0:77,0:87½ �, 0:10,0:13½ �h i
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members in the meetings of the community is effective on
the scientific promotion of members, we introduced the
ratio of the average number of members present in the
meetings to the total number as an IVIFN. For example,
studies have shown that the biology community is 80 to
90 percent effective in advancing the science of its mem-
bers and 5 to 10 percent ineffective. These values are spec-
ified in Table 9.

The strong relationships between scientific communities
are illustrated in the form of an IVIFG in Figure 8. In this
IVIFG, the membership values of the edges are the effect that
the members of the two communities have on their scientific
advancement. For example, the collaboration between the
two communities of chemistry and medicine is about 79 to
89 percent effective in the scientific advancement of the

members of each community and 11 to 21 percent ineffec-
tive. These values are shown in Table 10.

In general, there is no polynomial algorithm for finding a
maximum independent set for an arbitrary graph. This
means that it is not possible to access such a collection in a
short time. To obtain the maximal SISs in IVIFG with a
small number of vertices, we use the following instructions.

Since all edges are SA, so by applying the above steps for
all vertices on the IVIFG of Figure 8, all maximal SISs and
cardinalities can be seen in Table 11. Now, by calculating
the cardinal of all the SISs obtained from the above steps,
we can also determine the maximum SISs.

The maximum SISs are D1 = fa, e, gg, D2 = fa, f , gg,
and D3 = fb, c, hg.

After calculating the weight of the above sets, we have
WðD1Þ = h½2:25,2:55�, ½0:42,0:58�i, WðD2Þ = h½2:25,2:55�, ½
0:42,0:53�i, and WðD3Þ = h½2:25,2:55�, ½0:35,0:52�i.

Therefore, D3 has the maximum weight of membership
and the minimum weight of nonmembership, so it can be
chosen as the best option. It is interesting to know that D3
also has the maximum number of members in scientific
communities. That is, strong independent scientific commu-
nities include chemistry, engineering, and social sciences.

Suppose knowledge-based companies intend to orga-
nize an exhibition at the meeting place of scientific com-
munities to acquaint researchers with their scientific
products. Researchers at the knowledge-based companies
can be members of various scientific communities. The
goal is to hold as many exhibitions as possible at the same
time provided that each knowledge-based company has a
maximum of one exhibition in a specific time period and
to hold another exhibition at different time intervals. In
this case, the maximum independent set is the maximum
number of exhibitions that can be held at one time in sci-
entific communities.

5. Conclusion

Analysis of uncertain problems by IVIFG is important
because it gives more integrity and flexibility to the system.
An IVIFG, as an extension of FGs, has good capabilities in
dealing with problems that cannot be explained by FGs.
They have been able to have wide applications even in fields
such as psychology and identifying people based on cancer-
ous behaviors. In this paper, covering and matching have
been defined in IVIFGs using strong arcs. These concepts
are introduced as an interval-valued intuitionistic number.
One of the advantages of this method is that the amount
of defined parameters can be expressed and compared in
terms of membership and nonmembership. Also, the

Step 1. Consider vertex x as a member of F. Then, remove all adjacent vertices of x.
Step 2. Consider another arbitrary vertex in the remaining graph as a new member of F.
Depending on which member of the remaining vertex set is selected, different independent sets, including x, are obtained.
Step 3. Repeat Step 2 to select all possible vertices.

Algorithm 1: Finding the maximal SISs F of G containing an arbitrary vertex x.

Table 11: Calculations for finding maximal SISs in the IVIFG of
Figure 8.

Step 1 Step 2 Step 3 SISs

a

e g {a,e,g}

f g {a, f, g}

g f {a,g,f}

e {a,g,e}

h {a,h}

b

c h {b,c,h}

d {b,d}

g {b,g}

h c {b,h,c}

c
b h {c,b,h}

h b {c,h,b}

d
b {d,b}

e {d,e}

e

a g {e,a,g}

d {e,d}

g a {e,g,a}

f
a g {f,a,g}

g a {f,g,e}

g

a f {g,a,f}

e {g,a,e}

b {g,b}

e a {g,e,a}

f a {g,f,a}

h

a {h,a}

b c {h, b, c}

c b {h,c,b}
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concepts of SNC, SIN, SAC, and SM in IVIFGs are deter-
mined, and the relations among them have been obtained.
Furthermore, we have introduced the PD and SPDN in
CIVIFG and CB-IVIFG. Since the parameters being studied
are interval values, comparisons of these parameters may be
limited in an IVIFG. Finally, we have presented an applica-
tion of IVIFG in social networks. In their future work, the
authors try to study the concepts of m-polar IVIFGs.
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