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In this paper, the equivalence of central extensions and H?

( T, V) is proven in the study in Hom-§-Jordan Lie triple systems.

The concepts of Nijenhuis operators of Hom-§-Jordan Lie trlple systems are given. Moreover, a trivial deformation is got.

1. Introduction

It is well known that Lie triple systems are closely
related to geometry. In a symmetric space, its tangent
algebra is a Lie triple system. The definitions of the
semisimplicity, radicality, and solvability for Lie triple
systems are discussed, and the simple Lie triple system
is determined by Lister [1]. Cohomologies of Lie triple
systems were obtained [2]. Kubo and Taniguchi showed
that in Lie triple systems, this kind of cohomology plays
an important role in the study of deformations and
extensions in 2004 [3]. A generalization of Lie triple sys-
tems and §-Jordan Lie triple systems was defined in [4]
by Okubo and Kamiya, where § =+1. The case of §=1
yields the Lie triple system, and they call the other case
of § =—1 a Jordan Lie triple system. Then, they obtained a
method to construct simple Jordan superalgebras by certain
triple systems and studied the F-type Jordan superalgebra
of a Jordan Lie triple system [5]. Recently, the cohomologies,
Nijenhuis operators, representations, abelian extensions, and
T*-extensions of -Jordan Lie triple systems were developed
by Ma and Chen [6].

The theory of Hom-type algebras has been studied (see
[7-16]). In 2012, Yau showed the concept of Hom-Lie triple
systems [17]. Later, generalized derivations of Hom-Lie tri-
ple systems were determined [18]. The cohomologies, 1-

parameter formal deformations, and central extensions of
Hom-Lie triple systems were discussed [19]. In 2019, the
generalization of §-Jordan Lie triple systems and Hom-Lie
triple systems, 1-parameter formal deformations, and coho-
mologies of Hom-§-Jordan Lie triple systems were studied
[20]. We pay our main attention to consider central exten-
sions and Nijenhuis operators of Hom-§-Jordan Lie triple
systems.

The paper is organized as follows. In Section 2, we
summarize basic concepts and construct a structure of mul-
tiplicative Hom-6-Jordan Lie triple systems. In Section 3, the
equivalence of the third cohomology group and the central
extensions of a Hom-§-Jordan Lie triple system is proven.
We discuss Nijenhuis operators of Hom-§-Jordan Lie triple
systems and obtain a trivial deformation using a Nijenhuis
operator in Section 4.

In this paper, the capital letter F denotes an arbitrary
field.

2. Preliminaries

We start by recalling the definition of Hom-Lie triple
systems.

Definition 1 [17]. A Hom-Lie triple system (T, [, -, -], a=
(a;,a,)) consists of an F-vector space T, a trilinear map
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[+, -]: T* — T, and linear maps a:T—Tfori=1,2,
called twisted maps, such that for all ¢,,t,,t;,t,,t5 €T,

[t> 11, £5] =0,
[ty by B3] + [ty tas 1] +

(o1 (£4), @y (t5), [t15 1, 15]] =

[t 11, 1] =0,

(Lo ts 1], 0 (1), @y (23)]
+[ay (1)), [ty L5 1], oy (13)]
+ [y (1)), 4y (1) [E4s 155 1]

(1)

Definition 2 [20]. A Hom-8-Jordan Lie triple system (T,
[ -, -], 8, 0= (a;, a,)) consists of an F-vector space T, a tri-
linear map [+, -, -]: T° — T, and linear maps &, : T — T
for i=1, 2, called twisted maps, such that for all ¢, t,, t5, t,,
ts €T,

[tl’ tZ’ t3] = _S[tz) tl) t3]) (2)

[t s B3] + [Eys B, 1] + [, £, 1] =0, (3)
[[£4 B35 1] 01 (1), 3 (13)]

+ [y (t1)s [ty t5: Bo]> 4y (23)]
+8[ay (t1), & (t5), [t L 13]]-

(4)

Remark 3. When 6 = 1, a Hom-6§-Jordan Lie triple system is a
Hom-Lie triple system. A Hom-J-Jordan Lie triple system is
a §-Jordan Lie triple system if the twisted maps «; are both
equal to the identity map. So Hom-Lie triple systems and
&-Jordan Lie triple systems are special examples of Hom-
8-Jordan Lie triple systems.

[y (£4), %5 (t5), [t £y B3] =

A Hom-§-Jordan Lie triple system is said to be multipli-
cative if a; =a, =a and «([t,t,t;]) = [a(t;)a(t,)a(t;)] and
denoted by (T, [, -, -], «).

A morphism  f: (T,[, -, -J,a=(a,a,)) — (T,
[ -], a' =(a],a)) of the Hom-8-Jordan Lie triple sys-
tem is a linear map satisfying f([t,t,t;]) = [f(t,)f (t,)f (t5)]'
and foa;=a,of for i=1,2. An isomorphism is a bijective
morphism.

Definition 4 [20]. Let (T,[, -, -],0,a) be multiplicative
Hom-68-Jordan Lie triple systems, V be an F-vector space,
and A € End(V). V is said to be a (T, [, -, -], 5, «)-module
with respect to A if there exists a bilinear map 6 : T> —
End(V), (t;,t,) — 6(t,, t,) such that for all ¢,,t,,t5,t, € T,

O(a(ty), a(ty)) e A=A 0(t), 1)), (5)
O(a(ts), a(ty))0(t1> 1) — 00(a(ty), a(ty))0(ty, 15)
—0(a(t)), [tys 15, 14]) ° A+ D(a(t;), a(t3))0(t1, t4) = 0,
(6)
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68(a(ts) a(ty))D(t1s 1) = OD(a(ty), (t5))0(L3, 1)
+0([tr, 1, 3], a(ty)) e A+ 80(a(ts), [t1, 15, 1]) o A= 0,

(7)

OD(a(t3), a(ty))D(ty, t5) — D(a(t) a(t;))D(t35 )
+0D([t), 1y, t3], a(ty)) © A +6D(a(t3), 11, 15, £]) e A =0,

(8)

where D(t,,t,) =0(t,, ;) — 80(t,, t,).

Then, 6 is said to be the representation of (T, [, -, -],
8, a) on V with respect to A. In the case =0, V is said
to be the trivial (T, [,, -, -], , @)-module with respect to A.

In the case that §=1, i.e.,, Hom-§-Jordan Lie triple
systems are Hom-Lie triple systems, we can get (8) from
(7) by a direct calculation. But it is not true in the other case
d=-1.

Particularly, D(t,,t,)(t;) = 8[t;, t,, t5] and (5), (6), and
(7) hold, if V=T, A=a, and 0(¢,, t,)(t;) = [t5, t;, 1,]. In this
case, T is called the adjoint (T, [,, -, - |, «)-module and 6 is
called the adjoint representation of (T, [, -, -], @) on itself
with respect to a.

In the following, the semidirect product of multiplicative
Hom-6-Jordan Lie triple systems and its module for general
algebras were introduced.

Proposition 5. Assume that (T, [, -, -], 8, «) is a multiplica-
tive Hom-8-Jordan Lie triple system on V with respect to A
and 0 is a representation of (T, [, -, -],8,a). Then, T =
TeV has a structure of a multiplicative Hom-8-Jordan
Lie triple system.

Proof. We define the operation [, -, -], : Te. — T by

[(t1> @), (15, b), (t3, ©)]y, = ([t1, £, 15], O(t5, 15) (a) = 80(t, 15)
(b) +6D(t,,t,)(c)) and define the twisted map a+A : T
— T¢ by

(a+A)(ty,a) = (a(t,), Aa)). (©)

By D(t,, t,) = 0(t,, t;) — 86(¢;, t,), we get

[(t1>a), (55 b), (835 €)]
= ([ty> 15, 13], 0(t3, t3) (@) = 860(t1, 15) (b) + 8D(ty, £)(c))
==0([tp: 11, 13], 0(11, £3) (b)

= 60(ty, t3)(a) — D(ty, £,)(c))
==0([ty, 11, t5], 0(t,, £5) (b) = 60(15, 5) (a)
+0D(t5, 11)(c))

==08[(t,, b), (t1> @), (£, €)] s
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[(t15 @), (t5, b)s (35 )]y + [(£3 b)s (235 €)s (E15 a)]

+[(t3,0), (115 @), (£, )],

= ([t 13, 13], 0(tp, 15) (a) = 66(t, t5) (D) + OD(1y, 1) (c))
+([ty £3, 1], 0(t3, 1) (b) = 86(ty, 1)) (¢) + OD(ty, £3) (a))
+([t3 115 1,],0(ty, 1) (c) = 80(t3, 1) (a) + OD(t5, 1)) (b))

=(0,0(ty, 15)(a) = 60(t3, 1,)(a) +6D(1y, 1;) (a)
+0(t3, 1,)(b) = 80(t,, £5)(b) +D(t5, £,) (b)
+0(t), 1,)() = 80(ty, 1) (c) + 0D(t, 1,)(c))

=(0,0).

By (6), (7), and (8), we have

[[(t1> @), (5, b), (w, )]y
= [([t1> 12> u], 0(ty, 1) (a) = 66(t,, u)(b)
+0D(11, 15)(€)), (a(v), A(d)), (a(w), A(e))]
= ([[t1> 12> u], a(v), a(w)], O(ax(v), a(w)) (612, u) (a)
t 2

S(a+A) (v, d), (a+A)(w, e)] v

=00(ty, u)(b) +8D(t), 1,)(¢))
= 00([t:, fz } a(w))(A(d))
+0D([t1, 1, u], a(v))(A(€))),
[(a+ A)(u,0), [(t1, @), (1, b), (v )] (a + A) (wr €],
= [(a(u), A(0)), ([t1 12, V], O(t5, v) (@) = 60(t1, v) (D)

(l
+0D(t,, 1,)(d)), (a(w), A(e))],
ty, t, t

= ([@(u), [t 5 v]s a(w)], O([t1, 15, V] x(w))(A(c))
= 00(a(u), a(w))(0(t,, v)(a) - 80(t,, v)(b)
+0D(t), 1,)(d)) +8D(a(u), [t1, £, V]) (A(e)))
Sl(a+A)(u0), (a+A)(v,d), (1, ), (1, b), (wre)] ],
=0[(a(u), A(c)), (a(v), A(d)), ([t1> L2, w], O(t,, w)(a)
=00(t;, w)(b) +8D(t}, t,)(e))]y
=0([a(u), a(v), [t1, £, w]], O(a(v), [t1, 15, w]) (A(€))

= 00(a(u), [ty, 1y, w])(A(d
+0D(a(u), a(v)) (6(t w)
+0D(t), 1;)(e))),

[(a+A)(t1, @), (a+ A) (12, b) [

= [(a(tr), A(a)), (a(t), A(D)),
—680(u, w)(d) +8D(u, v)
= ([a(tr)> alta), [ v, w]], 6(x(ty), [, v, w]) (A(a))

= 00(a(ty), [u> v, w])(A(b))
+0D(a(ty), a(t,)) (8(v> w) (¢) — 80(11, w)(d))
+0D(u,v)(e)))-
(11)
O

The calculation above shows that (2), (3), and (4) hold.

3
By (5) and the linearity of a + A,
(a+A)[(t),a), (£, b), (t5, )],

= (a+A)([t) 1y, 15], 0(ty, t5) (a) — 60(1), £5) (D)
+0D(t), t,)(c))
= (a([t), ty, t3]), Ao (0(ty, 15) (@) — 00(t), £5)(b)
+8D(t,,1,)(c))) (12)
= ([a(tr), a(ty), a(t3)], O(a(ty), a(t;))A(a)
—00(a(t,), a(t3))A(b) +OD(«(t,), a(t;))A(c))

= [(a(t)), A(a)), (a(ty), A(b)), (a(t3), A(c))]y,
=[(a+A)(t),a), (a+A)(ty, b), (x+ A) (L5, 0)] -

Hence, (U, [, -, -],,a+A) is a multiplicative Hom-8-
Jordan Lie triple system.
Suppose that f : Tx---xT — V is an n-linear map,
——

ntimes
which satisfies

A(f(troty)) = fa(ty)oralty)),

fltoxpnty) = =0f (ty ey, X ty),
J(troty % 0,2) + f(trooty 3002 %) + f (bt 5,2, %, 7) =0
(13)
where f is said to be an n-Hom-cochain on T. The set of all

n-Hom-cochains is denoted by C}; , (T, V), for all n> 1.

(i) If f € C3(T, V), then

Apomf (115 1y 13) = O(t5, £3)f (1) = 80(ty, 15)f (1)
+08D(ty, 1) f (t5) = f([th> t20 £3])-
(14)
(i) If f € C3(T, V), then
dﬁomf()” ty, by t3)
=0(a(ty) a(ts))f (1> t1) = 80(a(ty), a(ts))f (1 1)
+0D(a(ty), a(ty))f (3> t3) = f(@(p)s [£1> 120 £5]).-
(15)
(iii) If f € C3(T, V), then
Bpomf (115 £y L L 15)
=0(a(ty), a(ts))f (5 1y, t3)
—80(a(ty), a(ts))f (t1> 1o 1)
= 0D(a(t), a(ty))f (3. tys £s)
+D(a(ty), a(ty))f (1> £, £5) (16)
+f ([t 1y 1], a(ty), a(ts))

+f(alts), [t s ],
+0f (alt3),
—fla(ty),

a(ts))
a(ty); [ty 1y t5))

a(t2): [t5, 4, t5])-



(iv) If f € C3(T, V), then

Do (7> t1 s 3 E )
=0(a’(t,), o (t5)) f (s trs ta )
- 86(“2(t3)’ “z(ts))f()” ts s ty)
_SD( o (1)), ot ))f()” t3 4 ts)
( (t3) ( ))f(%tvtz’ts) (17)
+f(a(y)s [t by t3] a(ty), «(ts))
+fa(y) a(ts), [t b, 1), &(t5))
+Of (a(y), a(ts), a(ty)s [tr, 1, 15))
—fla(y), alty), a(ty), [t5, Ly, 15))-

Definition 6 [20]. For n=1,2, 3, 4, the coboundary operator
dpo 2 ChA(T, V) — C32(T, V) is defined as follows.
The mapping f € C, (T,
cocycle if dy f=0,n=1,2,3,4. Denote by Z} , (T,
subspace spanned by n-Hom-cocycles. For n > 3, B, ,
= i CIA(T, V),
Since dj2dy =
cohomology space:

V) is said to be an n-Hom-
V) the
(T, V)

=0, By ,(T,V)<Z, (T, V). Define a

Zoa(T> V)

H! (T, V)= BTV (18)

3. Central Extensions of Hom-d-Jordan
Lie Triple Systems

Let (T, [, -, -], 8, a) be a multiplicative Hom-&-Jordan Lie
triple system and V be a trivial (T, [, -, -], 8, a)-module
with respect to ay,. Then, (V, 0, a,) is an abelian multiplica-
tive Hom-8-Jordan Lie triple system with the trivial product.
A multiplicative Hom-8-Jordan Lie triple system (T,
[ -5 +]c 6, o) is said to be a central extension of (T, [, -, -],
8, a) by (V,0,6, ay) if the following commutative diagram
holds with the exact rows of Hom-§-Jordan Lie triple
systems.

0 V—=Tc—=T 0

Y
iav lac la
0 V—sTe =T 0

Y
where ag ot =10ay,0e T =70, s is a linear map satisfying
ns=id; and agoes=soq, and (V) CZ(To)={xeT|[x,
T, Telo=0}. Two central extensions (T¢, [ > + | 6, a¢)
and (Te, [« ] 6, ar) are equivalent, if the following
commutative diagram holds.

0 V—2>Te =T 0

lidv l‘f; lidT
0 N A N o 0.

where ¢ : (Te, [ -5 ] 0 ) — (Ten [ -5
an isomorphism.

-]C,,(S, (XC/) is
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Theorem 7. There is bijective mapping between H,, (T, V)

and equivalent classes of central extensions of (T, [, -, -], 9,
a) by (V,0,8, ay).

Proof. First, we show that there is a bijective mapping
between Zi,a‘,(T’ V) and central extensions of (T, [, -, -],
8,a) by (V,0,8, ay,). O

Suppose that (T¢, [ -» -] 6, a¢) is a central extension
of (T,[, -, ],8,«) by (V,0,8,ay). Then, the following
commutative diagram holds:

00—V Ty ST —>0

-
0—>V—>To =T —>0

s
with @ et=10ay, aem=moa, and a linear map s satisfy-
ing apos=sowa and s =id.
For t,,t,,t; € T, since m[s(t,), s(t,), s(t3)] o — 7s[ty, t, 5]
= [ns(t,), ms(ty), mws(tsy)] = [t;, ty, t5] =0, it follows that

[s(t)), s(ty), s(t3)]c = S[t1> tys t3] € Ker m=4(V). Define a tri-
linear map g: TxTx T — V by
1g(ty ty 1) = [s(t1), 5(t2), 5(t3)] ¢ = s[trs £, 5] (19)

Since ¢ is injective, g is well defined, and it follows from
(V)< Z(T.) that

[[s(tl), s(ty)s s(t3)] s ts v] o= Bt b ) V] Vu, ve Te.
(20)

Note that g satisfies g(t,, t,, t;) = =09g(t,, t1, t3), g(t1, £
t3) + g(ty, 13, 1)) + g(t5, 11, ;) =0 and

1g(a(ty) a(ty), a(t;))
= [sau(ty), sau(ty), sau(ts)] = s[a(ty), (ty), (t3)]
= lacs(ty) acs(ty)s acs(ts)] e — acs[tys by 1]
= “C([S(tl)’ s(t3)ss(t3)]c = s[t1> o t3])
=actg(ty, ty, t3)
=1y g(ty by, ts).

(21)

3 3 .
Hence, g € C,, (T, V). Moreover, g€ Z, , (T, V) since

l(dflomg) (1> 1y 35 By t5)
=1(g([ty> to» t3]> (), (t5)) + g((x(t3), [t1> 1y, £4)> &(t5))
+0g(a(ts), alty), [t b t5]) = g(a(ty), a(ty) [t t4: 15]))
= [s[t), £, ta], sau(ty), sax(ts)] _SHtvtzytﬂ a(ty), a(ts)]
+ [sa(t3), s[tys b, 1y, sa(ts)] = s[a(ts), [t1s £y, B4, a(ts)]
+0[sa(ts), sa(ty), s[ty, by, ts]] o = Os[a(ts), a(ty), [ty by, 5]
= [sau(ty), sau(ty)s s[tss By t5]]  + s[a(t)), &(ty), [t3 By, 5]
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= [[s(t1)> s(t2), s(t3)]» acs(ta) acs(ts)]
+ [acs(t;), [s(t1), $(1), s(t4)] o aes(ts)]
+ 0 [acs(t)s acs(ty), [s(t1) 5(t)s s(ts)] ) ¢
= [acs(ty), acs(ty)s [s(ts), s(ty), s(ts)]c] . =0 (22)

On the other hand, let g€ Z},
with
[(t1> @), (£5,b), (3, 0)]c

= ([t1> o 13 g(t1> s 13)) 5

o (T V)and Tc=ToV

Thus, a is linear, and
ac[(ty a)s (1, b), (t5: ¢)] ¢
=ac([t by 3], g(t15 1, 13))
= (afty, ty ta], ay gty 1y, 13)) (24)
= ([@(t1), a(ty), a(t3)]> g(a(ty), a(ty), a(t3)))
= [(a(t), ay(a)), (a(t), ay (b)), (a(t3), @y (€))]c
= [ac(ty, a), ac(ty, b), “C(t3’ e
Since that
[ac(ty @), ac(ty, ), (s ¢), (v, d), (wre)] ] .
= [(a(tr), ay(a)), (a(t), ay (b)), ([, v, w], g (1, v, )]
= ([a(ty)a(ty)[w v, w]], g(a(ty), alty), [u, v, w]))
= ([t o w]a(v)a(w)], g([t 1y, 1), a(v), a(w)))
+ ([a(u) [t ty, via(w)], g(a(u), [t 1y, V], a(w)))
+ (Ofa(u)a(v)[ty, ty w]], Sg(a(u), a(v), [t1, b5, w]))
= [[(t1,a), (1, b), (1, )] o @ (v, ), ac(w; )

+ [ac(.0), [(t1,a), (£ D), (v )] ot 0)]
+8[ac(i 0) ac(vd), (11, ), (1, b), (w, )]

(25)

We have (T¢, [ +» -], 0, a¢) which is a multiplicative
Hom-6-Jordan Lie triple system.

Define three mappings t: V— T, m: T — T, and
s: T—> T by i(a)=(0,a), n(t,a)=t, and s(¢)=(¢,0),
respectively. Then,

ac(0,a) = (0, ay(a)) =toay(a),
m(a(t), ay(a)) = a(t) =

ac(t,0) = (a(t), 0) = sa(t).
(26)

acoi(a)=
moas(t,a)= aom(t,a),

s =idp, acs(t) =

It is clear that «(V) is a subspace of Z(T). Hence, (T,
[ 5 -] 6, ) is a central extension of (T, [, -, -],0, &) by
(V,0,8, ay).

Assume that (T¢, [ -, -] 8 ac) and (TG, [ -, <160 6,
a() are equivalent central extensions of (T, [, -, -], 8, a) by

(V,0,8, ). Then, the following commutative diagram
holds:

0 V—>Tc =T 0

o
!

0—=V =T, 2T —0

such that 7= 71" o @ and ¢ o 1 = 1’ with an isomorphism ¢ and
ns=mn's' =id;. For their corresponding 3-Hom-cocycles g
and g’ as above, we have

[s(t1)> s(t2)> s(t3)]
gl (b, 1, 1) = [S,(tl)’sl(tz)’sl(%)h‘5/[t1’tz) t5],

1g(ty, 1y, 15) = = sty 1y, £5),

1 g(ty b t3) = Qig(ty, 1, 13)
=@ls(t1), (1), s(13)] ¢ = @sltrs 1o 15]-
(27)
We have g—g' € B}, (T, V). In fact, since
n's'(t) - gs(ty) =t, —ms(t;) =0, (28)

there exists a linear mapping f : T — V by ('f(t,) =s'(¢,)
—¢s(t,), for all ¢, € T. Then,

acrs' (b)) - pacs(ty)
acres(ty) = “c"’f(tl) = ‘,“Vf(tl)’
(29)

Cfa(ty) =s"a(t) - psa(ty) =
=aps'(t) -
thatis, f € C, , (T,

V). Bys'(t) - s(t,) =/'f (1)) € Z(T ),

[/ (0,5 (1), ()] = [gps(t2), ps(12), 9585
= gls(t2),s(t2), 5(t3)]e

(30)

Then,

/! (g, - 9) (£, byo t3) = _l,f([tl’ tr b3]) = /! (dlllonj) (t1> tro 13),

(31)
SO g/ - g = d}llomf € Bi,(xv(T’ V)

Suppose g,g' € Zi)av(T, V) and g'-ge BZ)MV(T, V);
ie., thereis f € Ctlx,a‘,(T’ V) satisfying g’ — g=d,..f. Then,
(9' = 9)(ti trty) ==f([ty 12 15]). Let (Te, [ -5 -] 65 ac)
and (T¢, [ 5 -] 0, a¢), which are defined as above with

respect to g and g', be two central extensions of (T, [+, -, -],
8,a) by (V,0,8, ay). Then, i(a) = (0,a) =1'(a) and 7(t, a)



(o)

=t=7n'(t,a). There is a linear map:
(TC) R C’8 “C) — (Tc’) [') )
(ta) = (ta-f(1)),

such that gi(a) =1'(a) and 7'p(t,a) =7 (t,a—f(t)) =t=m
(t,a). The following commutative diagram holds:

0 V—>Te"1-T 0

e 6, ),
(32)

0 V—=T,-"=T 0.
The sufficiency of ¢ is an isomorphism that is proven.

If o(t,a)=¢(t,a), then (t,a—f(t))=(t,a—-f(t)); that
is,t=tand a — f(t) =a - f(t); then, a = a; hence, ¢ is injec-
tive; ¢ is obviously surjective. Note that

pac(t,a)

=p(a(t),

= (a(t), ay(a) - ayf(t)) =
P[(t1>a), (t3:b), (135 ¢)]

=@([t1> 1, 13), g(t15 15 13))

= ([t 1 t3]: g(t15 1, 13) = f ([t 2o 13]))

= ([tptz»ts]’g’(tl’ ty t3))

= [t a=f(0) (2 b= f(12)s (85 = f(13))]c

=[p(t1, a), 9(t5, b), p(t3 C)}’c

v(a)) = (a(t), ay(a) = fa(t))

ac(ta=f(t)) = aco(t, a),

(33)

The equivalence of (Tg, [, -, |8 ac) and (T,
[ s ] O, @) is proven.

4. Nijenhuis Operators of Hom-J-Jordan
Lie Triple Systems

In this section, the deformation of Hom-d8-Jordan Lie triple
systems is studied. The notion of Nijenhuis operators of
Hom-§-Jordan Lie triple systems is introduced, and the triv-
ial deformations of this kind of operators are shown.

Let (T, [, -, -], 8, &) be a Hom-8-Jordan Lie triple system
and v : T° — T be a trilinear mapping. Consider a A-
parametrized family of linear operations:

[t s t5]) = [E1> B B3] + Ay (1t 1, 1), (34)
where A is a formal variable.

We call that y generates a A-parameter infinitesimal
deformation of the Hom-§-Jordan Lie triple system, if
[ -, -], endow T with the Hom-8-Jordan Lie triple system
structure which is denoted by T.

(i) v itself defines a Hom-§-Jordan Lie triple system
structure on T

(ii) v is a 3-cocycle of T
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Theorem 8. y generates a A -parameter infinitesimal defor-
mation of the Hom-8-Jordan Lie triple system T; then, the
following two conclusions hold:

Proof.
[t s 1] = [t B B3] + Ay (B, B, 1),
(35)
=0[ty, by, 1]y = =0t 11, 5] =AY (15, 11, 1)
We have
V(b by, 13) = =0y(ty, £, 13). (36)

From the equality

0=t} by, 3], +
= [t by 1] +
+y(ty s,

[ty t3s ty] ) + [t3s 115 1]y
[t b5 ty] + [t 1o 1] + AWty t, t5)  (37)
1) +y(ts 1y, 5))s

it follows that

Y(ty by b3) +Y(ty b5, 11) +Y(t5, £, 85) = 0. (38)

For the equality

[a(t1)s a(t), [ri o 3]y = [[100 £ 1] () ()]
+ [a(r)), [t £ 72])L0‘(r3)],\
+8[a(ry), a(r), [t sl

(39)
the left hand side is equal to

[a(ty) a(ty)s [r1> 72 3] + Ay (1, 135 13)]y
=[a(ty)s a(ty), [ry> 1o 3] + Ay (a(ty) &(ty)s [r15 735 73])
+[a(ty), aty), Ay (ry, 13, 13)]
+ Ay (a(ty), a(ty), Ay (ry, 13, 13))
=[a(ty), alty), [ry> 1y 3] ] + Ay (a(ty),
+a(ty), a(ty), y(r1> 73, 73)])

+ Xy (a(ty), a(ty)s W(rys s 13))s

a(ty), [r1> 155 13])

(40)
and the right hand side is equal to

[t 1o 1] + Ay (£, by 1), (1), a(73)]

+[a(ry), [t b 1] + AP (1, £, 13) a(73)]
+0[a(ry), a(ry), [ty by 73] + Ay (ty, £, 13) ],

= [ty oo 11]s a(ra)s a(3)] + [@(ry), [y, £, 73] 4(73))]
+0[a(ry), a(ry)s [£15 £, 73]
+ My ([t ty > a(ry), (73))
+ (b by 1), &(ry)s a(rs)] + y(a(ry), [t 1y, o], a(r3))
+[a(ry), y(ty, £, 13)s a(r3)]
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+0y(a(ry), a(ry), [ty 5, 13])

+8a(ry), a(ry), y(ty, £y 13)])

(WYt by m1), a(ry), a(r3))

+y(a(r), y(t, by 1) a(r3))

+ 0y (a(ry), a(ry), y(t, 1 13)))- (41)

Thus, we have

y(a(ty), a(ty), [ry, 125 13]) + OD(a(ty), &(ty) )y (1, 125 73)
=y([t to 1] a(ry), a(r3)) + 0(a(ry) alrs) )y (tys £ 1)
+y(a(r)), [t o 1) a(r3))
= 00(a(ry), a(r3)y(ty, 155 12))
+0y(a(ry), a(ry), [ty 15, 73))
+ D(a(ry), a(ry))w(tys 1y, 13),

y(a ( 1) &(ta)s (11 13))
=y(y(t ty 1) a(ry), a(r3))
+y(a(r), y(t, by, 1y) a(r3))
+0y(a(r,), a(ry), y(ts 1y, 13))-
Therefore, ¢ defines a Hom-0-Jordan Lie triple system

structure on T by (36), (38), and (43). Furthermore, by
(42), v is a 3-cocycle. O

(43)

A deformation is called trivial if there exists a linear map
N : T — T such that for ¢, =id+ AN : T, — T,

Paltes by 1] = [Patr> Patas a3)- (44)

It is clear that

= [t by B3] + AY(ty, 1y, 13)
+ AN([t, £y, B3] + Ay (s £, 1))

= [t 1, B3] + Ay (1, £, 15) + N[ty 1, 15])
+ A2 Ny(ty, ty, t3),

@yt 1, B3]y

[Prf1 Pt Pat3] = [t + ANE, 1, + ANT,, 15 + AN
= [t ty, t5] + A([Nty, £y, t5] + [t), Nty, £5]
+ [t by, Nts]) + A2 ([N}, Nty, 1)

+ [Nt,, t,, Nt;] + [t,, Nt,, Nt5])
+ A’[Nt,, Nt,, Nt;].
(45)
Thus, we have
V(b 1, t3) = [Nty by, B3] + [t Nty, B3] + [£, £y, N1
= N[t} £, 5] = 0(t5, £5)N(1y) (46)

=00(t), t;)N(t,) +0D(ty, £,)N(t3)
~ NIty by 1],

7

Ny(t,, t,, t5) = [Nt}, Nt,, t5] + [Nt}, t,, Nt5] + [t;, Nt,, Nt),
(47)

0= [Nt,, Nt,, Nt;]. (48)

By the cohomologies discussed in Section 2, equation
(46) can be represented in terms of 1-coboundary as y =

d},.N. Furthermore, the following condition holds for N
by (46) and (47):

N?[t), ty, t5] = N[Nt;, t,, t5] + N[t;, Nt,, t5] + N[t;, t,, Nts]
— ([Nt}, Nty, t;] + [Nty t,, Nts] + [t;, Nty, Nt;]).

(49)

In the following, we denote by

Y(ty by t3) = [t b B3] (50)

then, (47) is equivalent to 51

Nt), ty, t3]y = [Nt;, Nty, t3] + [Nt t5, Nt;] + [t), Nt,, Nt3].

(51)

Definition 9. A linear operator N : T — T is said to be a
Nijenhuis operator if and only if (48) and (49) hold.

Theorem 10. Let N be a Nijenhuis operator for T. Then, a
deformation of T can be obtained if

Y(ty, by t5) = 0(1 £3)N(1;) — 86(t;, t5)N(t5) (52)
+0D(t), 5)N(t5) = N[t 5, £5].

Moreover, y is a trivial deformation.

Proof. Clearly, y=dN and dy=d’N=0. Then, v is a 3-
cocycle of T. In the following, we show that (4) holds for
y. By (46), (50), and (51), we have

y(a(ty), a(ty)s Y(ry, 135 73))
= [a(t)), a(ty), [N7y, 15, 15]

+ [, N1y, 73] + [r1, 1, N1s] = N[ry, 1, 73]

= [a(ty), a(ty), [N7y 19 73]y + [()), a(ty), [y N1os 73]
+a(ty), a(ty), [r, 1o, Nrs| g = [a(t)), a(ty), Nrys ra, 73]

= [Na(t)), a(ty), [N1y, 1, 13]] + [a(t)), Nat(t,), [Ny, 75, 73]

+[a(t)), a(ty), N[Ny, 1, 73] = N{a(ty ), a(ty), [N7y, 15, 73]

+ [Na(ty), a(ty), [r, Nry, 3]] + [a(ty), Na(ty), [ry, N1y, 13]]

+[a(t)), afty), Nry, Nry, 13]] = N{a(ty), a(ty), [ry, N1y, 73]

+ [Na(t)), a(ty), [ry, 15 Nr3]] + [a(t)), Na(ty), [ry, 75, N3]

+[a(t)), a(ty), N[ry, ry, Nr3]| = N{a(t,), «(t,), [ry, 75, N73]]

- [Na(ty), a(t;)s ["1”’2’ sl - [ t) a(ty), N[ry, 15, 13]]

— [@(t))s a(ty), N*[ry, 13, 73] + Na(ty), a(£), N1y, 72, 13]]



[N“(tl) a(ty), [N7y, 1y, 13]] + (), Na(ty), [Ny, 75, 73]
ty), [Ny, 13, 13]] + [Na(ty), a(ty), [r, N1y, 73]
+ [a(t ) a(ty),

»a(ty) ) ]
(t2), [r1> Nroy 13]] = Nia(t,), a(t5), [r1, N3, 15
+ [Na(ty), a(ty), [r1, 1o, N1y |+ [a(t,), Na(ty), [y, 75, N13 ]|
() )> ]
(t2) )> ]

[
[
[ ]
= Nla(t,), «(ty), [y, 15, N73]| = [Na(t,) N[ry, 15 13]]
t1)s Na(t,), N[ry, 1, 13]] + N{a(t,), a(t,

] )

]

(
+[a(ty), a(ty)
( )

(
a(t)), a(t,),

—[a Niry, 15, 15]]
N1y, Ny, r3] + [a(ty), a(t), [N1y, 15, N3

11, N7y, Nr3]]. (53)

(
(

(
»al(ty
(

)

>

[
[
Similarly, a direct computation shows that

V(y(ty by 1y)s a(ra), &(r3))
= [[Nt}, Nty 1], a(ry), a(r3)] + [Nty £, Ny |, (), a(73)]
+ ([t Nty, N1, a(ry), a(r3)] + [[N£y, £, 1], Na(rp), a(r3)]
+[[Nty, 1y, 1], a(ry), Na(rs)] = N[Nty £y, 1], a(r2), (7))
+[[t;, Nty, 1], Na(ry), a(r3)] + [[ty, Ny, 1], a(r;), Na(r3)]
= N[[t;, Nty, 7], a(ry), a(r3)] + [[t1, 15, N7y, N“( r3) &(73)]
+ ([t £y N1y |, a(ry), Na(r3)] = N[[£), £, Ny ] a(rp), a(73)]
= [N[tys tp, 1], Na(r, )
+ N[Nty 1y, 1], a(r, )
= [Na(r)), [Nt} £, 1], (7
= Nla(ry), [Nty, t5, 75,
+[a(ry), [ty Nty 1], Nao(rs)] — N{a(ry

a(r
(r

)

(

(

(

(

(
sa(r3)] = [N[ty, £y, 1], a(r,), Na(rs
sofrs)]s yla(r), w(ty, t,13), &(rs)

)]+ [a(ry), [Nty £, 1], Na(r3)]

a(r3)] + [Na(r)), [t Nty, 15,

(r3) )» [t Ny, 73],
+[Na(ry), [t £y N1yl a(r3)] + [(ry)s [¢
= N[a(r,), [t ty, N1yJs a(r3)] = [Na(ry ), N[ty 85, 1] (73
= [&(r)), N[ty ty, 1] Nau(r3)] + Nla(ry ), N[ty 15, 1] (73
+[a(ry), [Nt;, Nty, 1], a(r3) [
+[a(ry)s [ty Nty, N1y, a(73)

)

o

o
1> 1 N1 |, Nat(r3

(

(

o

r3)] + [a(ry), [Nt), 5, N1, ],

r3)];

Sy (a(ry), a(ry), y(ty: 1. 13))

=0[Na(ry), a(ry), [Nty £, 73]] + [a(r)), Naw(ry), [Ny, £, 75]]
= ONla(r,), a(r;), [Nt} 15, 15]] +5[N“("1) a(ry), [y, Nty, 73]
+0[a(r)), Na(ry), [t), Nty, r3]] = ON[a(ry), &(rp), [£1, Nty, 15]]
+0[Na(r,), a(ry), [ty 1y, Nrs]] + 8[a(ry ), Na(ry), [£), £, N13]]
( (r2)s N[tys 15, 73]
( a(r;) Il
[ I

NIt
1), N[t £y, 13

)
)s
= ON(a(ry), a(ry), [t1> ty, N3] = S[Na(ry), a(r,
= 8[a(ry), Na(r,), Ny, £, 13]] + ON[a(ry),
[
[ty

+8[a(ry), a(ry), [Nty, Ny, r3]] + 8[a(ry), a(r3), [Nty £, Ny
+68[a(r)), a(ry), [t1, Nt,, Nr3]].

(54)

|

Note that N € C(T); by (4), (51), and Theorem 8, it fol-
lows that
v(a(ty), a(ty)s Y(r,rar3)) = Y(y(ty, by 1) a(ry), a(r3))
—y(a(ry), y(ty, 1o 1p)s a(13)) (55)
= Oy(a(ry), a(ry), y(ty, 5, 73)) = 0.

The conclusion of Theorem 10 is proven.
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Remark 11. Let N be a Nijenhuis operator. If k, m > 0, then

[t ts t3]Nk+l = ([tp £y t3]Nk)N’

([tl, iy, t3]Nk>Nm = (([tp ty t3]N")N)N"H
([tl’ L, t3]Nk“)N”"l = ([tl’ ty t3]N“*2)N”"2

= [tp tza t3]Nk+m .

(56)

Remark 12. Let N be a Nijenhuis operator; by mathematical
induction and (48), for any k>0, N* is also a Nijenhuis
operator.
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