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In this article, a (2+1)-dimensional Korteweg-de Vries equation is investigated. Abundant periodic wave solutions are obtained
based on the Hirota’s bilinear form and a direct test function. Meanwhile, the interaction solutions between lump and periodic
waves are presented. What is more, we derive the interaction solutions among lump, periodic, and solitary waves. Based on the
extended homoclinic test technique, some new double periodic-soliton solutions are presented. Finally, some 3D and density
plots are simulated and displayed to respond the dynamic behavior of these obtained solutions.

1. Introduction

Korteweg-de Vries (KdV) equation [1–11]

ut + 6uux + uxxx = 0, ð1Þ

has been used to depict the shallow-water waves, stratified
internal waves, lattice dynamics, and so on, where u = uðx, tÞ
. Its extensions, namely, the KdV-type models, have been pre-
sented in fields such as fluid flows, plasma physics, and solid-
state physics [12–15]. Solitary wave solutions have wide appli-
cations in many fields of natural science such as plasmas,
hydrodynamics, nonlinear optics, fiber optics, and solid state
physics, and that the interaction of solitons plays an important
role [16, 17], which can keep their velocities and shapes after
the elastic collisions [18–21]. Periodic waves, as solitary waves,
have amusing applications in nature. For the ultrashort pulse-
train generation from the beating of two-mode signals, for
instance, one must research periodic wave solutions of nonlin-
ear equations governing the fiber system [22]. However, the

interaction properties between periodic waves are rarely dis-
cussed because the mathematics is more involved.

In this paper, based on symbolic computation [23–30],
we will investigate the following (2+1)-dimensional KdV
equation for nonlinear waves such as the shallow-water
waves and surface and internal waves [31]

ut + 3 uvð Þx + uxxx = 0, ux = vy, ð2Þ

where u = uðx, y, tÞ, v = vðx, y, tÞ. Equation (1) was obtained
by Boiti et al. in Ref. [31] by using the weak Lax pair, also
named as Boiti-Leon-Manna-Pempinelli equation [32] and
read as the ubiquitous KdV equation when v = u and y = x
[33]. The rich dromion structures and localized structures
[34, 35], exact periodic solitary wave and Jacobi elliptic func-
tion double periodic solutions [33], periodic type of three-
wave solutions [36], lump solutions [37], a new Bäklund trans-
formation and new representation of the N-soliton solution
[38], invariant solutions [39], M-lump solutions [40], and
breathers and interaction solutions [41, 42] for Equation (1)
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have been studied. Ma [43] obtained N-soliton solutions and
given the Hirota N-soliton conditions of Equation (1) by using
the Hirota bilinear formulation. However, the interaction
solutions between lump and periodic waves and interaction
solutions among lump, periodic, and solitary waves have not
been seen in literature, which will become our main work.

The organization of this article is as follows. In Section 2,
abundant periodic wave solutions are obtained based on the
Hirota’s bilinear form and a direct test function. In Section
3, the interaction solutions between lump and periodic waves
are obtained. In Section 4, we present the interaction solutions
among lump, periodic, and solitary waves. Dynamic behavior
is analyzed by some 3D and density plots. In Section 5, we
present new double periodic-soliton solutions for the (2+1)-
dimensional KdV equation by using the extended homoclinic.
In Section 6, the conclusions are made.

2. Periodic Wave Solutions

Under two logarithmic transformations [36]

u = 2 ln fð Þxy, v = 2 ln fð Þxx , ð3Þ

Equation (2) has the following bilinear form:

DyDt +D3
xDy

� �
f · f = f yt f − f y f t + f f xxxy + 3 f xy f xx − 3 f x f xxy − f y f xxx = 0,

ð4Þ

where f = f ðx, y, tÞ. To study the periodic solitary wave solu-
tions of Equation (1), suppose that

f = k1e
θ1 + e−θ1 + k2 tan θ2 + k3 tanh θ3, ð5Þ

where θi = αi x + βi y + δi t + σiði = 1, 2, 3Þ and αi, βi, δi, and
σi are undetermined constants. Substituting Equation (5)
into Equation (4) and equating all the coefficients of differ-
ent powers of eθ1 , e−θ1 , tan θ2, and tanh θ3 and constant term
to zero, we have

Case 1.

k3 = β1 = α2 = δ2 = 0, δ1 = −α31: ð6Þ

Substituting Equation (6) into Equation (5), we have

f = e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k2 tan yβ2 + σ2ð Þ: ð7Þ

Thus, the first new periodic wave solution is obtained
as

Dynamic behavior of Equation (8) is shown in Figure 1
in x − y.

Case 2.

k3 = k1 = α2 = δ2 = 0, δ1 = −α31: ð10Þ

Substituting Equation (10) into Equation (5), we have

f = k2 tan yβ2 + σ2ð Þ + etα
3
1−xα1−yβ1−σ1 : ð11Þ

Thus, we derive the second new periodic wave solution as
follows:

u1 = −
2 sec2 yβ2 + σ2ð Þk2 e−tα

3
1+xα1+σ1k1α1 − etα

3
1−xα1−σ1α1

� �
β2

e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k2 tan yβ2 + σ2ð Þ

� �2 , ð8Þ

v1 =
2 etα

3
1−xα1−σ1α21 + e−tα

3
1+xα1+σ1k1α

2
1

� �
e−tα

3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k2 tan yβ2 + σ2ð Þ

−
2 e−tα

3
1+xα1+σ1k1α1 − etα

3
1−xα1−σ1α1

� �2

e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k2 tan yβ2 + σ2ð Þ

� �2 : ð9Þ

u2 =
2etα31−xα1−yβ1−σ1α1β1

k2 tan yβ2 + σ2ð Þ + etα
3
1−xα1−yβ1−σ1

+
2etα31−xα1−yβ1−σ1α1 sec2 yβ2 + σ2ð Þk2β2 − etα

3
1−xα1−yβ1−σ1β1

� �

k2 tan yβ2 + σ2ð Þ + etα
3
1−xα1−yβ1−σ1

� �2 , ð12Þ

v2 =
2etα31−xα1−yβ1−σ1α21

k2 tan yβ2 + σ2ð Þ + etα
3
1−xα1−yβ1−σ1

−
2e2tα31−2xα1−2yβ1−2σ1α21

k2 tan yβ2 + σ2ð Þ + etα
3
1−xα1−yβ1−σ1

� �2 : ð13Þ
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Figure 1: α1 = σ2 = −1, k1 = 5, k2 = σ1 = −2, β2 = 1, and t = 0. (a) 3D plot and (b) density plot.
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Figure 2: α1 = σ2 = −1, β1 = −1, k2 = 2, σ1 = 1, β2 = 5, and t = 0. (a) 3D plot and (b) density plot.
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Figure 3: α1 = β1 = 1, σ1 = −1, k3 = −2, σ3 = β3 = 5, and t = 0. (a) 3D plot and (b) density plot.
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Dynamic behavior of Equation (12) is shown in Figure 2
in x − y.

Case 3.

k2 = k1 = α3 = δ3 = 0, δ1 = −α31: ð14Þ

Substituting Equation (14) into Equation (5), we have

f = k3 tanh yβ3 + σ3ð Þ + etα
3
1−xα1−yβ1−σ1 : ð15Þ

Thus, the third new periodic wave solution is

u3 =
2etα31−xα1−yβ1−σ1α1β1

k3 tanh yβ3 + σ3ð Þ + etα
3
1−xα1−yβ1−σ1

+
2etα31−xα1−yβ1−σ1α1 sec h2 yβ3 + σ3ð Þk3β3 − etα

3
1−xα1−yβ1−σ1β1

� �

k3 tanh yβ3 + σ3ð Þ + etα
3
1−xα1−yβ1−σ1

� �2 ,

ð16Þ

v3 =
2etα31−xα1−yβ1−σ1α21

k3 tanh yβ3 + σ3ð Þ + etα
3
1−xα1−yβ1−σ1

−
2e2tα31−2xα1−2yβ1−2σ1α21

k3 tanh yβ3 + σ3ð Þ + etα
3
1−xα1−yβ1−σ1

� �2 :
ð17Þ

Dynamic behavior of Equation (16) is shown in Figure 3
in x − y.

Case 4.

k2 = β1 = α3 = δ3 = 0, δ1 = −α31: ð18Þ

Substituting Equation (20) into Equation (5), we have

f = e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k3 tanh yβ3 + σ3ð Þ: ð19Þ

Then, the fourth new periodic wave solution is presented
as follows:

u4 = −
2 sec h2 yβ3 + σ3ð Þk3 e−tα

3
1+xα1+σ1k1α1 − etα

3
1−xα1−σ1α1

� �
β3

e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k3 tanh yβ3 + σ3ð Þ

� �2 ,

ð20Þ

v4 =
2 etα

3
1−xα1−σ1α21 + e−tα

3
1+xα1+σ1k1α

2
1

� �
e−tα

3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k3 tanh yβ3 + σ3ð Þ

−
2 e−tα

3
1+xα1+σ1k1α1 − etα

3
1−xα1−σ1α1

� �2

e−tα
3
1+xα1+σ1k1 + etα

3
1−xα1−σ1 + k3 tanh yβ3 + σ3ð Þ

� �2 :

ð21Þ

Dynamic behavior of Equation (20) is shown in Figure 4
in x − y.

3. Lump-Periodic Waves

Under the transformations [41]

u = 2 ln fð Þxy, v = γ + 2 ln fð Þxx , ð22Þ

Equation (2) has the more general bilinear form

To discuss the interaction between lump and periodic
waves, assume

f = α9 + k1 sin α14 + α13t + α11x + α12yð Þ
+ α8 + α7t + α5x + α6yð Þ2 + α4 + α3t + α1x + α2yð Þ2
+ k2 cos α24 + α23t + α21x + α22yð Þ,

ð24Þ

where αiði = 1,⋯,9Þ, αj1, αj2, αj3, and αj4ðj = 1, 2Þ are unde-
termined constants. Substituting Equation (24) into Equa-
tion (23), we have

α13 = α311 − 3α11γ, α23 = α321 − 3α21γ, α12 = α22 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ:
ð25Þ

Equation (24) will become

f = α9 + k1 sin α14 + t α311 − 3α11γ
� �

+ α11x
� �

+ α4 − 3α1γt + α1x + α2yð Þ2

+ α8 − 3α5γt + α5x −
α1α2y
α5

� 	2

+ k2 cos α24 + t α321 − 3α21γ
� �

+ α21x
� �

:

ð26Þ

Combining Equations (22) and (26), we can obtain the
following interaction solution:

u = 2 ln fð Þxy, v = γ + 2 ln fð Þxx: ð27Þ

Dynamic behavior of Equation (27) is shown in Figure 5.
Lump and periodic waves can be seen in Figure 5. With the

DyDt +D3
xDy + 3γDxDy

� �
f · f = f yt f − f y f t + 3γ f yx f − f y f x

� �
+ f f xxxy + 3 f xy f xx − 3 f x f xxy − f y f xxx = 0: ð23Þ
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change of y value, the amplitude of wave changes corre-
spondingly and reaches the maximum at a certain moment.

In addition, we can also derive another three sets of
solutions for the parameters αiði = 1,⋯,9Þ, αj1, αj2, αj3, and
αj4ðj = 1, 2Þ.

α13 = α311 − 3α11γ, α23 = α12 = α21 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ,

α13 = α11 = α22 = 0, α23 = α321 − 3α21γ,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ,

α13 = α23 = α11 = α21 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ:

ð28Þ

Substituting these sets of solutions for the parameters
into Equations (22) and (24), the corresponding interaction
solutions can be obtained.

4. Lump-Periodic-Solitary Waves

In order to investigate the interaction among lump, periodic,
and solitary waves, suppose

f = α9 + k1 exp α14 + α13t + α11x + α12yð Þ
+ α8 + α7t + α5x + α6yð Þ2 + α4 + α3t + α1x + α2yð Þ2
+ k2 cos α24 + α23t + α21x + α22yð Þ:

ð29Þ
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Figure 4: α1 = β3 = σ1 = 1, k3 = −2, δ1 = −5, k1 = σ3 = 5, and t = 0. (a) 3D plot and (b) density plot.
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Figure 5: α1 = α4 = α11 = α9 = k1 = 1, k2 = α2 = α21 = 3, γ = α8 = α14 = 2, α24 = 4, α5 = −2. (a) y = −3, (b) y = 0, and (c) y = 2.

5Advances in Mathematical Physics



–10
–5

0
5

10 –5

0

5

x t

(a)

–10
–5

0
5

10 –5

0

5

x t

(b)

–10
–5

0
5

10 –5

0

5

x t

(c)

Figure 6: α1 = α4 = α11 = α9 = k1 = 1, k2 = α2 = α21 = 3, γ = α8 = α14 = 2, α24 = 4, α5 = −2. (a) t = −1, (b) t = 0, and (c) t = 1.
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Figure 7: Evolution of the periodic wave for solution (49) at α1 = α3 = γ2 = −1, α2 = α4 = γ3 = 1, β1 = γ1 = 5, k2 = −2, and γ4 = 2. (a) t = −5,
(b) t = 0, and (c) t = 5.
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Substituting Equation (29) into Equation (23), we have

α13 = −α311 − 3α11γ, α23 = α321 − 3α21γ, α12 = α22 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ:
ð30Þ

Equation (29) will become

f = α9 + k1e
α14+t −3α11γ−α311ð Þ+α11x + α4 − 3α1γt + α1x + α2yð Þ2

+ α8 − 3α5γt + α5x −
α1α2y
α5

� 	2

+ k2 cos α24 + t α321 − 3α21γ
� �

+ α21x
� �

:

ð31Þ

Combining Equations (22) and (31), we can obtain the
following interaction solution:

u = 2 ln fð Þxy, v = γ + 2 ln fð Þxx: ð32Þ

Dynamic behavior of Equation (32) is shown in Figure 6.
Lump, periodic, and solitary waves can be found in Figure 6.

In addition, we can also derive another three sets of
solutions for the parameters αiði = 1,⋯,9Þ, αj1, αj2, αj3,
and αj4ðj = 1, 2Þ.

α13 = −α311 − 3α11γ, α23 = α12 = α21 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ,

α13 = α11 = α22 = 0, α23 = α321 − 3α21γ,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ,

α13 = α23 = α11 = α21 = 0,

α6 = −
α1α2
α5

, α7 = −3α5γ, α3 = −3α1γ:

ð33Þ

Substituting these sets of solutions for the parameters
into Equations (22) and (29), the corresponding interac-
tion solutions can be obtained.

5. Double Periodic-Soliton Solutions

Supposing the function f in Equation (4) has the following
double-periodic soliton structures:

f = eθ1 γ1 cos θ2ð Þ + γ2 sin θ2ð Þ½ � + k1e
2θ1 + eθ3 γ3 cos θ4ð Þ + γ4 sin θ4ð Þ½ � + k2e

θ4 ,

ð34Þ

where θi = αi x + βi y + δi t, i = 1, 2, 3, 4 and αi, βi, and δi are
constants to be determined later. Substituting Equation (34)
into Equation (4), we can obtain a set of algebraic equations
for αi, βi, and δi yields a set of algebraic equations. Solving
these algebraic equations with the aid of symbolic computa-
tion, we obtain the following:

Case 5.

k1 = β2 = β4 = 0, β3 = β1, δ2 = α2 α22 − 3 α1 − 2α4ð Þ2� �
, ð35Þ

δ1 = −α31 + 3α22α1 − 14α34 − 12 α1 − 2α3ð Þα24 + 6 α21 − α22 − α23
� �

α4,
ð36Þ

δ3 = −α33 + 15α24α3 − 20α34, δ4 = α4 −3α23 + 12α4α3 − 11α24
� �

:

ð37Þ
Case 6.

k1 = β2 = δ4 = α4 = 0, δ1 = −α31 + 3α3α21 + 3 α22 − α23
� �

α1 − 3α22α3,

γ4 = −
β4γ3

2β4 − β3
, γ2 =

α22 + α1 α3 − α1ð Þ� �
γ1

α2 2α1 − α3ð Þ , δ3 = −α33,

β1 = 2β4, δ2 = α2 α22 − 3 α1 − α3ð Þ2� �
:

ð38Þ

Case 7.

k1 = α3 = α4 = β2 = δ3 = δ4 = 0, γ4 = −
β4γ3

β1 − β3
, γ2 =

2α1α2γ1
α21 − α22

,

δ1 = 3α1α22 − α31, δ2 = α32 − 3α21α2:
ð39Þ

Case 8.

k1 = α2 = β4 = δ2 = 0, δ1 = −2α4 3α23 − 12α4α3 + 11α24
� �

,

δ3 = −α33 + 15α24α3 − 20α34, δ4 = −α4 3α23 − 12α4α3 + 11α24
� �

,

γ4 = −
α3 − 3α4ð Þ α3 − α4ð Þγ3

2 α3 − 2α4ð Þα4
, α1 = 2α4:

ð40Þ

Case 9.

k1 = α2 = α4 = δ2 = δ4 = 0, α1 = α3, γ4
= −

β4γ1γ3
β1 − β3ð Þγ1 + β2γ2

, δ1 = δ3 = −α33:
ð41Þ

Case 10.

k2 = α2 = β4 = β2 = δ2 = 0, β3 = 2β1, δ1 = −α31, γ3 =
−α23 + 2α1α3 + α24
� �

γ4
2 α1 − α3ð Þα4

,

δ3 = 3 α3 − α1ð Þα24 − α3 3α21 − 3α3α1 + α23
� �

, δ4 = α34 − 3 α1 − α3ð Þ2α4:
ð42Þ

Case 11.

k2 = α4 = β2 = δ4 = 0, γ4 =
β1 − β3ð Þγ3

β4
, α3 = 2α1, δ1 = 3α1α22 − α31,

δ2 = α32 − 3α21α2, δ3 = 6α1α22 − 2α31:
ð43Þ

7Advances in Mathematical Physics



Case 12.

k2 = α2 = δ2 = α4 = δ4 = 0, α3 = 2α1, δ3 = −2α31, δ1 = −α31,

γ4 = −
β2γ1 + β3 − β1ð Þγ2ð Þγ3

β4γ2
:

ð44Þ

Case 13.

α1 = α2 = δ1 = δ2 = α4 = δ4 = 0, β4 = β1,

δ3 = −α33, γ4 = −
β2γ1 + β3 − β1ð Þγ2ð Þγ3

β1γ2
:

ð45Þ

Case 14.

α4 = β2 = δ4 = 0, β4 = β1, α3 = 2iϵα2, α1 = iϵα2, δ3 = 8iϵα32,
ð46Þ

δ2 = 4α32, δ1 = 4iϵα32, γ4 = 1 − β3
β1

� 	
γ3: ð47Þ

Case 15.

δ1 = α1 = α4 = δ4 = β2 = 0, δ3 = −α33, α2 = iϵα3, γ2 = −iϵγ1,

γ3 = −
β1 − β3ð Þγ4

β4
, δ2 = −iϵα33,

ð48Þ

where ε = ±1. Substituting Equations (35)–(47) into Equations
(3) and (34), respectively, we can obtain abundant double-
periodic soliton solutions of Equation (1). As an example,
substituting Equation (47) into Equation (34), we have

Therefore, the corresponding double-periodic soliton
solutions can be presented as follows:

f = e2 xα4+t −3α23+12α4α3−11α24ð Þα4½ �k2
+ cos xα2 + t α22 − 3 α1 − 2α4ð Þ2� �

α2
� �

γ1 + sin xα2 + t α22 − 3 α1 − 2α4ð Þ2� �
α2

� �
γ2

� �

Exp xα1 + t −α31 + 3α22α1 − 14α34 − 12 α1 − 2α3ð Þα24 + 6 α21 − α22 − α23
� �

α4
� �

+ yβ1
� �

+ exα3+t −α33+15α24α3−20α34ð Þ+yβ1 cos xα4 + t −3α23 + 12α4α3 − 11α24
� �

α4
� �

γ3 + sin xα4 + t −3α23 + 12α4α3 − 11α24
� �

α4
� �

γ4
� �

:

ð49Þ

u1 =


2


exα1+yβ1+tδ1α1β1 cos xα2 + tδ2ð Þγ1 + sin xα2 + tδ2ð Þγ2ð Þ + exα1+yβ1+tδ1β1 cos xα2 + tδ2ð Þα2γ2 − sin xα2 + tδ2ð Þα2γ1½ �

+ exα3+yβ1+tδ3α3β1 cos xα4 + tδ4ð Þγ3 + sin xα4 + tδ4ð Þγ4½ � + exα3+yβ1+tδ3β1 cos xα4 + tδ4ð Þα4γ4 − sin xα4 + tδ4ð Þα4γ3½ �
��

/ e2 xα4+tδ4ð Þk2 + exα1+yβ1+tδ1 cos xα2 + tδ2 γ1 + sin xα2 + tδ2ð Þγ2ðð½ � + exα3+yβ1+tδ3 cos xα4 + tδ4ð Þγ3 + sin xα4 + tδ4ð Þγ4½ �
h i

−


2 exα1+yβ1+tδ1β1 cos xα2 + tδ2ð Þγ1 + sin xα2 + tδ2ð Þγ2½ � + exα3+yβ1+tδ3β1 cos xα4 + tδ4ð Þγ3 + sin xα4 + tδ4ð Þγ4½ �
h i



2e2 xα4+tδ4ð Þk2α4 + exα1+yβ1+tδ1α1 cos xα2 + tδ2ð Þγ1 + sin xα2 + tδ2ð Þγ2½ � + exα1+yβ1+tδ1 cos xα2 + tδ2ð Þα2γ2 − sin xα2 + tδ2ð Þα2γ1½ �

+ exα3+yβ1+tδ3α3 cos xα4 + tδ4ð Þγ3 + sin xα4 + tδ4ð Þγ4½ � + exα3+yβ1+tδ3 cos xα4 + tδ4ð Þα4γ4 − sin xα4 + tδ4ð Þα4γ3½ �
��

/ e2 xα4+tδ4ð Þk2 + exα1+yβ1+tδ1 cos xα2 + tδ2ð Þγ1 + sin xα2 + tδ2ð Þγ2½ � + exα3+yβ1+tδ3 cos xα4 + tδ4ð Þγ3 + sin xα4 + tδ4ð Þγ4½ �
h i2
 �

:

ð50Þ
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Dynamic behavior of expression (49) is shown in
Figure 7.

6. Conclusion

In this paper, we study a (2+1)-dimensional KdV equation.
Abundant periodic wave solutions are obtained based on
the Hirota’s bilinear form and a direct test function. Corre-
sponding dynamic behavior is shown in Figures 1–4. Mean-
while, the interaction solutions between lump and periodic
waves are obtained. Corresponding dynamic behavior is
seen in Figure 5. From Figure 5, we can observe the interac-
tion between lump and periodic waves. With the change of y
value, the amplitude of wave changes correspondingly and
reaches the maximum at a certain moment. We present
the interaction solutions among lump, periodic, and solitary
waves. Corresponding dynamic behavior is seen in Figure 6.
From Figure 6, we can observe the lump wave, periodic
wave, and solitary wave at the same time. Finally, with the
aid of the extended homoclinic test technique and an ansätz
functions, double periodic-soliton solutions of the (2+1)-
dimensional Korteweg-de Vries equation are obtained.
Corresponding dynamic behavior is shown in Figure 7.
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