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Analysis of thin film flows is an important topic in fluid dynamics due to the large number of industrial applications such as food
processing, chip manufacturing, irrigation, oil refining process, painting finishing, etc. Analysis involves studying the effects of
various parameters in absolute conditions. These parameters may be film thickness, volumetric flux, liquid velocity profile,
viscosity, shear stress, gravity, density, and different boundary formations. We have expanded the formulations of non-
Newtonian third grade fluid for lifting and draining in fractional space. Fractional calculus along with Homotopy Perturbation
Method is used for the solution and analysis purposes. The suitability and consistency of the solutions is determined by
detecting residuals in each case. Velocity profile, average velocity, and volume flow for lifting and drainage cases are calculated.
To the best of authors knowledge, thin film flow of fractional third grade fluid is not attempted before in lifting and drainage.
Investigation shows increase in value of fractional parameter that decreases the velocity profile in lifting while increases the
velocity in drainage scenario. Also, the frictional parameter and the gravitational parameter have opposite, while material
constant has direct relationship with the velocity profile in lifting case. All the parameters showed inverse effect on the velocity
in drainage case.

1. Introduction

Thin film flows can be seen in many natural situations such
as raindrops on the window, water-filled eyes, and lava. Free
drainage refers to a phenomenon in which a fluid flows
along a vertical object in such a way that adheres to the form
of objects and viscous forces [1]. Paint finishing, oil refining
processes, chip production, construction and public works,
and laser cutting are industrial applications of these flows
[2–4]. The first work on thin films was performed based
on Newtonian fluids in [3]. Although this procedure works
for a long time, it was not sufficient for the nonlinear analy-
sis of non-Newton liquid such as melted plastics gels, lubri-

cants containing polymeric additives, blood, and foods such
as ketchup and honey [5, 6]. Siddiqui et al. address the
drainage problems in relation with Phan-Thein-Tanner
(PTT) and third grade fluids which flows along an inclined
plane in [7, 8]. Siddiqui et al. also analyzed thin film scenario
using fourth-grade fluids on vertical cylinders in [9]. Alam
et al. [10] investigated thin film of pseudoplastic fluid. Dei-
ber and Cruz analyzed non-Newtonian fluid flow through
a circular tube [11]. In terms of flow types, Yih [12] per-
formed the first studies regarding laminar flows in free sur-
face. Landau [13] and Stuart [14] have extended the
analysis to the turbulent flows. Nakaya [15] and Lin [16]
performed stability analysis taking into account surface
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tension. Zangooee et al. [17] performed hydrothermal anal-
ysis of hybrid nanofluid on a vertical plate with slip effects.
Gulzar et al. analyzed magneto-hyperbolic-tangent liquid
for different features in [18]. Fallah et al. analyzed nanofluid
in a vertical channel taking polynomial boundary [19].
Nayak et al. [20] numerical examine the mixed convection
nanofluid over an isothermal thin needle metallic nanomate-
rial. Ebrahem et al. investigated the significance of Lorentz
forces on radiative nanofluid under multiple constraints
[21]. Zaher et al. solved boundary layer flow of a non-
Newtonian fluid with planktonic microorganism in [22].
Sara et al. analyzed thin blood stream through electroos-
motic forces in hybrid nanofluid [23].

In the past few decades, various numerical and
homotopy-based techniques have been proposed by many
researchers for BVPs [16, 24, 25]. In 1992, Liao proposed
homotopy analysis method for BVPs [26, 27]. After that,
professor He proposed a combination of homotopy with
perturbation for solution of BVPs in [28–30] and has been
used successfully to solve many linear and nonlinear
[31–33]. Yıldırım [34], Golbabai et al. [35], and Ghasemi
et al. [36] solved integro-differential and integral equations
through HPM. FDEs have been modelled and studied in sig-
nal processing, physics, and biology due to their ability to
capture more complex nonlinear phenomena [37–39]. Spa-
sic and Lazarevic discussed the electro viscoelasticity of
fractional-order model in [40]. In this continuation, in cur-
rent paper, we extend the study of thin film flow of fractional
third grade fluid in lifting and drainage cases. We formulate
the phenomena in the form of fractional differential equa-
tions and compute series solutions using homotopy pertur-
bation method (HPM). In the rest of the manuscript,
Section 2 is presenting governing equations. Formulation
and solution in lifting case are given in Sections 3 and 4. Sec-
tions 5 and 6 contain formulation and solution related to
drainage case. Results and discussion is in Section 7, while
conclusion is given in Section 8.

2. Governing Equations

The fundamental equations are as follows [7, 8]:

div V = 0, ð1Þ

ρ
∂V
∂t

+ V:∇ð ÞV
� �

= ∇:T + ρb, ð2Þ

whereT,V and ρ are Cauchy stress tensor, velocity and den-
sity, respectively. Where

T = −pI + S, ð3Þ

where I is the unit tensor, p is the pressure, and S the extra
stress tensor.

S = a + b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr A1ð Þ2

r�����
�����
n−1" #

A1, ð4Þ

where a, b, and n are constants.

S + λ1
DS
Dt

+
λ3
2

SA1 +A1Sð Þ + λ5
2

trSð ÞA1

= μ A1 + λ2
DA1
Dt

+ λ4A1
2

� �
,A1 = L + LT,

L = grad V,
ð5Þ

where μ, λ1, λ2, λ3, λ4 and λ5 are material constant, and A1
is the Rivlin-Ericksen tensor.

3. Formulation of the Problem in Lifting Case
[7, 8]

Substituting Equations (3) and (4) in Equation (2), we get

−
dp1
dx

= 0,

−
dp1
dy

+ ρg + a
d2v
dx2

+ b
d
dx

dv
dx

� �n
= 0:

ð6Þ

From above we deduce that p1 = p1ðyÞ,

a
d2v
dx2

+ nb
dv
dx

� �n−1 d2v
dx2

+ ρg =
dp1
dx

: ð7Þ

Equation (9) becomes

a
d2v
dx2

+ nb
dv
dx

� �n−1 d2v
dx2

− ρg = 0, ð8Þ

with v =U0at x = 0 and Sxy = 0 at x = δ, ð9Þ

where

Sxy = a
dv
dx

+ b
dv
dx

� �n
: ð10Þ

Using Equation (10) in Equation (9), we get

dv
dx

= 0 at x = δ, ð11Þ

d2v
dx2

+
nb
a

dv
dx

� �n−1 d2v
dx2

−
ρg
a

= 0: ð12Þ

Substituting n = 3, b = 2ðβ2 + β3Þ and a = μ in Equation
(12), we have

d2v
dx2

+
6 β2 + β3ð Þ

μ

dv
dx

� �2 d2v
dx2

−
ρg
μ

= 0, ð13Þ

2 Advances in Mathematical Physics



v =U0at x = 0,
dv
dx

= 0 at x = δ:

9=
; ð14Þ

v∗ = v/U0, x∗ = x/δ, β∗ = 6ðβ2 + β3ÞU0
2/μ, gp∗ = ρg/μU0

are dimensionless parameters.
The dimensionless form without ‘∗’ of Equation (13)

subject to Equation (14) is

d2v
dx2

+ β
dv
dx

� �2 d2v
dx2

− gp = 0, ð15Þ

with
dv
dx

= 0 at x = 1 and v = 1 at x = 0, ð16Þ

Using definitions of fractional calculus, Equation (16)
can be written as fractionally

d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

− gp = 0, ð17Þ

with v′ 1ð Þ = 0, v 0ð Þ = 1, 0 < α < 1: ð18Þ

4. Homotopy Solution of Third Grade Fluid in
Lifting Case

For Equation (17), the homotopy Ω × ½0, 1�⟶ R is defined
as follows [24]:

1 − pð Þ d
2v xð Þ
dx2

+ p
d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

− gp

" #
= 0:

ð19Þ

Using Equations (18) and (19) different order problems
are given as follows:

0th order

v0 ′′ xð Þ = 1, v0′ 1ð Þ = 0, v0 0ð Þ = 1: ð20Þ

1st order

−gp + β Dαv0 xð Þð Þ2v0 ′′ xð Þ + v1 ′′ xð Þ = 0, v1 ′ 1ð Þ = 0, v1 0ð Þ = 0

ð21Þ

2nd order

2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv0 ′′ xð Þ + β Dαv0 xð Þð Þ2v1 ′′ xð Þ
+ v2 ′′ xð Þ = 0, v2 ′ 1ð Þ = 0, v2 0ð Þ = 0

ð22Þ

3rd order

β Dαv1 xð Þð Þ2v0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv1 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v2 ′′ xð Þ + v3 ′′ xð Þ
= 0, v3 0ð Þ = 0, v3 ′ 1ð Þ = 0

ð23Þ

4th order

2β Dαv1 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv3 xð Þð Þv0 ′′ xð Þ
+ β Dαv1 xð Þð Þ2v1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv2 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v3 ′′ xð Þ
+ v4 ′′ xð Þ = 0, v 0ð Þ = 0, v4 ′ 1ð Þ = 0

ð24Þ

Using Caputo definition while α = 0:8, β = 1 and gp = 0:8
fixed, the approximate solution is

V xð Þ = 1 +
1
2

−1:6x + 0:8x2
� 	

+
1
x1:6

0:01787764010524059 7:612661760000037x2:6
�

− 10:110566399999996x4 + 6:938624000000001x5

− 1:5769600000000001x6

The residual isR =
d2V xð Þ
dx2

+ β DαV xð Þð Þ2 d
2V xð Þ
dx2

− gp

ð25Þ

4.1. Flow Rate and Average Velocity in Lifting Case [7]. The
average velocity is

Q =
ð1
0
V xð Þdx,

Q =
−3 + 2αð Þ −3gp

3 −3 + αð Þ2 −16 + α 25 + α −13 + 2αð Þð Þð Þβ/−7 + 2α − 2 −3 + gp

 �

−5 + 2αð ÞΓ 4 − α½ �2

 �

6 15 − 16α + 4α2ð ÞΓ 4 − α½ �2 :

�V =Q:

ð26Þ
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5. Mathematical Formulation in Drainage Case
[7, 8]

Considering the fluid falling on the stationary infinite sta-
tionary belt, the flow is in the downward direction due to

gravity, so Equation (15) becomes

d2v
dx2

+ β
dv
dx

� �2 d2v
dx2

+ gp = 0, ð27Þ

Table 1: Results for α in lifting case where β = 0:5 andgp = 0:001 are fixed.

x
α = 0:2 α = 0:6 α = 0:99

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9998e−1 -4.54216e−18 9.9991e−1 -1.54976e−17 9.9981e−1 -2.1073e−16
0.2 9.9981e−1 -1.23994e−17 9.9984e−1 -3.1282e−17 9.9985e−1 -1.53593e−16
0.3 9.9974e−1 -2.16777e−17 9.9982e−1 -4.36903e−17 9.9973e−1 -1.01302e−16
0.4 9.9962e−1 -3.07258e−17 9.9972e−1 -5.10537e−17 9.9965e−1 -6.13372e−17
0.5 9.9963e−1 -3.81183e−17 9.9975e−1 -5.31326e−17 9.9959e−1 -3.37629e−17
0.6 9.9958e−1 -4.2865e−17 9.9968e−1 -5.06284e−17 9.9956e−1 -1.65235e−17
0.7 9.9954e−1 -4.45033e−17 9.9964e−1 -4.47699e−17 9.9955e−1 -6.95404e−18
0.8 9.9952e−1 -4.30865e−17 9.9952e−1 -3.69744e−17 9.9954e−1 -2.42827e−18
0.9 9.9998e−1 -4.54216e−18 9.9991e−1 -1.54976e−17 9.9981e−1 -2.1073e−16
1. 9.9981e−1 -1.23994e−17 9.9984e−1 -3.1282e−17 9.9985e−1 -1.53593e−16

Table 2: Results for gp in lifting case where α = 0:95 andβ = 0:1 are fixed.

x
gp = 0:001 gp = 0:01 gp = 0:1

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9988e−1 -8.42917e−18 9.9985e−1 -8.42917e−13 9.9989e−1 -8.42614e−8
0.2 9.9985e−1 -6.14371e−18 9.9982e−1 -6.14371e−13 9.9986e−1 -6.14184e−8
0.3 9.9982e−1 -4.05208e−18 9.9978e−1 -4.05208e−13 9.9984e−1 -4.05108e−8
0.4 9.9972e−1 -2.45348e−18 9.9975e−1 -2.45348e−13 9.9975e−1 -2.453e−8
0.5 9.9971e−1 -1.35051e−18 9.9973e−1 -1.35051e−13 9.9972e−1 -1.35031e−8
0.6 9.9968e−1 -6.60931e−19 9.9969e−1 -6.60941e−14 9.9968e−1 -6.60868e−9
0.7 9.9964e−1 -2.78159e−19 9.9965e−1 -2.78161e−14 9.9964e−1 -2.78139e−9
0.8 9.9962e−1 -9.71282e−20 9.9964e−1 -9.7131e−15 9.9952e−1 -9.71257e−10
0.9 9.9952e−1 -2.8262e−20 9.9955e−1 -2.82618e−15 9.9951e−1 -2.82607e−10
1. 9.9951e−1 -6.02955e−20 9.992e−1 -6.03165e−16 9.995e−1 -6.03129e−11

Table 3: Results for β in lifting case where α = 0:99 and gp = 0:001 are fixed.

x
β = 0:1 β = 0:5 β = 0:9

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.9998e−1 -1.03899e−17 9.9984e−1 -2.59749e−16 9.9979e−1 -8.41587e−16
0.2 9.9991e−1 -6.69572e−18 9.9981e−1 -1.67394e−16 9.9975e−1 -5.42356e−16
0.3 9.9984e−1 -4.02215e−18 9.9974e−1 -1.00554e−16 9.9974e−1 -3.25794e−16
0.4 9.9978e−1 -2.22459e−18 9.9972e−1 -5.56148e−17 9.9962e−1 -1.80192e−16
0.5 9.9973e−1 -1.10445e−18 9.9963e−1 -2.76114e−17 9.9963e−1 -8.9461e−17
0.6 9.9968e−1 -4.71565e−19 9.9961e−1 -1.17891e−17 9.9956e−1 -3.81967e−17
0.7 9.9964e−1 -1.60686e−19 9.9954e−1 -4.01724e−18 9.9954e−1 -1.30159e−17
0.8 9.9962e−1 -3.81773e−20 9.9952e−1 -9.54481e−19 9.9952e−1 -3.09255e−18
0.9 9.9951e−1 -5.30469e−21 9.9951e−1 -1.326e−19 9.995e−1 -4.29646e−19
1. 9.994e−1 -2.27581e−22 9.995e−1 -5.66682e−21 9.994e−1 -1.83058e−20
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with
v = 0 at x = 0,
dv
dx

= 0 at x = 1:

9=
; ð28Þ

Using definitions of fractional calculus, Equation (27)

can be written fractionally as follows:

d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

+ gp = 0, ð29Þ

with v 0ð Þ = 0, v′ 1ð Þ = 0, 0 < α < 1: ð30Þ

Table 4: Results for α in drainage case keeping β = 0:1 andgp = 0:001 are fixed.

x
α = 0:2 α = 0:6 α = 0:99

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−44 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22

Table 5: Results forgp in drainage case where α = 0:99 and β = 0:1 are fixed.

x
gp = 0:1 gp = 0:01 gp = 0:001

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−44 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22

Table 6: Results for β in drainage case where α = 0:95 andgp = 0:001 are fixed.

x
β = 0:1 β = 0:3 β = 0:7

V xð Þ Error V xð Þ Error V xð Þ Error

0.1 9.41e−5 1.81686e−19 9.52e−5 2.04663e−18 9.62e−5 1.03899e−17
0.2 1.71e−4 4.95977e−19 1.73e−4 2.82993e−18 1.81e−4 6.69572e−18
0.3 2.62e−4 8.67109e−19 2.65e−4 2.98548e−18 2.64e−4 4.02215e−18
0.4 3.42e−4 1.22903e−18 3.43e−4 2.74607e−18 3.53e−4 2.22459e−18
0.5 3.65e−4 1.52473e−18 3.62e−4 2.29456e−18 3.65e−4 1.10445e−18
0.6 4.12e−4 1.7146e−18 4.11e−4 1.76941e−18 4.52e−4 4.71565e−19
0.7 4.52e−4 1.78013e−18 4.54e−4 1.26636e−18 4.61e−4 1.60686e−19
0.8 4.91e−4 1.72346e−18 4.93e−4 8.42172e−19 4.89e−4 3.81773e−20
0.9 4.95e−4 1.56378e−18 4.91e−4 5.20346e−19 4.95e−4 5.30469e−21
1. 5.11e−4 1.33187e−18 5.21e−4 2.98346e−19 5.01e−4 2.27581e−22
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6. Homotopy Solution of Third Grade Fluid in
Drainage Case

For Equation (29), the homotopy Ω × ½0, 1�⟶ R is defined
as follows [24]:

1 − pð Þ d
2v xð Þ
dx2

+ p
d2v xð Þ
dx2

+ β Dαv xð Þð Þ2 d
2v xð Þ
dx2

+ gp

" #
= 0:

ð31Þ

Using Equations (30) and (31) different order problems
are given as follows:

0th order

v0 ′′ xð Þ = 0, v0′ 1ð Þ = 0, v0 0ð Þ = 0: ð32Þ

1st order

gp + β Dαv0 xð Þð Þ2v0 ′′ xð Þ + v1 ′′ xð Þ = 0, v1 ′ 1ð Þ = 0, v1 0ð Þ = 0:

ð33Þ

2nd order

2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv0 ′′ xð Þ + β Dαv0 xð Þð Þ2v1 ′′ xð Þ
+ v2 ′′ xð Þ = 0, v2 0ð Þ = 0, v2 ′ 1ð Þ = 0:

ð34Þ
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Figure 1: In lifting case effect of α on VðxÞ where gp = 0:8 andβ
= 1 are fixed.
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Figure 2: In lifting case effect of gp on VðxÞ where α = 0:95 and
β = 1 are fixed.
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Figure 3: In lifting case effect of β on VðxÞ where α = 0:95 and
gp = 1:5 are fixed.
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Figure 4: In lifting case effect of increasing β and gp on VðxÞ
where α = 0:8 is fixed.
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3rd order

β Dαv1 xð Þð Þ2v0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv1 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v2 ′′ xð Þ + v3 ′′ xð Þ
= 0, v3 0ð Þ = 0, v3 ′ 1ð Þ = 0:

ð35Þ

4th order

2β Dαv1 xð Þð Þ Dαv2 xð Þð Þv0 ′′ xð Þ + 2β Dαv0 xð Þð Þ Dαv3 xð Þð Þv0 ′′ xð Þ
+ β Dαv1 xð Þð Þ2v1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv2 xð Þð Þv1 ′′ xð Þ
+ 2β Dαv0 xð Þð Þ Dαv1 xð Þð Þv2 ′′ xð Þ
+ β Dαv0 xð Þð Þ2v3 ′′ xð Þ
+ v4 ′′ xð Þ = 0, v 0ð Þ = 0, v4 ′ 1ð Þ = 0:

ð36Þ
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Figure 5: In drainage case effect of α on VðxÞ where gp = 1 andβ
= 1 are fixed.
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Figure 6: In drainage case effect of gp on VðxÞ keeping α = 0:95
andβ = 1 are fixed.
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Figure 7: In drainage case effect of β on VðxÞ where gp = 1 and α
= 0:95 are fixed.
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Figure 8: In drainage case effect of increasing β and gp on VðxÞ
where α = 0:95 is fixed.
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By using definition where α = 0:8, β = 1 and gp = 0:8 are
fixed, we get the following approximate solution:

6.1. Average Velocity and Flow Rate in Drainage Case. The
average velocity is

7. Result and Discussion

In this article, series solution of fractional thin film of third
grade fluid is obtained in case of lifting and drainage. For
the validity check, modelled problems are solved for differ-
ent values of involved parameters, and the results are pre-
sented in Tables 1–6. Tables 1 and 4 are showing solutions
and residual errors for different values of fractional parame-
ter α. Tables 2 and 5 present solution and errors against dif-
ferent numerical values of gravitational parametergp.
Similarly, Tables 3 and 6 show the solutions along with
errors for different values of non-Newtonian parameter β.
Analysis of these tables clearly indicates that obtained solu-
tions are valid and consistent. Graphical analysis of the
involved parameters is provided in Figures 1–8. Figures 1–
4 capture the effect of involved parameter on the velocity
in lifting case. Figures 1, 2, and 3 show the effects of frac-
tional, gravitational, and material parameter on the velocity
profile. It is observed that α and gp have inverse, while β

has direct relationship with the fluid velocity in lifting case.
The effect of simultaneous increase in β and gp on the veloc-
ity is shown in Figure 4. It has been observed that gp effect is
more dominant as compared to β in case of lifting. Effects of
above mentioned parameters in drainage case are shown in
Figures 5–8. Figures 5, 6, and 7 fractional, gravitational,
and material parameter on the velocity profile. It is observed
that α and gp have direct while β has inverse relationship
with the fluid velocity in drainage case. The effect of simul-
taneous increase in β and gp on the velocity is shown in
Figure 8. It has been observed that the effect of gp is more
dominant as compared to β in drainage as well.

8. Conclusions

In this article, homotopy based solutions of fractional thin
film of third grade fluid are obtained. The validity and con-
vergence of the obtained solutions are confirmed by finding
residual errors in each case. The effects of different parame-
ters (fluid and fractional) are also explored on the fluid
velocity in fractional environment. Analysis reveals that
fractional parameter showed inverse behavior on the fluid
velocity in lifting and drainage cases. Moreover, gravitational
parameter is prevailing parameter as compared to other fluid
parameters in this study.

Nomenclature

T: Cauchy stress tensor
V: Velocity vector
ρ: Density
S: Extra stress tensor
A1,: Rivlin-Ericksen tensor
β: Non-Newtonian Parameter
g: Gravitational force
μ: Material constant
λi: Material constants
gp: gravitational parameter
βi: Material constants
α: Fractional parameter.

Data Availability

All the data is available with in the manuscript.

V xð Þ = 1/2 0:002 x − 0:001 x2
� 	

+
0:0269608 −1:08662 × 10−9 x2:8 + 1:55232 × 10−9 x4 − 1:0584 × 10−9x5 + 2:52 × 10−10x6

� 	� 	
x1:8

:

The residual isR =
d2V xð Þ
dx2

+ β DαV xð Þð Þ2 d
2V xð Þ
dx2

+ gp: ð37Þ

Q =
ð1
0
V xð Þdx,

Q =
gp −3 + 2αð Þ 3gp

2 −3 + αð Þ2 −16 + α 25 + α −13 + 2αð Þð Þð Þβ + 70 + 8 −6 + αð Þαð ÞΓ 4 − α½ �2

 �

2 −21 + 6αð Þ 15 − 16α + 4α2ð ÞΓ 4 − α½ �2 :�V =Q:

ð38Þ
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