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In this paper, a discrete Lorenz map with the fractional difference is analyzed. Bifurcations of the map in commensurate-order and
incommensurate-order cases are studied when an order and a parameter are varied. Hopf bifurcation and periodic-doubling
cascade are found by the numerical simulations. The parameter values of Hopf bifurcation points are determined when the
order is taken as a different value. It can be concluded that the parameter decreases as the order increases. Chaos control and
synchronization for the fractional-order discrete Lorenz map are studied through designing the suitable controllers. The
effectiveness of the controllers is illustrated by numerical simulations.

1. Introduction

Fractional calculus has been studied for a fairly long time in
the field of pure mathematics [1]. At the primary stage, its
development is slow because of the absence of geometrical
interpretation and applications. Until the last few decades,
researchers gradually noticed that fractional calculus has
superior characteristics over the classical calculus. Nowa-
days, fractional calculus has been analyzed deeply in theoret-
ical research and practical applications.

It is well known that discrete fractional calculus was put
forward by Diaz and Olser [2]. Within the past decade, peo-
ple are more and more interested in discrete fractional calcu-
lus. In [3–7], definitions and stability for discrete fractional
calculus are introduced and investigated. Based on these,
many fractional-order maps are proposed and studied in
detail, such as fractional sine map, standard map, Hénon
map, and Ikeda map [8–14]. For the long-term memory
characteristic of the operator, this kind of maps is a better
fit for application in secure communications and encryption
[15–17]. The main reasons are that fractional-order discrete
maps are not only sensitive to the small disturbance of
parameters and initial conditions but also to the variation
of fractional orders, which are the unique advantages of
fractional-order systems. On the other hand, fractional-
order discrete maps have simple forms and rich dynamics,
which are good for model analysis and numerical computa-

tion. Therefore, investigation of a fractional-order discrete
map including dynamics, stabilization, and synchronization
is necessary and important for the development of fractional
calculus.

In this paper, we will investigate a fractional-order dis-
crete Lorenz map. Bifurcations of the map in
commensurate-order and incommensurate-order cases are
analyzed. Hopf bifurcation and periodic-doubling cascade
are found by the numerical simulations. The parameter
values of Hopf bifurcation points are determined when the
order is varied. The fractional-order discrete Lorenz map
has several advantages such as unpredictability, diffusion
properties, sensitivity to initial conditions, orders, and
parameters. It is very suitable for application in secure com-
munication and encryption. Therefore, chaos control and
synchronization for the fractional-order Lorenz map are
studied through designing the suitable controllers based on
the adaptive method. The advantages of the method are fol-
lows: the principle of the adaptive method is simple based on
the stability theory of fractional difference maps; the design-
ing controllers for control and synchronization are easy to
realize in simulations. It should be noted that the research
of fractional-order maps is at an early stage. Many control
and synchronization methods and strategies need to be stud-
ied further.

The paper is organized into seven sections. Section 2
gives the related theories of discrete fractional calculus. A
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fractional-order discrete Lorenz map is described in Section
3. Bifurcations in two cases are studied in Section 4. Control
and synchronization for map are investigated, respectively,
in Sections 5 and 6. The summarization of the paper is given
in Section 7.

2. Discrete Fractional Calculus

In this section, some theories related to discrete fractional
calculus will be listed. The symbol CΔq

bYðtÞ represents the
Caputo type fractional difference of a function YðtÞ: Nb
⟶ℝ with Nb = fb, b + 1, b + 2,⋯g [18], which is marked
as

CΔq
bY tð Þ = Δb

− n−qð ÞΔb
nY tð Þ = 1

Γ n − qð Þ 〠
t− n−qð Þ

s=b
t − s − 1ð Þ n−q−1ð ÞΔn

s Y sð Þ:

ð1Þ

Here, q ∉N is the fractional order, and n = dqe + 1.The
fractional sum in (1) can be expressed as [19, 20]

Δb
−qY tð Þ = 1

Γ qð Þ〠
t−q

s=b
t − s − 1ð Þ q−1ð ÞY sð Þ: ð2Þ

Here, t ∈Nb+q, q > 0, and the falling function tðqÞ is writ-
ten as follows:

t qð Þ =
Γ t + 1ð Þ

Γ t + 1 − qð Þ , ð3Þ

where Γð⋅Þ denotes the gamma function, which is defined as
ΓðtÞ = Ð +∞0 xt−1e−xdx for t > 0.

We can determine the numerical solutions of a fractional
difference equation via the method below. A fractional dif-
ference equation with initial conditions is

CΔq
bu tð Þ = f t + q − 1, u t + q − 1ð Þð Þ,

Δku bð Þ = uk:n = qd e + 1, k = 0, 1, 2,⋯, n − 1:

(
ð4Þ

The corresponding discrete integral equation is

u tð Þ = u0 tð Þ + 1
Γ qð Þ 〠

t−q

s=b+n−q
t − s − 1ð Þ q−1ð Þ f s + q − 1, u s + q − 1ð Þð Þ, t ∈Nb+n:

ð5Þ

Here, u0ðtÞ =∑n−1
k=0ððt − bÞðkÞ/Γðk + 1ÞÞΔkuðbÞ.

The below theorem can be used to determine the stabil-
ity of the equilibrium point for a fractional-order difference
system. You can refer to the literature [21] for the detail of
the proof.

Theorem 1. For a linear fractional-order difference discrete
system,

CΔq
bX tð Þ =AY t + q − 1ð Þ: ð6Þ

Here, YðtÞ = ðy1ðtÞ, y2ðtÞ,⋯,ynðtÞÞT , 0 < q < 1,A ∈ Rn×n

and∀t ∈Nb+1−q, and the zero equilibrium is asymptotically
stable if all the eigenvalues of matrix A satisfy

λij j < 2 cos
arg λij j − π

2 − q

� �q

and arg λij j > qπ
2
, i = 1, 2,⋯, n:

ð7Þ

Definition 2. For a fractional-order system, which can be
described by CΔq

a = f ðxðtÞÞ, where x = ðx1, x2,⋯,xnÞT is the
state vector, q = ðq1, q2,⋯,qnÞT is the fractional derivative
orders vector, and qi > 0. The fractional-order system is in
commensurate order when all the derivative orders satisfy
q1 = q2 =⋯ = qn; otherwise, it is an incommensurate-order
system [22].

3. A Discrete Lorenz Map with Fractional
Difference Operator

Recently, a Lorenz map was studied deeply and successfully
applied in encryption [23–25]. A Lorenz chaotic map was
presented which is given as follows:

x n + 1ð Þ = 1 + γδð Þx nð Þ − δy nð Þx nð Þ,
y n + 1ð Þ = 1 − δð Þy nð Þ + δx2 nð Þ:

(
ð8Þ

Here, xðnÞ and yðnÞ denote state variables, and γ and δ
represent system parameters. The corresponding first-order
difference for (8) is expressed as

Δx nð Þ = x n + 1ð Þ − x nð Þ = 1 + γδð Þx nð Þ − δy nð Þx nð Þ − x nð Þ,
Δy nð Þ = y n + 1ð Þ − y nð Þ = 1 − δð Þy nð Þ + δx2 nð Þ − y nð Þ:

(

ð9Þ

By using the Caputo-like delta difference operator to
replace the first order difference in (9) with a starting point
b, the fractional-order Lorenz map can be obtained, which
is the following form [26]:

CΔq
bx tð Þ = 1 + γδð Þx t − 1 + qð Þ − δy t − 1 + qð Þx t − 1 + qð Þ − x t − 1 + qð Þ,

CΔq
by tð Þ = 1 − δð Þy t − 1 + qð Þ + δx2 t − 1 + qð Þ − y t − 1 + qð Þ:

(

ð10Þ

Here, 0 < q < 1 denotes the derivative order. If all the
orders in (10) are identical, then the map is a
commensurate-order one. Otherwise, it is an
incommensurate-order one which is expressed by the fol-
lowing difference equations:

CΔ
q1
b x tð Þ = 1 + γδð Þx t − 1 + q1ð Þ − δy t − 1 + q1ð Þx t − 1 + q1ð Þ − x t − 1 + q1ð Þ,

CΔ
q2
b y tð Þ = 1 − δð Þy t − 1 + q2ð Þ + δx2 t − 1 + q2ð Þ − y t − 1 + q2ð Þ:

(

ð11Þ

The derivative orders satisfy 0 < q1, q2 < 1.
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The numerical formulas of commensurate-order map
(10) are

x nð Þ = x bð Þ + 1
Γ qð Þ〠

n

j=1

Γ n − j + qð Þ
Γ n − j + 1ð Þ γδx j − 1ð Þ − δy j − 1ð Þx j − 1ð Þð Þ,

y nð Þ = y bð Þ + 1
Γ qð Þ〠

n

j=1

Γ n − j + qð Þ
Γ n − j + 1ð Þ δ −y j − 1ð Þ + x2

�
j − 1ð Þ� �

,

8>>>>><
>>>>>:

ð12Þ

and the numerical recipes of (11) are as follows:

x nð Þ = x bð Þ + 1
Γ q1ð Þ〠

n

j=1

Γ n − j + q1ð Þ
Γ n − j + 1ð Þ γδx j − 1ð Þ − δy j − 1ð Þx j − 1ð Þð Þ,

y nð Þ = y bð Þ + 1
Γ q2ð Þ〠

n

j=1

Γ n − j + q2ð Þ
Γ n − j + 1ð Þ δ −y j − 1ð Þð + x2 j − 1ð Þ� �

:

8>>>>><
>>>>>:

ð13Þ

In here, we fix the low limit b as 0. When the parameters
are taken as γ = 1:25, δ = 0:75, and the order q is 0:99, the
commensurate-order map (10) has a chaotic attractor, see
Figure 1.

4. Bifurcations of Fractional-Order Discrete
Lorenz Map

We will study the bifurcations of the fractional-order dis-
crete Lorenz map in commensurate-order and
incommensurate-order cases in this section.

4.1. Bifurcations of Map (10). Firstly, parameter γ is fixed as
1:25, and the intervals of δ and the order q are taken as ½
0:2, 1� and ½0:6, 0:99�, respectively. The bifurcation of the
commensurate-order discrete Lorenz map, which is corre-
sponding to the difference equations (10), is studied when
δ and q are varied, see Figure 2(a), from which it is clear that
that map (10) has very abundant dynamics. Period-doubling
cascades and Hopf bifurcations can be observed. The chaos
region becomes large as the order increases from 0:65 to
0:99. In order to obtain the order of chaos appears firstly
in the map (10), a bifurcation diagram with the variation
of the order in the interval ½0:6, 0:65� and parameter δ is
plotted in Figure 2(b). It is clear that the map (10) is periodic
when q < 0:62 and is chaotic when q ≥ 0:62. Based on this,
we can get the total order for the map (10) to remain chaos
that is 1:24. The phase diagrams of map (10) with initial
conditions ðx0, y0Þ = ð0:1, 0Þ and ðx0, y0Þ = ð−0:1, 0Þ belong-
ing to different basins of attraction are plotted in Figure 3, in
which the parameter δ increases from 0:30 to 0:60, and the
order is taken as 0:95. Typical Hopf bifurcation can be
observed from Figures 3(a) and 3(b). The two limit cycles
become large as δ increases (Figure 3(c)). When δ = 0:60,
the two attractors merge into a chaotic one, see Figure 3(d).

Secondly, the parameter δ is chosen as 0:75, and the
intervals of γ and the order are ½0:2, 1:3� and ½0:7, 0:99�,

respectively. Bifurcation of the map (10) when the parameter
γ and the order q are varied is displayed in Figure 4(a). The
region of chaos becomes large as the order increases from
0:65 to 0:99. A bifurcation diagram with the variation of
the order in the interval ½0:70, 0:75� and parameter γ is plot-
ted in Figure 4(b) to show the appearance of chaos in the
map at the first time. It is clear that the map (10) is periodic
when q < 0:74 and is chaotic when q ≥ 0:74. Therefore, the
total order of the map (10) to remain chaos is 1:48 in this
case.

From Figures 2 and 4, we can see clearly that the route
leading to chaos for map (10) is Hopf bifurcation. The Hopf
bifurcation points (HPFs for short) for different values of the
order q are listed in Table 1. It is clear that HPFs decrease as
the order increases. An example is taken to show the Hopf
bifurcation when the order q = 0:95. Map (10) converges to
a fixed point for δ = 0:46 (Figure 5(a)) and to a limit cycle
for δ = 0:47 (Figure 5(b)).

4.2. Bifurcations of Map (11). In this subsection, bifurcations
of the incommensurate-order discrete Lorenz map which is
corresponding to the difference equations (11) will be stud-
ied. Parameter γ is fixed as 1.25 and order q2 = 1, and the
interval of δ is ½0:2, 1�. Figure 6(a) is the bifurcations of
map (11) when δ and q1 are varied. We can see that
period-doubling and Hopf bifurcations occur when the
parameter and the order are varied. The chaos region
becomes large as the order increases from 0:4 to 0:99. From
Figure 6(b), we can see that map (11) is periodic for q1 <
0:45 and chaotic for q1 ≥ 0:45. Then, the total order for
map (11) to remain chaos is 1:45 in this case.

Secondly, the order q1 is fixed as 1, and the interval of q2
is taken as ½0:35, 0:99�. The bifurcations with the variation of
the parameter δ and the order q2 are shown in Figure 7. It
can be seen that that the region of chaos becomes large as
the order increases from 0:35 to 0:99. We can determine that
the total order for map (11) to remain chaos is 1:4 based on
Figure 7(b).
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Figure 1: The chaotic attractor of map (10).
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Figure 2: The bifurcation diagrams of map (10) when δ and q are varied. (a) q ∈ ½0:6, 0:99�. (b) q ∈ ½0:6, 0:65�.
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Figure 3: Phase diagrams of map (10) with different initial conditions ðx0, y0Þ = ð0:1, 0Þ and ðx0, y0Þ = ð−0:1, 0Þ. (a) δ = 0:30. (b) δ = 0:50. (c)
δ = 0:55. (d) δ = 0:60.
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5. Chaos Control

In this section, chaos control for map (10) will be analyzed.
Firstly, map (10) with controllers is the follows:

CΔq
bx tð Þ = 1 + γδð Þx t − 1 + qð Þ − δy t − 1 + qð Þx t − 1 + qð Þ − x t − 1 + qð Þ + u1 t − 1 + qð Þ,

CΔq
by tð Þ = 1 − δð Þy t − 1 + qð Þ + δx2 t − 1 + qð Þ − y t − 1 + qð Þ + u2 t − 1 + qð Þ,

(

ð14Þ

where u1 and u2 denote the chaos controllers.

Theorem 3. If the controllers are taken as the following form,

u1 t − 1 + qð Þ = − 1 + γδð Þx t − 1 + qð Þ + δy t − 1 + qð Þx t − 1 + qð ÞÞ,
u2 t − 1 + qð Þ = − 1 − δð Þy t − 1 + qð Þ − δx2 t − 1 + qð Þ,

(

ð15Þ

then the chaotic behavior of map (10) can be controlled.

Proof. By substituting (15) into (14), then map (14) can be
rewritten as

CΔq
bx tð Þ = −x t − 1 + qð Þ,

CΔq
by tð Þ = −y t − 1 + qð Þ:

(
ð16Þ

The compact form of map (16) is

CΔq
b x tð Þ, y tð Þð ÞT = B × x t − 1 + qð Þ, y t − 1 + qð Þð ÞT, ð17Þ

where B =
−1 0

0 −1

 !
. The eigenvalues of B satisfy jarg λi

j = π and jλij = 2q, for i = 1, 2. It means that the chaotic
behavior of map (10) can be controlled to the zero equilib-
rium based on Theorem 1.

The system parameters are fixed as γ = 1:25, δ = 0:75 and
order q = 0:99. Map (10) is stabilized by using the controllers
when the iteration n = 1000, see Figure 8. We can see clear
that xðnÞ, yðnÞ converge to zero as time n toward to 2000.

6. Adaptive Synchronization

In here, adaptive synchronization for the Lorenz map in
fractional form will be studied. Firstly, map (10) is chosen
as the drive system and is rewritten as follows

CΔq
bx1 tð Þ = γδx1 t − 1 + qð Þ − δy1 t − 1 + qð Þx1 t − 1 + qð Þ,

CΔq
by1 tð Þ = δ −y1 t − 1 + qð Þ + x1

2 t − 1 + qð Þ� �
:

(

ð18Þ

The response system with synchronization controllers
uxðt − 1 + qÞ and uyðt − 1 + qÞ is designed as the following
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Figure 4: Bifurcation diagrams of map (10) when γ and q are varied. (a) q ∈ ½0:7, 0:99�. (b) q ∈ ½0:7, 0:75�.

Table 1: Hopf bifurcation points of map (10) for different values of
q.

q δ q δ

0.60 — 0.75 0.75

0.61 — 0.80 0.68

0.62 0.98 0.85 0.60

0.63 0.97 0.90 0.54

0.64 0.95 0.95 0.47

0.65 0.93 0.99 0.42

0.70 0.84
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Figure 5: Phase diagrams of map (10) for q = 0:95. (a) δ = 0:46. (b) δ = 0:47.
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Figure 6: The bifurcation diagrams of map (11) when δ and q1 are varied. (a) q1 ∈ ½0:4, 0:99�. (b) q1 ∈ ½0:43, 0:45�.
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Figure 7: The bifurcation diagrams of map (11) when δ and q2 are varied. (a) q2 ∈ ½0:35, 0:99�. (b) q2 ∈ ½0:35, 0:4�.
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form:

CΔυ
bx2 tð Þ = γδx2 t − 1 + qð Þ − δy2 t − 1 + qð Þx2 t − 1 + qð Þ + ux t − 1 + qð Þ,

CΔυ
by2 tð Þ = δ −y2 t − 1 + qð Þ + x2

2 t − 1 + qð Þ� �
+ uy t − 1 + qð Þ:

(

ð19Þ

The error state variables of the synchronization are
defined as

e1 t − 1 + qð Þ = x2 t − 1 + qð Þ − x1 t − 1 + qð Þ,
e2 t − 1 + qð Þ = y2 t − 1 + qð Þ − y1 t − 1 + qð Þ:

(
ð20Þ

It is well known that if the two error states variables con-

verge to 0 as the time t tends to infinity, then maps (18) and
(19) is synchronized under the controllers.

Theorem 4. The synchronization between two maps (18) and
(19) is realized if the controllers are designed as follows:

ux t − 1 + qð Þ = δy2 t − 1 + qð Þ − γδ − 1ð Þe1 t − 1 + qð Þ + δx1 t − 1 + qð Þe2 t − 1 + qð Þ,
uy t − 1 + qð Þ = δ − 1ð Þe2 t − 1 + qð Þ − δ x2 t − 1 + qð Þ + x1 t − 1 + qð Þð Þe1 t − 1 + qð Þ:

(

ð21Þ

Proof. We can obtain the error system via simple
computation

0 500 1000 1500 2000
n

–3

–2

–1

0

1

2

3
x

(a)

0 500 1000 1500 2000
n

–1

0

–1

2

3

4

5

y

(b)

Figure 8: The controlled results for map (10). (a) The state variable x with n (b) the state variable y with n.
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Figure 9: The synchronization results. (a) e1ðnÞ with n. (b) e2ðnÞ with n.
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By substituting the controllers (21) into (22), error
dynamical system can be determined as the following:

CΔq
ae1 tð Þ = −e1 t − 1 + qð Þ,

CΔq
ae2 tð Þ = −e2 t − 1 + qð Þ:

(
ð23Þ

For the convenience of analysis, we give the compact
form of system (23)

CΔq
a e1 tð Þ, e2 tð Þð Þ = C × e1 t − 1 + qð Þ, e2 t − 1 + qð Þð ÞT, ð24Þ

where C =
−1 0

0 −1

" #
. Matrix C satisfies the stability condi-

tion

λij j < 2 cos
arg λij j − π

2 − q

� �q

and arg λij j > qπ
2
, i = 1, 2: ð25Þ

Therefore, synchronization between maps (18) and (19)
is realized based on Theorem 1. In other words, the equilib-
rium point of (23) is asymptotically stable.

In here, parameters are fixed as γ = 1:25, δ = 0:75 and
order q = 0:99. The initial conditions of maps (18) and (19)
are chosen as ð0:2, 0:1Þ, ð0:7, 0:3Þ. The synchronization
results are plotted in Figure 9, from which we can see that
e1 and e2 converge to zero rapidly as n towards to 300.

7. Conclusions

A fractional-order discrete Lorenz map is analyzed in this
paper. Bifurcations of the map in commensurate-order and
incommensurate-order cases are studied. The bifurcation
diagrams in a three-dimension space are shown when a
derivative order and a parameter are varied. Hopf and
periodic-doubling bifurcations can be observed. Based on
the analysis, parameter values of Hopf bifurcation points
are determined with different orders. We can conclude that
the critical values of the parameter decreases as the order
increases. It is very important for us to observe the dynami-
cal evolution of the map with the variation of an order and a
system parameter. It is worth mentioning that it is the first
time to show the dynamics of the fractional-order Lorenz
map in a three-dimension space, from which we can see that
the order is a very important parameter which affects the
dynamics of a fractional-order map. Therefore, the map with
an order has more extensively parametric space and abun-
dant dynamics. Meanwhile, it is very important for the

application of the map in secure communications and
encryption. Chaos control and synchronization for the
fractional-order discrete Lorenz map are studied through
designing the suitable controllers. The effectiveness of the
controllers is illustrated by numerical simulations. From
the results, we can also see that a high speed of stabilization
and synchronization is obtained.
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