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This study retrieves some new exact solutions to the ð2 + 1Þ-dimensional Calogero-Bogoyavlenskii-Schilf (CSB) equation and
regularized long wave (RLW) equation in the context of nonlinear traveling wave phenomena. In this regard, the advanced exp
ð−φðξÞÞ-expansion method is imposed to the ð2 + 1Þ-dimensional CBS and RLW equation, and consequently, rogue, kink,
singular kink, periodic, singular, and multiple soliton solutions are exhibited in terms of trigonometric, hyperbolic, and rational
function solutions. To enucleate the underlying nonlocalized traveling wave features, accomplished exact solutions are
established by making their dynamic behavior of the exact solutions exhibited in three-dimensional (3D) and two-dimensional
(2D) combined chart with the help of computational software Maple 18. All of our accomplished solutions are claimed to be
new in the sense of conformable derivative, chosen a unique fractional type wave transformation, dynamical behavior of
fractionally and free variable, and the imposed method on our preferred equations.

1. Introduction

Most of the physical problems are now formatted into math-
ematical schemes through partial differential equations
(PDEs). In recent years, calculus of fractional nonlinear dif-
ferential condition is one of the rising concern of nonlinear
dynamics as well as plays an eventual role in real-life prob-
lems such as plasma physics [1], quantum mechanics [2],
fluid mechanics [3], optical fibers [4], and other fields of
applied mathematics and engineering. Calculus of fractional
derivative is the generality of the traditional order of integra-
tion and differentiation and a conventional technique for
demonstrating complex physical behavior, especially of the
nonlinear mathematical science of engineering and physics.

In the recent past, nonlinear fractional partial differential
equations (FPDEs) have been inventing a potential platform
for the researchers to interpret the tangible phenomena. As a
result, some significant, concise, and original methods have
been explored and explain to exact closed solutions of non-
linear FPDEs, videlicet, namely, the Hirota bilinear method
[5, 6], modified extended tanh-function method [7], ðG′/G
Þ-expansion method [8], fractional subequation method
[9], modified trial equation method [10], advanced exp ð−φ
ðξÞÞ method [11], tan ð−φðξÞÞ-expansion method [12], and
improved Kudryashov method [13]. Recently, some
researchers, like, Ferdous et al. [14], attained exact wave
solutions to the extended Zakharov–Kuzetsov equation by
implementing the generalized exp ð−φðξÞÞ-expansion
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method. Alike, adopting the exp ð−φðξÞÞ-expansion modi-
fied technique, Khater [15] has established three different
types of nonlocalized traveling wave solutions to the general-
ized Hirota-Satsuma (HS) couple KdV system. Encouraged
by ongoing research on related topics, we extract the recent
and more common precise solitary wave solutions to some
nonlinear FPDEs, described earlier by proposing the
advanced method of exp ð−φðξÞÞ-expansion, which can be
considered the generalization of the generalized form of
exp ð−φðξÞÞ-expansion [16].

Our current study mainly explores the dynamical
changes of conformable time-fractional ð2 + 1Þ-dimen-
sional CSB equation [17] and regularized long wave (RLW)
equation by employing the new progressive exp ð−φðξÞÞ
-expansion technique. Recent past, Rahman et al. [18]
imposed this technique on some nonfractional NLEEs, but
they did not show any productive concept to conformable
nonlinear time fractional sense of NPEEs. We decisively
believe that our stated advanced exp ð−φðξÞÞ modified
method will be frolicked a significant role in investigating
the traveling wave arrangements of nonlinear science and
mathematical physics. Here it is significant to note that our
stated fractional equations are in a conformable sense so
we have converted our equations in fractional form.

Consider the following generalized ð2  + 1Þ-dimen-
sional CBS conditions [19–22].

ut + ϕ uð Þuy = 0, ϕ uð Þ = ∂x
2 + au + bux∂x

−1, ð1Þ

or equivalently

ut + uxxy + auuy + bvx∂x
−1vy = 0, ð2Þ

where ∂x
−1 = Ð f dx and a and b are two parameters. If we

put dimensional exchange, ∂x = ∂y, then Equation (2)
changes into a standard (KdV) equation. From there, Equa-
tion (2) can be written in the potential time fractional for-
mation of ð2 + 1Þ-dimensional CBS equation [17] with a
conformable sense.

uxN
θ
t u + 4uxuxy + 2uxxuy + uxxy = 0, t > 0, x, y ∈ R, ð3Þ

where the coefficient of u and its higher derivative term is
called the free variable and θ is a time derivative fractional-
order parameter with an interval 0 < θ ≤ 1.

Bogoyavlenskii and Schilf firstly originate this CBS equa-
tion in numerous ways [23]. For full possible indispensable
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Figure 1: Dynamical behavior of function solution of u1ðx, y, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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conditions, three effective procedures, to be specific the
Backlund change strategy, the reverse Scaterin Scheme, and
Hirota’s bilinear approach [24–26], were minutely con-
nected to get the precise arrangements of these equations.
The CBS equation is resolved in numerous aspects of water
wave mechanics, ocean science, nonlinear science, engineer-
ing mathematics, etc., under specific authoritative tech-
niques such as the modified simple equation scheme, the
Sin-Gordan expansion technique, the unified method, and
the ðG′/GÞ-expansion technique. [27–30]. To the best of
our knowledge, our proposed advanced- exp ð−φðξÞÞ expan-
sion technique is not utilized yet to find the exact solutions
of CBS equation with the concept of conformable derivative.
Now we consider the time fractional regularized long wave
(RLW) equation [31].

Nθ
t u + ux + α u2

� �
x
− uxxN

θ
t u = 0, t > 0, α, β ∈ R, ð4Þ

where 0 < θ ≤ 1.

The RLW equation is a particular class of nonlinear con-
formable fractional equations that generates fruitful models
for predicting the water wave and physical phenomena
[32]. Many authoritative approaches have been the subject
of investigating the RLW equation, such as the Fourier
leap-frog method [33], finite difference method [34], Hirota
direct method approach [35], and modified extended tanh
method [36]. Whereas so far we know, with the sense of con-
formable derivative, there is no prolific results have not yet
been established about our declared technique to simplify
the RLW equation. The exact wave solutions of RLW equa-
tion we attained are completely new in respect of our men-
tioned method.

Recently, Ferdous et al. [14] proposed a generalized exp
ð−φðξÞÞ-expansion method by choosing the auxiliary ODE
of the form φ′ðξÞ − λ exp ðφðξÞÞ − μ exp ð−φ ðξÞÞ = r. In
our mentioned method, we take the auxiliary nonlinear
ODE of the form φ′ðξÞ − λ exp ðφ ðξÞÞ − μ exp ð−φ ðξÞÞ =
0 by setting r = 0. Here λ and μ are real type parameters,
and reasonably, our said supplementary form affords much
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Figure 2: Dynamical behavior of function solution of u2ðx, y, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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better complete solutions to the FPDEs as well as has a more
comprehensive operational physical explanation than the
findings of Ferdous et al. [14]. The important favor of our
specified technique over the other approaches [15, 18] is that
it provides some straight and succinct form of new exact
wave solution, as well as it is very useful, well-organized,
and responsive applicable in presenting of exact and explicit
wave solutions to NPDEs, arises in science, mathematical
physics, and engineering.

We have employed successfully the exp ð−φðξÞ method
on CBS and RLW equations to treasure the meticulous trav-
eling wave solutions which have not appeared beforehand in
publications.

We believe that our discoveries might be used to com-
puter simulations of water waves in shallow water, to the
study of the propagation of small amplitude long waves on
the surface of shallow water, and to the advancement of sci-
entific knowledge. Theoretical physicists, applied mathema-
ticians, and ocean engineers who are interested in the
precise solutions to moving rogue waves should all find this
paper to be of interest. When this project is successfully
completed, it may be possible to forecast the sea level of a
coastal area during natural catastrophes. Low pressure sys-
tems like cyclones are the main culprits in natural disasters.

The paper’s structure is as follows: the conformable
derivative’s narration and its elementary possessions are
given in Section 2. The advanced exp ð−φðξÞÞ expansion
scheme has been outlined in Section 3. In Section 4, we apply
this approach to the time-fractional ð2 + 1Þ-dimensional
equation of CBS and RLW. The findings and the debate
are discussed in Section 5, and the conclusions are provided
in Section 6.

2. Inceptions and Procedures

2.1. Definition and Some Features of Conformable Fractional
Derivative. Khalil et al. [37] primarily exposed the sense of
conformable derivative with a limit operator.

Definition 1. If f : ð0,∝Þ⟶R, then the conformable deriv-
ative with the fractional sense of f order δ is defined as

Tδ
t f tð Þ = lim

ε⟶0

f t + ε t1−δ
� �

− f tð Þ
ε

 !
for all t > 0, 0 < δ ≤ 1:

ð5Þ

Later, in the fractional-order method, Abdeljawad [38]
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Figure 3: Dynamical behavior of function solution of u3ðx, y, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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also discussed chain law, Gronwall’s inequality, exponential
functions, definite and infinite component integration, Tay-
lor power series expansions, and Laplace transform con-
formable derivative. The difficulty of exiting the modified
Riemann-Liouville derivative description [39] will efficiently
resolve the concept of a conformable fractional-order
derivative.

Theorem 2.
Let ω ∈ ð0, 1� and f = f ðtÞ, g = gðtÞ be ω-conformably dif-

ferentiable at a point t > 0; then,

(i) Tω
t ðcf + dgÞ = cTω

t f + dTω
t g, for all c, d ∈R

(ii) Tω
t ðtγÞ = γ tγ−ω, for all γ ∈R

(iii) Tω
t ð f gÞ = gTω

t ð f Þ + f Tω
t ðgÞ,

(iv) Tω
t ð f /gÞ = gTω

t ð f Þ − f Tω
t ðgÞ/g2

Moreover, if the function f is differentiable, then Tω
t ð f

ðtÞÞ = t1−ωdf /dt.

Theorem 3. Consider f : ð0, ωÞ⟶ R be a real type function
such that f is differentiable and ω-conformable derivable.
Also, assume that g be a derivable function well-defined in

the range of f . Then, we have Tω
t ð f ogÞðtÞ = t1−ωgðtÞω−1g′ðt

ÞTω
t ð f ðtÞÞt=gðtÞ, where prime indicates the simple derivatives

with respect to the point t.

In this research, we have careful about the preferred
equation with the concept of conformable-based derivative.
In circumstance of basic calculus, numerous functions do
not expand Taylor’s power-order illustrations on specific
points but in the technique of conformable-order derivative,
they do consume the existence. CD accomplishes good in the
product and chain rule while complicated plans appear in
logic of basic fractional geometry. The CD of a constant type
function is correspondent to zero wherever it is not the topic
for Riemann derivative of fractional order. Mittag Leffler
functions show a noteworthy authoritative in fractional-
order calculus as interpretation to exponential function
where the fractional-order form of exponential type function
of the form f ðtÞ = eðtα/αÞ seems in circumstance of CD.

3. Overview of the Method

In this division, we have considered our proposed advanced
exp ð−φ ðξÞÞ-expansion scheme stepwise in brief. Assume a
nonlinear time-fractional NPD equation in subsequent
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Figure 4: Dynamical behavior of function solution of u4ðx, y, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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form,

R Π,Πx, Tθ
tΠ, Πxx, T2θ

tt Π, Πxxx,⋯⋯
� �

= 0, ð6Þ

where Π =Πðx, tÞ is defined as an unknown type function
and R denotes the polynomial of Π. It is a diverse type of
PD, in through the nonlinear segment and the uppermost
order of differential are involved.

Step 1. We deliberate a traveling variable for transferring the
mentioned equation to nondimensionality. We alter all self-
governing variable into a single variable, by the following
way.

Π x, tð Þ = u ξð Þ, ξ = k
xη

η
±V

tθ

θ
: ð7Þ

By employing mentioned variable, Equation (7) allows

us in dropping Equation (6) in ODE for Πðx, tÞ = uðξÞ in
the type

P :⋯, u‴, u″, u′, u,
� �

= 0: ð8Þ

Step 2. Let us consider that a polynomial can begin the solu-
tion of OD Equation (8) in the

exp −φ ξð Þð Þ as u = 〠
N

i=0
Ai exp −φ ξð Þð Þi, AN ≠ 0: ð9Þ

Here N is the positive integer, which can be integrated by
consistency of the highest order of derivatives to the highest
order of nonlinear portions, performed in Equation (8).
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Figure 5: Dynamical behavior of function solution of u5ðx, y, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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Also, the differential of φðξÞ satisfies ODE in the subse-
quent form

φ′ ξð Þ − μ exp −φ ξð Þð Þ − λ exp φ ξð Þð Þ = 0, ð10Þ

and then, the function solutions of ODE Equation (8) are of
the form.

Case 1. The function solutions are hyperbolic (when λμ < 0):

φ ξð Þ = ln
ffiffiffiffiffiffi
λ

−μ

s
tanh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � !
,

φ ξð Þ = ln
ffiffiffiffiffiffi
λ

−μ

s
coth

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � !
:

ð11Þ

Case 2. The function solutions are trigonometric (when λμ

> 0):

φ ξð Þ = ln
ffiffiffi
λ

μ

s
tan

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � !
,

φ ξð Þ = ln −

ffiffiffi
λ

μ

s
cot

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � !
:

ð12Þ

Case 3. When μ > 0 and λ = 0,

φ ξð Þ = ln 1
−μ ξ + Cð Þ
� �

: ð13Þ

Case 4. When μ = 0 and λ ∈R,

φ ξð Þ = ln λ ξ + Cð Þð Þ, ð14Þ

where C is defined as constant, λμ < 0 , or λμ > 0 is con-
ditional on the symbol of μ.
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Figure 6: Dynamical behavior of function solution of u6,7ðx, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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Step 3. By submitting Equation (9) into Equation (8) and
finally consuming Equation (6), assemble all like term of
order of exp ð−qφ ðξÞÞ, q = 0, ±1, ±2,±3, ::⋯ prearranged;
then, we achieve a polynomial form of exp ð−qφ ðξÞÞ and
connecting each coefficient of the gotten polynomial corre-
sponding to zero, yields system of algebraic equations (SAE).

Step 4. Assume the constants’ determination be attained as
one or more results by determining the mathematical condi-
tions in phase 3. Putting the constant designs laterally with
the measures for Equation (7), from the evaluation equation,
we can attain up-to-date, extensive, and exhaustive dynamic
wave propagation (6).

4. Application of the Suggested Method

4.1. Application of ð2 + 1Þ CBS Equation. Consider the non-
linear time-fractional CBS equation in a conformable sense

as follows (see, for example, [17]):

uxN
θ
t u + 4uxuxy + 2uxxuy + uxxxy = 0, t > 0 and x, y ∈ R:

ð15Þ

Here θ is a fractional parameter in a conformable sense
with the interval 0 < θ ≤ 1. Here Nθ

t u is conformable time
fractional derivative of order θ. ux and uy are dispersive
terms, where

u x, y, tð Þ = u ξð Þ, ξ = x + y −w
tθ

θ
: ð16Þ

Now using this voyaging wave variable ξ = x + y −wðtθ/
θÞ into Equation (15) and integrating with respect to ξ, we
get the following transformation form of ordinary
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Figure 7: Dynamical behavior of function solution of u8,9ðx, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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differential equations with the value u = uðξÞ.

−wu′ + α + β

2

� �
u′
� �2

+ u‴ = 0, ð17Þ

where primes indicate the differentiating with respect to ξ.
Now with the virtue of the homogeneous balancing

method of u‴ and ðu′Þ2, we get the value of N as 1. As a
result, Eq.(9) will term into the following form:

u ξð Þ = A0 + A1 exp −φ ξð Þð Þ: ð18Þ

Hereafter differentiating Equation (18) regarding ξ and
putting the value u, u′, u‴ into Equation (17), we obtain
the same polynomial set.

Finally, equating the coefficients e−iϕðξÞ equal to zero
where i = 0, ±1, ±2,±3,⋯⋯ , we get some system of equa-

tions as follows.

1
2A1

2βμ2 + 1
2A1

2αμ2 +wA1μ − 2A1λμ
2 = 0,

αλμA1
2 + βλμA1

2 − 8λ2μA1 + λwA1 = 0,

−6A1λ
3 + 1

2A1
2βλ2 + 1

2A1
2αλ2 = 0:

ð19Þ

Now solving the system of equations, we get one set of
solutions.

Set 1

w = −4λμ, A0 = A0, A1 =
12λ
α + β

: ð20Þ

Case 1. When λμ < 0, the following solutions are obtained
for hyperbolic functions:
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Family 1

where, ξ = x + y + 4λμwðtθ/θÞ. Family 2

where ξ = x + y + 4λμðtθ/θÞ:
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Figure 9: Dynamical behavior of function solution of u12,13ðx, tÞ. (a, b) 3D plot and (c) 2D combined stripe plot for x = 1.

u1 x, y, tð Þ =
A0 + 12λ cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �
+ sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �� �
α + βð Þ

ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �
+ cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �� � , ð21Þ

u2 x, y, tð Þ = A0 +
12λ sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �
+ cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �� �
α + βð Þ

ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
cosh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �
+ sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ

� �
sinh

ffiffiffiffiffiffiffiffiffi
−λμ

p
C

� �� � , ð22Þ
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Case 2. The function solutions are trigonometric when λμ
> 0.

Family 1

u3 x, y, tð Þ = A0 +
12λ

α + βð Þ
ffiffiffiffiffiffiffi
λ/μ

p
tan

ffiffiffiffiffiffi
λμ

p
C

� �
+ tan

ffiffiffiffiffiffi
λμ

p
ξ

� �� �

−
12λ tan

ffiffiffiffiffiffi
λμ

p
C

� �
tan

ffiffiffiffiffiffi
λμ

p
ξ

� �� �
α + βð Þ

ffiffiffiffiffiffiffi
λ/μ

p
tan

ffiffiffiffiffiffi
λμ

p
C

� �
+ tan

ffiffiffiffiffiffi
λμ

p
ξ

� �� � ,
ð23Þ

where ξ = x + y + 4λμðtθ/θÞ.
Family 2

u4 x, y, tð Þ = A0 −
12λ cot

ffiffiffiffiffiffi
λμ

p
C

� �
α + βð Þ

ffiffiffiffiffiffiffi
λ/μ

p
−1 + cot

ffiffiffiffiffiffi
λμ

p
C

� �
cot

ffiffiffiffiffiffi
λμ

p
ξ

� �� �

−
12λ cot

ffiffiffiffiffiffi
λμ

p
ξ

� �
α + βð Þ

ffiffiffiffiffiffiffi
λ/μ

p
−1 + cot

ffiffiffiffiffiffi
λμ

p
C

� �
cot

ffiffiffiffiffiffi
λμ

p
ξ

� �� � ,
ð24Þ

where ξ = x + y + 4λμðtθ/θÞ:

Case 3. When μ > 0 and λ = 0, the solution is not sufficient,
so we can neglect this case.

Case 4. u5ðx, y, tÞ = A0 + 12/ðα + βÞðξ + CÞ, where, ξ = x + y
and C is an arbitrary constant.

4.2. Application of RLW Equation. In this section, we applied
our mentioned method to the time-fractional RLW equation
as follows [31].

Nt
θu + ux + α u2

� �
x
− βuxxNt

θu = 0, t > 0 and x, y ∈ R:
ð25Þ

Here θ is the fractional constant with the interval 0 < θ
≤ 1, where

u x, tð Þ = u ξð Þ,

ξ =mx + n
tθ

θ
:

ð26Þ

By utilizing this wave variable of Equation (26) into
Equation (25) and integrating with respect to ξ, we get this
ordinary differential equation form.

n +mð Þ u + α u2 − βm2n2u″ = 0, ð27Þ

where u′ represents the differentiating of u with respect to ξ.
With the homogeneous balancing of the highest order

nonlinear term u2 and the highest linear term u″, we find
the value of N2. As an outcome, ?added value="

Eq.(9)"?>can be written in the following form.

u ξð Þ = A0 + A1 −φ ξð Þð Þ + A2 −φ ξð Þð Þf g2: ð28Þ

Hereafter, we differentiate Equation (28) regarding ξ and
putting the required value u, u2, u″ in Eq.(17).

Therefore, we finally get some polynomials and equate
the coefficients e−iϕðξÞ equal to zero, where i = 0, ±1, ±2,±3,
⋯⋯ , and we get some system of equations as follows.

−2βm2n2A2μ
2 + αA0

2 +mA0 + nA0 = 0,
−2β λm2μ n2A1 + 2αA0A1 +mA1 + nA1 = 0,

−8β λm2μ n2A2 + 2αA0A2 + αA1
2 +mA2 + nA2 = 0,

−2βλ2m2n2A1 + 2αA1A2 = 0,
−6β λ2m2n2A2 + αA2

2 = 0:
ð29Þ

Now by solving this system of equations, we find two sets
of solutions as below.

Set 1

m = ± 1
8
±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β nλμ n2 + 1

p
/βλμ n2

α
,

m = n,

A0 =
1
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β nλμ n2 + 1

p
/β λμ n2

� �
+ n

α
,

A1 = 0,

A2 =
3
2

±1/8 ±1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β n3λμ + 1

p
/βλμ n2

� �
+ n

� �
λ

μ α
:

ð30Þ

Set 2

m = ± 18
±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β nλμ n2 + 1

p
/β λμ n2

α
,

A0 = −
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β n3μλ + 1

p
/βλμ n2

� �
+ n

α
,

A2 = −
3
2

±1/8 ±1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β nλn2 + 1

p
/β λμ n2

� �
+ n

� �
λ

μ α
:

ð31Þ

Case 1. when λμ < 0, the following solutions are obtained for
hyperbolic functions:

Set 1.
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Family 1

u6,7 x, tð Þ = 1
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16βλμ n3 + 1

p
/βλμ n2 + n

�
α

+ A1ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
tanh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �

−
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16βλμ n3 + 1

p
/βλμ n2

� �
+ n

α tanh
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �2 ,

ð32Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/θÞ.

Family 2

ξ = ± 18
±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
β λμ n2

x + n
tθ

θ
:ξ = ± 18

±1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16βλμ n3 + 1

p
β λμ n2

x + n
tθ

θ
,

u8,9 x, tð Þ = 1
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α

+ A1ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
coth

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �

−
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α coth
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �2 ,

ð33Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/θÞ.
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Figure 10: Dynamical behavior of function solution of u14,15ðx, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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Set 2
Family 1

u10,11 x, tð Þ = −
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/βλμ n2

� �
+ n

α

+ A1ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
tanh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �

+ 3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16βλμ n3 + 1

p
/β λμ n2

� �
+ n

α tanh
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �2 ,

ð34Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/θÞ.

Family 2

u12,13 x, tð Þ = −
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16βλμ n3 + 1

p
/βλμ n2

� �
+ n

α

+ A1ffiffiffiffiffiffiffiffiffiffi
−λ/μ

p
coth

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �

+ 3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16βλμ n3 + 1

p
/βλμ n2

� �
+ n

α coth
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� �2 ,

ð35Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/θÞ.

Case 2. The function solutions are trigonometric when λμ
> 0.

Set 1
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Figure 11: Dynamical behavior of function solution of u16,17ðx, tÞ. (a, b) 3D plot and (c) 2D combined stripe plot for x = 1.
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Family 1

u14,15 x, tð Þ = 1
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α

+ A1ffiffiffiffiffiffiffi
λ/μ

p
tan

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �

+ 3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α tan
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �2 ,

ð36Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/θÞ

.
Family 2

u16,17 x, tð Þ = 1
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α

−
A1ffiffiffiffiffiffiffi

λ/μ
p

cot
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �

+ 3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α cot
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �2 ,

ð37Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16βλμ n3 + 1

p
/βλμ n2Þx + nðtθ/θÞ.

Set 2
Family 1

u18,19 x, tð Þ = −
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α

+ A1ffiffiffiffiffiffiffi
λ/μ

p
tan

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �

−
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α tan
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �2 ,

ð38Þ

where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/β λμ n2Þx + nðtθ/

θÞ.
Family 2

u20,21 x, tð Þ = −
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/β λμ n2

� �
+ n

α

−
A1ffiffiffiffiffiffiffi

λ/μ
p

cot
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �

−
3
2
±1/8 ±1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16βλμ n3 + 1

p
/βλμ n2

� �
+ n

α cot
ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� �2 ,

ð39Þ
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Figure 12: Dynamical behavior of function solution of u18,19ðx, y, tÞ. (a, b) 3D plot view representation and (c) 2D combined plot for x = 1,
respectively.

14 Advances in Mathematical Physics



where ξ = ±1/8ð±1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−16β λμ n3 + 1

p
/βλμ n2Þx + nðtθ/

θÞ.

5. Results and Discussion

Physical and graphical representation of newly established
solutions of the ð2 + 1Þ-dimensional CBS and RLW equation
will be well-defined in this segment. Pictorial representation
is the absolute means of envisioning the complete tangible
sense of real-life concerns. We also showed the graphical
depiction of our resultant solutions exhausting the computa-
tional Maple features to designate the fractional-order deriv-
ative by selecting suitable fractional values of θ. We have
assigned specific high costs to the unidentified parameters
to envision the consequent solutions’ natural features. The
established equations are presented in Figures 1–13, which
have been designed.

5.1. Physical Explanation. This subsection will focus on the
physical elucidation of the ð2 + 1Þ-dimensional CBS and
RLW equation exact solutions by utilizing the advanced
exp ð−φðξÞÞ-expansion scheme. The attained solutions u1ðx
, y, tÞ, u2ðx, y, tÞ, , u8,9ðx, tÞ, u10,11ðx, tÞ, and u12, 13ðx, tÞ are
hyperbolic function solutions, u3ðx, y, tÞ, u4ðx, y, tÞ, u14,15ðx
, tÞ, u6,7ðx, tÞu16,17ðx, tÞ, u18,19ðx, tÞ, and u20,21ðx, tÞ are trigo-

nometric function solutions, and u5ðx, tÞ is an algebraic
solution. Figures 1–5 are presented from CBS equation.
Figures 6–13 are from the RLW equation. In every set of fig-
ures, we have changed the free parameter of our preferred
equation and fractional-order derivative θ = 0:25 to 1 with
other suitable parameters to show the dynamical behavior
of attained solutions. Figure 1 represents the singular soliton
shape u1ðx, y, tÞ for the fractional value θ = 0:25 with the
suitable parameters λ = 3, μ = −2, C = −0:5, A = 1, α = 1,
and β = 1; with the change of fractional parameter, θ = 0:25
to 1, the solution shape changes its amplitude and size only,
but there have no changes for the variety of free parameters
α and β. Figure 2 represents the bright soliton solution shape
u2ðx, y, tÞ for the fractional value θ = 0:25 with the suitable
parameters λ = 3, μ = −2, C = −0:5, A = 1, α = 1, and β = 1.
With the change of fractional parameter, θ = 0:25 to 1, the
solution shape turns into the dark soliton shape. Here for
the evolution of free parameters α and β, the solution shape
changes its amplitude and size only. Figures 3 and 4 repre-
sent the periodic singular solution shape u3ðx, y, tÞ and u4ð
x, y, tÞ for the fractional value θ = 0:25 with the suitable
parameters. With the variety of fractional parameters θ =
0:25 to 1 and free parameters, the solution has no dynamical
change but only its amplitude and size. Figure 5 represents
the singular soliton solution shape u5ðx, y, tÞ for the
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Figure 13: Dynamical behavior of function solution of u20,21ðx, tÞ. (a, b) 3D plot and (c) 2D combined plot for x = 1.
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fractional value θ = 0:25 with the suitable parameters λ = 2,
μ = 0, C = −0:5, A = 1, α = 1, and β = 1. With the variety of
fractional parameters θ = 0:25 to 1 and free parameters, the
solution has no dynamical change. Figures 6–9 belong to
the set-1 solution set, and Figures 10–13 belong to the set-
2 solution set of the RLW equation. Figure 6 represents the
two soliton solution shape of u6ðx, tÞ for the fractional value
θ = 0:25 with the suitable parameters λ = 3, μ = −0:2, C = −
0:5, n = −0:4, α = 6, and β = 10. With the variety of fractional
parameters, θ = 0:25 to 1, the two-soliton shape turns into
the one-soliton shape and has no change with free parame-
ters. Figure 7 represents the one-soliton solution shape u7ð
x, tÞ for the fractional value θ = 0:25 with the right parame-
ters λ = 3, μ = −0:2, C = −0:5, n = −0:4, α = 6, and β = 10.
Shape moves to W-shaped solution shape for the transfor-
mation of fractional-order derivative θ = 0:25 to 1. Herewith,
with the change of free parameters α and β, the solution
shape changes its amplitude and size only. Figures 8 and 9
represent the singular soliton shape of u14,15ðx, tÞ and u16,17
ðx, tÞ for the fractional value θ = 0:25 with the suitable
parameters λ = 3, μ = −0:2, C = −0:5, n = −0:4, α = 6, and β
= 10. With the variety of fractional parameters, θ = 0:25 to
1, the singular soliton shape turns into the two-soliton shape
and has no change with free parameters. Figure 10 repre-
sents the rogue wave soliton shape u10,11ðx, tÞ for the frac-
tional value θ = 0:25 with the suitable parameters λ = 3,
μ = −0:2, C = 1, n = −0:4, α = 6, and β = 10. With the variety
of fractional parameter, θ = 0:25 to 1, the rogue wave turns
into the singular soliton shape. Figure 11 represents the
rogue wave soliton shape u12,13ðx, tÞ for the fractional value
θ = 0:25 with the suitable parameters λ = 3, μ = −0:2, C = 1,
n = −0:4, α = 6, and β = 10. With the variety of fractional
parameter, θ = 0:25 to 1, the rogue wave changes its ampli-
tude and size only. Figures 12 and 13 represent the singular
soliton shape of u18,19ðx, tÞ and u20,21ðx, tÞ for the fractional
value θ = 0:25 with the suitable parameters λ = 3, μ = −0:2,
C = 1, n = −0:4, α = 6, and β = 10. With the variety of frac-
tional parameters, θ = 0:25 to 1, the singular soliton shape
turns into the two-soliton shape.

5.2. Graphical Representation. The graphical decorations of
our attained solutions of the ð2 + 1Þ-dimensional CBS and
RLW equation have exposed in this subsection. Our pre-
ferred equations are resolved, and attained solutions are
extracted from the trigonometric and hyperbolic function
by computational tool Maple 21. For detailed physical clar-
ity, all precise solution charts are exhibited in 3D as well as
2D combined stripe charts.

6. Conclusions

In the above study, exact wave solutions with several types of
wave constructions for time fractional ð2 + 1Þ-dimensional
CBS and RLW equation have been accumulated through
the advanced exp ð−φðξÞÞ expansion technique. The dissim-
ilar wave structures characterized the attained solutions’
dynamical behavior in this system. Preferred fractional and
free parameters have significant insinuations, such as put-
ting the dissimilar magnitude of the fractional and free

parameters from a separate function of meaningful solutions
can be originated exclusively and variation of suitable
parameters has a significant impact on the wave. Moreover,
we claim that our obtained traveling solutions are new in the
sense of conformable derivative and could be operative in
the research of nonlinear physical phenomena. It is very
clear to decide that our promoted technique is effective, reli-
able, and friendly applicable and delivers sufficient well-
matched explanations to NLFEEs arise in engineering,
applied mathematics, nonlinear dynamics, and mathemati-
cal physics.

Data Availability

All required data were included in the manuscript and cited
appropriately when it was required.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors like to express their gratitude to the Bangladesh
University of Engineering and Technology (BUET), Bangla-
desh, for providing financial support under the Basic
Research Grant No. 1111202109017. The second author
(Foyjonnesa) specially wants to express her deepest gratitude
to the Bangladesh University of Engineering and Technol-
ogy (BUET), for selecting her as a PG Fellow (Ph.D.
Mathematics).

References

[1] H. L. Zhen, B. Tian, Y. F. Wang, and D. Y. Liu, “Soliton solu-
tions and chaotic motions of the Zakharov equations for the
Langmuir wave in the plasma,” Physics of Plasmas, vol. 22,
no. 3, article 032307, 2015.

[2] R. Hayward and F. Biancalana, “Constructing new nonlinear
evolution equations with supersymmetry,” Journal of Physics
A: Mathematical and Theoretical, vol. 51, no. 27, article
275202, 2018.

[3] C. T. Sendi, J. Manafian, H. Mobasseri, M. Mirzazadeh,
Q. Zhou, and A. Bekir, “Application of the ITEM for solving
three nonlinear evolution equations arising in fluid mechan-
ics,” Nonlinear Dynamics, vol. 95, no. 1, pp. 669–684, 2019.

[4] X. Y. Xie, B. Tian, W. R. Sun, M. Wang, and Y. P. Wang, “Sol-
itary wave and multi-front wave collisions for the Bogoyav-
lenskii–Kadomtsev–Petviashili equation in physics, biology
and electrical networks,” Modern Physics Letters B, vol. 29,
no. 31, p. 1550192, 2015.

[5] H. O. Roshid and W. X. Ma, “Dynamics of mixed lump-
solitary waves of an extended (2+1)-dimensional shallow
water wave model,” Physics Letters A, vol. 382, no. 45,
pp. 3262–3268, 2018.

[6] M. B. Hossen, H. O. Roshid, and M. Z. Ali, “Characteristics of
the solitary waves and rogue waves with interaction phenom-
ena in a (2+1)-dimensional breaking soliton equation,” Physics
Letters A, vol. 382, no. 19, pp. 1268–1274, 2018.

[7] A. A. Mamun, N. H. M. Shahen, S. N. Ananna,
M. Asaduzzaman, and Foyjonnesa, “Solitary and periodic

16 Advances in Mathematical Physics



wave solutions to the family of new 3D fractional WBBM
equations in mathematical physics,”Heliyon, vol. 7, no. 7, arti-
cle e07483, 2021.

[8] J. Manafian and N. Allahverdiyeva, “An analytical analysis to
solve the fractional differential equations,” Advanced Mathe-
matical Models & Application, vol. 6, no. 2, pp. 128–161, 2021.

[9] F. Meng and Q. Feng, “Exact solutions with variable coefficient
function forms for conformable fractional partial differential
equations by an auxiliary equation method,” Advances in
Mathematical Physics, vol. 2018, Article ID 4596506, 8 pages,
2018.

[10] S. T. Demiray and S. Duman, “MTEM to the ð2 + 1Þ-dimen-
sional ZK equation and Chafee-Infante equation,” Advanced
Mathematical Models & Applications, vol. 6, no. 1, pp. 63–70,
2021.

[11] N. H. M. Shahen, Foyjonnesa, M. H. Bashar, M. S. Ali, and
A. A. Mamun, “Dynamical analysis of long-wave phenomena
for the nonlinear conformable space-time fractional (2+1)-
dimensional AKNS equation in water wave mechanics,” Heli-
yon, vol. 6, no. 10, article e05276, 2020.

[12] J. Manafian and M. Lakestani, “Abundant soliton solutions for
the Kundu–Eckhaus equation via tanðϕðξÞÞ-expansion
method,” Optik, vol. 127, no. 14, pp. 5543–5551, 2016.

[13] Z. Rahman, M. Z. Ali, and H. O. Roshid, “Closed form soliton
solutions of three nonlinear fractional models through pro-
posed improved Kudryashov method,” Chinese Physics B,
vol. 30, no. 5, article 050202, 2021.

[14] F. Ferdous, M. G. Hafez, andM. Y. Ali, “Obliquely propagating
wave solutions to conformable time fractional extended
Zakharov–Kuzetsov equation via the generalized expð−ΦðξÞÞ
-expansion method,” SeMA Journal, vol. 76, no. 1, pp. 109–
122, 2019.

[15] M. M. A. Khater, “Exact traveling wave solutions for the gen-
eralized Hirota-Satsuma couple KdV system using the exp ð−
φðξÞÞ-expansion method,” Cogent Mathematics, vol. 3, no. 1,
p. 1172397, 2016.

[16] M. G. Hafez and D. Lu, “Traveling wave solutions for space-
time fractional nonlinear evolution equations,” 2015, https://
arxiv.org/abs/1512.00715.

[17] H. C. Yaslan and A. Girgin, “New exact solutions for the con-
formable space-time fractional KdV, CDG, ð2 + 1Þ-dimensional
CBS and ð2 + 1Þ-dimensional AKNS equations,” Journal of Tai-
bah University for Science, vol. 13, no. 1, pp. 1–8, 2019.

[18] M. M. Rahhman, A. Aktar, and K. C. Roy, “Analytical solu-
tions of nonlinear coupled Schrodinger–KdV equation via
advance exponential expansion,” American Journal of Mathe-
matical and Computer Modelling, vol. 3, no. 3, pp. 46–51, 2018.

[19] A. M.Wazwaz, “Erratum to:“Multiple-soliton solutions for the
ninth-order KdV equation and sixth-order Boussinesq equa-
tion”[Appl. Math. Comput. 203 (2008) 277–283],” Applied
Mathematics and Computation, vol. 206, no. 2, p. 1005, 2008.

[20] Y. Z. Peng, “New types of localized coherent structures in the
Bogoyavlenskii-Schiff equation,” International Journal of The-
oretical Physics, vol. 45, no. 9, pp. 1764–1768, 2006.

[21] T. Kobayashi and K. Toda, “Methods and applications,” Sym-
metry, Integrability and Geometry: Methods and Applications,
vol. 2, p. 1, 2006.

[22] A. M. Wazwaz, “The ð2 + 1Þ and ð3 + 1Þ-dimensional CBS
equations: multiple soliton solutions and multiple singular sol-
iton solutions,” Zeitschrift für Naturforschung A, vol. 65, no. 3,
pp. 173–181, 2010.

[23] M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramirez, S. Saez,
and F. R. Romero, “The Calogero–Bogoyavlenskii–Schiff equa-
tion in 2 + 1 dimensions,” Theoretical and Mathematical Phys-
ics, vol. 137, no. 1, pp. 1367–1377, 2003.

[24] J. M. Wang and X. Yang, “Quasi-periodic wave solutions for
the (2+1)-dimensional generalized Calogero–Bogoyavlenskii–
Schiff (CBS) equation,” Nonlinear Analysis: Theory, Methods
& Applications, vol. 75, no. 4, pp. 2256–2261, 2012.

[25] A. M. Wazwaz, “Negative-order forms for the Calogero–
Bogoyavlenskii–Schiff equation and the modified Calogero–
Bogoyavlenskii–Schiff equation,” Proceedings of the Romanian
Academy, Series A, vol. 18, no. 4, pp. 337–344, 2017.

[26] R. Saleh, M. Kassem, and S. Mabrouk, “Exact solutions of
Calgero-Bogoyavlenskii-Schiff equation using the singular
manifold method after Lie reductions,”Mathematical Methods
in the Applied Sciences, vol. 40, no. 16, pp. 5851–5862, 2017.

[27] M. O. Al-Amr, “Exact solutions of the generalized ð2 + 1Þ
-dimensional nonlinear evolution equations via the modified
simple equation method,” Computers & Mathematics with
Applications, vol. 69, no. 5, pp. 390–397, 2015.

[28] A. M. Wazwaz, “Abundant solutions of various physical fea-
tures for the ð2 + 1Þ-dimensional modified KdV-Calogero–
Bogoyavlenskii–Schiff equation,” Nonlinear Dynamics,
vol. 89, no. 3, pp. 1727–1732, 2017.

[29] P. Nithiarasu, R. Codina, and O. C. Zienkiewicz, “The
Characteristic-Based Split (CBS) scheme—a unified approach
to fluid dynamics,” International Journal for Numerical
Methods in Engineering, vol. 66, no. 10, pp. 1514–1546, 2006.

[30] M. Shakeel and S. T. Mohyud-Din, “Improved (G′/G)-expan-
sion and extended tanh methods for (2+1)-dimensional Calo-
gero–Bogoyavlenskii–Schiff equation,” Alexandria
Engineering Journal, vol. 54, no. 1, pp. 27–33, 2015.

[31] H. Aminikhah, A. H. Refahi Sheikhani, and H. Rezazadeh,
“Sub-equation method for the fractional regularized long-
wave equations with conformable fractional derivatives,”
Scientia Iranica, vol. 23, no. 3, pp. 1048–1054, 2016.

[32] B. Fornberg and G. B. Whitham, “A numerical and theoretical
study of certain nonlinear wave phenomena,” Philosophical
transactions of the Royal Society of London. Series A, Mathe-
matical and Physical Sciences, vol. 289, no. 1361, pp. 373–
404, 1978.

[33] H. N. Hassan and H. K. Saleh, “The solution of the regularized
long wave equation using the Fourier leap-frog method,”
Zeitschrift für Naturforschung A, vol. 65, no. 4, pp. 268–
276, 2010.

[34] X. Shao, G. Xue, and C. Li, “A conservative weighted finite dif-
ference scheme for regularized long wave equation,” Applied
Mathematics and Computation, vol. 219, no. 17, pp. 9202–
9209, 2013.

[35] S. Suksai and U. W. Hamphries, “Exact solutions of the regu-
larized long-wave equation: the Hirota direct method
approach to partially integrable equations,” Thai Journal of
Mathematics, vol. 5, no. 2, pp. 273–279, 2012.

[36] K. R. Raslan, K. K. Ali, and M. A. Shallal, “Solving the space-
time fractional RLW and MRLW equations using modified
extended tanh method with the Riccati equation,” British Jour-
nal of Mathematics & Computer Science, vol. 21, no. 4, pp. 1–
15, 2017.

[37] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

17Advances in Mathematical Physics

https://arxiv.org/abs/1512.00715
https://arxiv.org/abs/1512.00715


[38] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279,
pp. 57–66, 2015.

[39] G. Jumarie, “Modified Riemann-Liouville derivative and frac-
tional Taylor series of nondifferentiable functions further
results,” Computers & Mathematics with Applications,
vol. 51, no. 9-10, pp. 1367–1376, 2006.

18 Advances in Mathematical Physics


	Dynamical Analysis of Nonlocalized Wave Solutions of 2+1-Dimensional CBS and RLW Equation with the Impact of Fractionality and Free Parameters
	1. Introduction
	2. Inceptions and Procedures
	2.1. Definition and Some Features of Conformable Fractional Derivative

	3. Overview of the Method
	4. Application of the Suggested Method
	4.1. Application of 2+1 CBS Equation
	4.2. Application of RLW Equation

	5. Results and Discussion
	5.1. Physical Explanation
	5.2. Graphical Representation

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

