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Sufficient conditions on a pseudoprojective symmetric spacetime ðPPSÞn whose Ricci tensor is of Codazzi type to be either a
perfect fluid or Einstein spacetime are given. Also, it is shown that a ðPPSÞn is Einstein if its Ricci tensor is cyclic parallel.
Next, we illustrate that a conformally flat ðPPSÞn spacetime is of constant curvature. Finally, we investigate conformally flat
ðPPSÞ4 spacetimes and conformally flat ðPPSÞ4 perfect fluids in f ðR,GÞ theory of gravity, and amongst many results, it is
proved that the isotropic pressure and the energy density of conformally flat perfect fluid ðPPSÞ4 spacetimes are constants and
such perfect fluid behaves like a cosmological constant. Further, in this setting, we consider some energy conditions.

1. Introduction

The notion of a pseudoprojective symmetric manifold,
briefly denoted by ðPPSÞn, was first introduced and studied
in 1989 by Chaki and Saha [1]. Such a manifold is a nonflat
pseudo-Riemannian manifold whose projective curvature
tensor [2]

P hijk = Rhijk −
1

n − 1 ghkRij − ghjRik

h i
, ð1Þ

satisfies the condition

∇lP hijk = 2λlP hijk + λhP lijk + λiP hljk + λjP hilk + λkP hijl,
ð2Þ

where Rhijk is the Riemann curvature tensor, Rij is the Ricci
tensor, λl is a nonzero 1-form, and ∇ denotes the covariant
differentiation with respect to the metric g. In [1], it was

proved that a ðPPSÞn manifold is of constant scalar curva-
ture, that is,

∇lR = 0, ð3Þ

and λl is an eigenvector of the Ricci tensor and the corre-
sponding eigenvalue is R/n, that is,

λlRlk =
R
n
λk: ð4Þ

Also, it was shown that if a ðPPSÞn manifold admits a
unit parallel vector field, then it is reduced to a pseudosym-
metric manifold [3].

An n-dimensional Lorentzian manifold M is said to be a
pseudoprojective symmetric spacetime if its projective cur-
vature tensor P agrees with (2). A Lorentzian manifold M
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is said to be perfect fluid if its Ricci tensor satisfies

Rij = αgij + βuiuj, ð5Þ

where α and β are scalar fields and uiui = −1, that is, ui is a
time-like velocity vector field [4, 5]. In differential geometry,
a manifold satisfying the foregoing relation of the Ricci ten-
sor is called a quasi-Einstein manifold without any restric-
tions on the velocity vector field ui [6, 7]. Throughout this
paper, let λl be a unit timelike vector field.

The standard theory of gravity follows from Einstein’s
field equations (EFE) [8, 9].

Rij −
R
2 gij = κT mð Þ

ij , ð6Þ

where R, κ, and TðmÞ
ij are the scalar curvature tensor and the

Newtonian gravitational constant, and TðmÞ
ik is the energy-

momentum tensor describing the ordinary matter. These
equations correlate the geometry of a spacetime with its mat-
ter content. That is, the geometry of a spacetime determines
the matter content of the spacetime conversely. Many mod-
ifications of EFE have been introduced and studied on a
large scale (see references [10–12] for examples of the mod-
ified gravity theories). Amongst these modified theories,
there was one known under the name f ðR, GÞ gravity theory
[13], which is obtained by replacing the scalar curvature R
with a function f ðR, GÞ of the scalar curvature R and
Gauss-Bonnet scalar G .

G = RhijkR
hijk − 4RhkRhk + R2, ð7Þ

in the gravitational action term

S = 1
2κ

ð
d4x

ffiffiffiffiffiffi
−g

p
f R, Gð Þ + Smatter, ð8Þ

with Smatter being the action term of the standard matter
fields. The f ðR, GÞ field equations are given by

κT mð Þ
ik = −

1
2 f gik + f G RikR − 4RhilkR

hl + 2RihmnR
hmn
k − 4Rh

i Rhk

� �

+ 2gikR∇2 + 4Rh
i ∇h∇k + 4Rh

k∇h∇i − 2R∇i∇k − 4Rik∇
2

� �
f G

+ 4Rlihk∇
l∇h − 4gikRhl∇

h∇l
� �

f G + Rik − ∇i∇k + gik∇
2� �
f R,

ð9Þ

where TðmÞ
ik results from Smatter and f G = ∂G f ðR, GÞ, f R = ∂R

f ðR, GÞ [14].
In this paper, we investigate ðPPSÞn spacetimes whose

Ricci tensor is of Codazzi type or cyclic parallel. Next, a con-
formally flat ðPPSÞn spacetime is studied. After that, certain
investigations of conformally flat ðPPSÞ4 spacetimes in f ðR
, GÞ modified gravity theory are carried out. Finally, we
study conformally flat ðPPSÞ4 perfect fluid spacetimes in f
ðR, GÞ gravity.

2. On a ðPPSÞn Spacetime Whose Ricci Tensor
Is of Codazzi Type or Cyclic Parallel

In this section, a ðPPSÞn spacetime whose Ricci tensor is of
Codazzi type or cyclic parallel is considered. The Ricci ten-
sor Rij is called of Codazzi type if [15, 16]

∇lRhk = ∇kRhl, ð10Þ

whereas Rij is called cyclic parallel if

∇kRhl + ∇lRhk + ∇hRlk = 0: ð11Þ

Transvecting equation (1) with gij, one gets

P hk =
1

n − 1 nRhk − ghkR½ �, ð12Þ

where P hk = gijP hijk.
Contracting equation (2) with gij, we obtain

∇lP hk = 2λlP hk + λhP lk + λ jP hljk + λiP hilk + λkP hl: ð13Þ

Using (1) and (12) in (13), we have

∇lRhk =
2λl
n

nRhk − ghkR½ � + λh
n

nRlk − glkR½ �

+ n − 1
n

λjRhl jk + λiRhilk

h i
−
1
n

ghkλ
jRlj − λhRlk

h i

−
1
n

ghkλ
iRil − ghlλ

iRik

h i
+ λk

n nRhl − ghlR½ � + 1
n
ghk∇lR:

ð14Þ

With the help of equations (3) and (4), one finds

∇lRhk =
−2n − 2

n2

� �
Rλlghk +

1 − n
n2

� �
Rλkghl

−
1
n
Rλhglk + λkRhl + 2λlRhk +

n + 1
n

� �
λhRlk

+ n − 1
n

� �
λ jRhljk + λiRhilk

h i
:

ð15Þ

First, suppose that the Ricci tensor of ðPPSÞn spacetime
is of Codazzi type; thus, we have

∇lRhk − ∇kRhl = 0: ð16Þ

The use of equation (15) in (16) implies that

0 = −n − 3
n2

� �
Rλlghk +

n + 3
n2

� �
Rλkghl − λkRhl + λlRhk

+ n − 1
n

� �
λjRhljk − λ jRhkjl + 2λiRhilk

� �
:

ð17Þ

It is to be noted that the Riemann curvature tensor has
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the following properties:

Rhljk + Rhklj + Rhjkl = 0,
Rhkjl = −Rhklj:

ð18Þ

The use of the above properties of the Riemann curva-
ture tensor in equation (17) implies

0 = −n − 3
n2

� �
Rλlghk +

n + 3
n2

� �
Rλkghl − λkRhl + λlRhk

− 3 n − 1
n

� �
λjRhjkl:

ð19Þ

Contracting with λl and using (4), we have

Rhk =
n + 3
n2

� �
Rghk +

3
n2

� �
Rλkλh − 3 n − 1

n

� �
λlλjRhjkl:

ð20Þ

We thus can state the following theorem:

Theorem 1. Let M be a ðPPSÞn spacetime whose Ricci tensor
is of Codazzi type; then, the Ricci tensor ofM is given by (20).

Suppose that λlλjRhjkl = 0, then (20) becomes

Rhk =
n + 3
n2

� �
Rghk +

3
n2

� �
Rλkλh, ð21Þ

which means that a ðPPSÞn spacetime is perfect fluid.

Corollary 2. Let M be a ðPPSÞn spacetime whose Ricci tensor
is of Codazzi type. Then, M is perfect fluid if λlλjRhjkl = 0.

The conformal curvature tensor is given by [17].

Chjkl = Rhjkl −
1

n − 2 ghlRjk + gjkRhl − ghkRjl − gjlRhk

n o

+ R
n − 1ð Þ n − 2ð Þ ghlgjk − ghkgjl

n o
:

ð22Þ

A contraction with λlλj implies

λjλlRhjkl = λjλlChjkl +
Rλhλk
n n − 1ð Þ −

Rghk

n n − 1ð Þ n − 2ð Þ + Rhk

n − 2 :

ð23Þ

Equations (20) and (23) are combined to give

Rhk =
R
n
ghk −

3 n − 1ð Þ n − 2ð Þ
n2 + n − 3ð Þ λjλlChjkl , ð24Þ

where Chk = λ jλlChjkl is the contracted Weyl tensor. Hence,
we can state the following theorem:

Theorem 3. Let M be a ðPPSÞn spacetime whose Ricci ten-
sor is of Codazzi type; then, the Ricci tensor of M is of the
form (24).

In particular case, if Chk = 0, then equation (24) is
reduced to be in the following form:

Rhk =
R
n
ghk, ð25Þ

which means a ðPPSÞn spacetime is Einstein.

Corollary 4. LetM be a ðPPSÞn spacetime whose Ricci tensor
is of Codazzi type. Then, M is Einstein if the contracted Weyl
tensor vanishes.

Assume that M has cyclic parallel Ricci tensor, that is,
the Ricci tensor agrees with (11). Then, using (15) in (11)
infers

0 = −
4
n
Rλkghl −

4n + 1
n2

� �
Rλlghk −

4n + 2
n2

� �
λhglkR

+ 4n + 1
n

� �
λlRhk + 4λkRhl +

4n + 2
n

� �
λhRlk:

ð26Þ

Contracting with λl and using equation (4), we obtain

Rhk =
R
n
ghk, ð27Þ

which means a ðPPSÞn spacetime whose Ricci tensor obeys
(4) is Einstein. Hence, we motivate to state the following
theorem:

Theorem 5. Let M be a ðPPSÞn spacetime whose Ricci tensor
is cyclic parallel; then M is an Einstein spacetime.

3. Conformally Flat ðPPSÞn Spacetimes

The divergence of the conformal curvature is expressed as [18]

∇hC
h
ijk =

n − 3
n − 2 ∇kRij − ∇jRik

� �
−

1
2 n − 1ð Þ gij∇kR − gik∇ jR

� �	 

:

ð28Þ

A spacetime M is called conformally flat if the conformal
curvature tensor vanishes, that is, Cijkl = 0. It is well-known
that ifCijkl = 0, then∇hC

h
ijk = 0. And consequently, the follow-

ing equations hold

Rhijk =
1

n − 2 ghkRij + gijRhk − ghjRik − gikRhj

h i

−
R

n − 1ð Þ n − 2ð Þ ghkgij − ghjgik
h i

,
ð29Þ
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∇kRhl − ∇lRhk =
1

2 n − 1ð Þ gij∇kR − gik∇jR
� �

: ð30Þ

Since in ðPPSÞn spacetime the scalar curvature is constant,
then equation (30) implies that

∇kRhl = ∇lRhk, ð31Þ

which shows that the Ricci tensor is of Codazzi type [19]. We
thus can conclude the following theorem:

Theorem 6. Let M be a ðPPSÞn spacetime with a divergence-
free conformal curvature tensor; then, the Ricci tensor of M is
of Codazzi type.

In view of Theorem 1, we can state the following
corollary:

Corollary 7. Let M be a ðPPSÞn spacetime with a divergence-
free conformal curvature tensor; then, the Ricci tensor of M is
given by

Rhk =
n + 3
n2

� �
Rghk +

3
n2

� �
Rλkλl − 3

n − 1
n

� �
λlλjRhjkl:

ð32Þ

From equation (29), we can get

λjRhljk = −
R

n n − 1ð Þ n − 2ð Þ ghkλl +
R

n n − 1ð Þ n − 2ð Þ λhglk

+ 1
n − 2ð Þ λlRhk −

1
n − 2ð Þ λhRlk,

ð33Þ

λiRhilk = −
R

n n − 1ð Þ n − 2ð Þghkλl +
R

n n − 1ð Þ n − 2ð Þ λkghl

+ 1
n − 2ð Þ λlRhk −

1
n − 2ð Þ λkRhl:

ð34Þ

Using (33) and (34) in (15), one obtains

∇lRhk = −2 n2 − n − 1
n2 n − 2ð Þ

� �
Rλlghk −

n2 − 3n + 1
n2 n − 2ð Þ

� �
Rλkghl

−
n2 − 2n − 1
n n − 2ð Þ

� �
Rλhglk +

n2 − 3n + 1
n n − 2ð Þ

� �
λkRhl

+ 2n2 − 2n − 2
n n − 2ð Þ

� �
λlRhk +

n2 − 2n − 1
n n − 2ð Þ

� �
λhRlk:

ð35Þ

It follows that

∇lRhk − ∇kRhl = −
n2 + n − 3
n2 n − 2ð Þ

� �
Rλlghk

+ n2 + n − 3
n2 n − 2ð Þ

� �
Rλkghl −

n2 + n − 3
n n − 2ð Þ

� �
λkRhl

+ n2 + n − 3
n n − 2ð Þ

� �
λlRhk:

ð36Þ

In a conformally flat ðPPSÞn spacetime, the Ricci tensor
is of Codazzi type; therefore,

0 = −
n2 + n − 3
n2 n − 2ð Þ

� �
Rλlghk +

n2 + n − 3
n2 n − 2ð Þ

� �
Rλkghl

−
n2 + n − 3
n n − 2ð Þ

� �
λkRhl +

n2 + n − 3
n n − 2ð Þ

� �
λlRhk:

ð37Þ

Contracting with λl and using equation (4), we get

Rhk =
R
n
ghk, ð38Þ

which illustrates that a conformally flat ðPPSÞn spacetime is
Einstein.

Theorem 8. A conformally flat ðPPSÞn spacetime is Einstein.

The use of (38) in (1) implies that

P hijk = Rhijk −
R

n n − 1ð Þ ghkgij − ghjgik

h i
: ð39Þ

Then, from (39) in (29), one infers

P ijkl =
1

n − 2 gilRjk + gjkRil − gikRjl − gjlRik

n o

−
2R

n n − 2ð Þ gilgjk − gjkgjl

h i
:

ð40Þ

Hence, from (38), we get

P ijkl = 0: ð41Þ

From (38) and (41) in (1), we have

Rhijk =
R

n n − 1ð Þ ghkgij − ghjgik
h i

, ð42Þ

which means that a conformally flat ðPPSÞn spacetime is of
constant curvature.

In consequence of the above, we can state the following
theorem:

Theorem 9. A conformally flat ðPPSÞn spacetime is projec-
tively flat and of constant curvature.
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4. Conformally Flat ðPPSÞ4 Spacetimes in f ðR,
GÞ Gravity

In this section, conformally flat ðPPSÞ4 spacetimes in fðR,
GÞ theory of gravity are investigated. For n = 4, equation
(38) becomes

Rhk =
R
4 ghk: ð43Þ

It follows that

Rhk = R
4 g

hk: ð44Þ

Multiplying equations (43) and (44), one gets

RhkR
hk = R2

4 : ð45Þ

From equation (29), it follows that

Rhijk = 1
2 ghkRij + gijRhk − ghjRik − gikRhj
h i

−
R
6 ghkgij − ghjgik
h i

:

ð46Þ

Multiplying equations (29) and (46), we obtain

RhijkR
hijk = 2RhkRhk −

1
3R

2: ð47Þ

With the help of equation (47), the Gauss-Bonnet topo-
logical invariant is

G = −2RhkRhk +
2
3R

2: ð48Þ

The use of equation (45) implies that

G = 1
6R

2: ð49Þ

Thus, we can state the following theorem:

Theorem 10. The Gauss-Bonnet scalar in a conformally flat
ðPPSÞ4 spacetime is expressed as

G = 1
6
R2: ð50Þ

In a conformally flat spacetime, equation (9) can be
rewritten as

Rij −
R
2 gij = κ T mð Þ

ij + Tcurv
ij

� �
= κTeff

ij , ð51Þ

where Tcurv
ij arises from the geometry of the spacetime. The

tensor Tcurv
ij is given as [20]

κTcurv
ij = ∇i∇j − gij∇

2
� �

f R + 2R ∇i∇j − gij∇
2

� �
f G

− 4 Rm
i ∇m∇j + Rm

j ∇m∇i

� �
f G

+ 4 Rij∇
2 + gijRmn∇

n∇m − Rnimj∇
n∇m

� �
f G

−
1
2gij Rf R +G f G − fð Þ + 1 − f Rð Þ Rij −

R
2 gij

� �
:

ð52Þ

Since in a conformally flat ðPPSÞ4 spacetime the scalar
curvature is constant, the previous equation reduces

κTcurv
ij = −

1
2gij Rf R +GfG − fð Þ + 1 − f Rð Þ Rij −

R
2 gij

� �
:

ð53Þ

Utilizing equations (38) and (49) in equation (53), we get

κTcurv
ij = f

2 −
R
4 f R −

R2

12 f G −
R
4

� �
gij: ð54Þ

The use of (43) and (54) in (51) implies that

κT mð Þ
ij = R

4 f R +
R2

12 f G −
f
2

� �
gij: ð55Þ

The vector filed ξ is called Killing if

Lξgij = 0, ð56Þ

whereas ξ is called conformal Killing if

Lξgij = 2φgij, ð57Þ

whereLξ is the Lie derivative with respect to the vector filed
ξ and φ is a scalar function [21, 22].

A spacetime M is said to admit a matter collineation
with respect to a vector field ξ if the Lie derivative of the
energy-momentum tensor Tij with respect to ξ satisfies

LξTij = 0, ð58Þ

while it is said that the energy-momentum tensor Tij has the
Lie inheritance property along the flow lines of the vector field
ξ if the Lie derivative of Tij with respect to ξ satisfies [21, 22]

LξTij = 2φTij: ð59Þ

Applying the Lie derivative on both sides of (55), one gets

κLξT
mð Þ
ij = R

4 f R +
R2

12 f G −
f
2

� �
Lξgij: ð60Þ
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If the vector field ξ is Killing on a conformally flat ðPPSÞ4
spacetime M, hence equation (60) implies that

LξT
mð Þ
ij = 0: ð61Þ

In the contrast, if a conformally flat ðPPSÞ4 spacetime M
admits matter collineation with respect to ξ, it follows from
equation (60) that

Lξgij = 0: ð62Þ

Hence, we can state the following theorem:

Theorem 11. Let M be a conformally flat ðPPSÞ4 spacetime
obeying f ðR,GÞ gravity theory; then, the vector field ξ is Kill-
ing if and only ifM admits matter collineation with respect to
ξ.

Assume that the vector field ξ is conformal Killing; then,
after using (57) in (60) utilizing (55), we acquire that

LξT
mð Þ
ij = 2φT mð Þ

ij : ð63Þ

Conversely, suppose that the energy-momentum tensor
Tij has the Lie inheritance property along the flow lines of
ξ, thus making use of (59) in (60) after that using (55)), we
infer that

Lξgij = 2φgij: ð64Þ

Thus, we can state the following theorem:

Theorem 12. Let M be a conformally flat ðPPSÞ4 spacetime
obeying f ðR, GÞ gravity theory; then,M has a conformal Kill-
ing vector filed ξ if only if the energy-momentum tensor Tij

has the Lie inheritance property along ξ.

5. Conformally Flat ðPPSÞ4 Perfect Fluid
Spacetimes in f ðR, GÞ Gravity

This section is mainly organized to study conformally flat
ðPPSÞ4 perfect fluid spacetimes in f ðR,GÞ modified gravity
theory. For a perfect fluid spacetime, the energy-
momentum tensor is given as

T mð Þ
ij = p mð Þ + σ mð Þ

h i
λiλj + p mð Þgij, ð65Þ

Teff
ij = peff + σeff

h i
λiλj + peffgij, ð66Þ

where pðmÞ and σðmÞ are the isotropic pressure and the
energy density of the ordinary matter, whereas peff and σeff

are the effective isotropic pressure and the effective energy
density of the effective matter.

In view of (55) and (65), we have

R
4 f R +

R2

12 f G −
f
2 − κp mð Þ

� �
gij = κ p mð Þ + σ mð Þ

� �
λiλj: ð67Þ

Contracting twice with λi and gij, one finds

σ mð Þ = 1
κ

f
2 −

R
4 f R −

R2

12 f G
� �

, ð68Þ

3κp mð Þ − κσ mð Þ = 4 R
4 f R +

R2

12 f G −
f
2

� �
: ð69Þ

Utilizing (68) in (69), it arises

p mð Þ = −
1
κ

f
2 −

R
4 f R −

R2

12 f G
� �

: ð70Þ

We thus motivate to state the following theorem:

Theorem 13. In a conformally flat perfect fluid ðPPSÞ4 space-
time obeying f ðR, GÞ gravity, the isotropic pressure pðmÞ and
the energy density σðmÞ are constants. Moreover, they are
given by (68) and (70).

The combination of (68) and (70) gives

p mð Þ + σ mð Þ = 0, ð71Þ

which means that the spacetime represents inflation and
fluid behaves as a cosmological constant [23].

Theorem 14. LetM be a conformally flat perfect fluid ðPPSÞ4
spacetime obeying f ðR, GÞ gravity; then, M represents infla-
tion and fluid behaves as a cosmological constant.

Using (54), (65), and (66) in (51), one infers

peff + σeff
h i

λiλj + peffgij = p mð Þ + σ mð Þ
h i

λiλj + p mð Þgij

+ 1
κ

f
2 −

R
4 f R −

R2

12 f G −
R
4

� �
gij:

ð72Þ

Making a comparison of both sides, we obtain

peff = p mð Þ + 1
κ

f
2 −

R
4 f R −

R2

12 f G −
R
4

� �
,

σeff = σ mð Þ −
1
κ

f
2 −

R
4 f R −

R2

12 f G −
R
4

� �
:

ð73Þ

The use of (68) and (70) implies that

peff = −
R
4κ ,

ð74Þ

σeff = R
4κ :

ð75Þ
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In the context of f ðR, GÞ modified gravity, let us now
deduce some energy conditions of a perfect fluid type
effective matter. The energy conditions are obtained as
follows [24, 25]:

(1) Null Energy Condition (NEC). peff + σeff ≥ 0.

(2) Weak Energy Condition (WEC). σeff ≥ 0 and peff +
σeff ≥ 0.

(3) Dominant Energy Condition (DEC). σeff ≥ 0 and peff

± σeff ≥ 0.

(4) Strong Energy Condition (SEC). σeff + 3peff ≥ 0 and
peff + σeff ≥ 0.

In view of (74) and (22), the energy conditions are
always satisfied if R ≻ 0.
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