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The many publications related to the gyroscope theory consider the action of the inertial torques on the spinning disc. All of them
have simplified expressions for the inertial torques and mathematical models of the gyroscope motions do not validate by practice.
Recent research in the theory of the gyroscopic effects for rotating objects solved problems with mathematical models for
interrelated inertial torques generated by the spinning disc, bar, and ring and their motions. Practitioners of engineering
designed gyroscopic devices with spinning rotors whose geometry can be an annulus or similar designs. Such spinning annulus
generates inertial torques whose expressions differ from the disc bar and ring and hence another mathematical model describes
the motions of the gyroscopic devices. The value of gyroscopic effects of the devices with spinning annulus is bigger than for
the disc-type rotor. This manuscript presents mathematical models for the inertial torques generated by the spinning annulus
and the interrelated angular velocities of the gyroscopic devices about axes of rotation.

1. Introduction

The gyroscopic effects in engineering mechanics are the most
complex problems that are being unsolved for a long time
[1–5]. Beginning from the Industrial Revolution, scientists
yield only partial analytical solutions but did not solve the
entire gyroscopic effects. For practical applications were
worked out numerical models with the expensive software for
gyroscopic effects. The physics of the gyroscopic effects of the
simple spinning disc remained unexplained and mysterious
for a couple of centuries [6–10]. Scientists and researchers of
our time continue to describe gyroscopic effects without
success which can be seen in many publications each year
[11–19]. Recent investigations of the gyroscopic effects showed
their nature is more complex and based on several physical
principles that were discovered at different times. Scientists of
18-19 centuries could not solve gyroscopic effects in principle
because the concept of mechanical energy conservation was
formulated at the beginning of twenty century. From this time,
researchers have all the analytical tools for formulation of the
gyroscope theory but did not do it.

The latest studies of the physics of the gyroscopic effects
yield mathematical models for the inertial torques and the
interrelated dependency of the angular velocities of the spin-
ning disc motions about axes of rotation. The solution to
gyroscopic effects is based on the principle of mechanical
energy conservation [20–22]. The method of deriving math-
ematical models for inertial torques shows the action of the
system of the centrifugal, Coriolis forces generated by the
rotating mass, and the change in the angular momentum
of the spinning disc. The dependency of the angular veloci-
ties of the spinning disc around axes of motions interrelates
the inertial torques. Table 1 presents the expressions of iner-
tial torques acting on the spinning disc and the dependency
of the angular velocities of it's motions.

The practice tests validate the action of the system of the
interrelated inertial torques on the spinning disc. Practitioners
should use the derived method for the modeling of the gyro-
scopic effects for any designs of the spinning objects [22].
The mathematical models for the inertial torques generated
by the centrifugal and Coriolis forces and the change in the
angular momentum acting on the spinning flat annulus and
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its interrelated motions around two axes are present as the
contribution of the manuscript.

2. Centrifugal Forces and Torques Acting on a
Spinning Annulus

The method for the analytical solution for all inertial torques
acting on the spinning disc is described in several publications
[21, 22]. The inertial torques are generated by the distributed
mass elements of the spanning disc disposed on the circle of
2/3 of its radius. This method can be applied to rotating
objects of different forms. For the annulus, the radius of the
disposition of the distributed mass elements on the circle
should be defined. The rotating mass elements produce the
plane of centrifugal forces of the spinning annulus around axis
oz with an angular velocity of ω in a counter-clockwise direc-
tion considered in Figure 1. The mass element m is disposed
on the circle of radius r which is perpendicular to the axis of
the spinning annulus.

The radius r of disposing of the mass elements of the annu-
lus is defined from the truncated sector with the small angle Δδ
and the arcs of the external and internal radii Re and Ri, respec-
tively. The rotating mass elements generate centrifugal forces.
The action of the external torque to the spinning annulus has
manifested the inclination of its plane with the rotating centrif-
ugal forces and the turns of the annulus around axes. These
motions are presented at the Cartesian 3D coordinate system
Σoxyz in Figure 1. The external torque applied to the spinning
annulus generates several inertial torques (Figure 2).

The plane of the rotating centrifugal forces turns around
axis ox along the diameter line and changes in the directions
of centrifugal force vectors f ct of the mass elements. The
inclined plane of rotating centrifugal forces on angle Δγ
around axis ox is presented in the plane xoy ∗. The action of
the centrifugal force vectors f ct is radial and their components
f ∗ ct produce the torques around axes ox and oy. The values
of torques acting around axis ox are maximal at 90o and
270o and zero at 0o and 180o (Figure 2(a)). The values of
torques acting around axis oy are maximal at 0o and 180o

and zero at 90o and 270o (Figure 2(b)). The integrated product
of the components’ vector of the centrifugal forces f ct:z and
their radii relative to axes ox and oy give the torques Tct acting
around two axes. The torque acting around axis ox resists the
action of the external torque T. The torque acting around axis
oy turns the spinning annulus in the counter-clockwise
direction.

The mathematical models for the inertial torques gener-
ated by the centrifugal forces of the mass elements are
expressed as follows:

ΔTct = −f ct:zym = −mazym, ð1Þ

ΔTct = f ct:zxm =mazxm, ð2Þ

where ΔTct is the centrifugal torque generated by the mass
element; f ct:z is the component of the centrifugal force; ym
and xm are the distance from the mass element to axes oy
and ox, respectively; m is the mass element of the annulus
disposed on the circle of the radius r; az = rω2 is the radial
acceleration; ω is the angular velocity of the spinning annu-
lus; the signs (+) and (-) mean the counter-clockwise and
clockwise direction, respectively.

The following equations express the component of the
centrifugal force acting along axis oz:

(i) Around axis ox

f ct:z = f ct sin α sin Δγ =mrω2 sin α sin Δγ

= Mrω2

2π ΔδΔγ sin α:
ð3Þ

(ii) Around axis oy

f ct:z = f ct cos α sin Δγ =mrω2 cos α sin Δγ

= Mrω2

2π ΔδΔγ cos α,
ð4Þ

where f ct =mrω2 = ðMrω2/2πÞΔδ is the centrifugal
force of the mass element m; m = ðM/2πrÞΔδr = ð
M/2πÞΔδ in which M is the mass of the annulus; Δ
δ is the sector’s angle of the mass element’s disposi-
tion; α is the angle of the mass element’s disposition;
Δγ is the angle of turn for the annulus plane, sinΔγ
= Δγ is the trigonometric identity for the small
values of the angle.

The radius r of the circle of disposing of the mass elements
m of the annulus is defined from the truncated sector with the
small angle Δδ and the arcs of the external and internal radii
Re and Ri, respectively (Figure 1). The radius r is expressed

Table 1: Equations of the inertial torques acting on the spinning disc.

Type of the torque generated by Acton Equation

Centrifugal forces
Resistance

Tct = 4/9ð Þπ2 JωωxPrecession

Coriolis forces Resistance Tcr = 8/9ð ÞJωωx

Change in angular momentum Precession Tam = Jωωx

Dependency of angular velocities of spinning disc rotations about axes ωy = 8π2 + 17
À Á

ωx
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by the equation of the centroid of the truncated sector

r = ΣAir
Ats

= πR2
e × 2/3ð ÞRe × Δδ

À Á
/2π

À Á
− πR2

i × 2/3ð ÞRi × Δδ
À Á

/2π
À Á

π R2
e − R2

i

À Á
× Δδ

À Á
/2π

= 2 R3
e − R3

i

À Á
3 R2

e − R2
i

À Á ,
ð5Þ

where Ae = ðπR2
e × × ΔδÞ/2π and Ai = ðπR2

i × × ΔδÞ/2π are
the area of the sectors of radii Re and Ri and ð2/3ÞRe and
ð2/3ÞRi are the radii of the mass elements disposition,
respectively; Ats = ðπðR2

e − R2
i Þ × ΔδÞ/2π is the area of the

truncated sector.
Substituting the expressions of f ct:z of Equations (3)–(5)

into Equations (1) and (2) and transformation yield the
expressions of the inertial centrifugal torques produced by
the mass element.

ΔTct =
M R3

e − R3
i

À Á
ω2

3π R2
e − R2

i

À Á × Δδ × Δγ × sin α × ym, ð6Þ

ΔTct =
M R3

e − R3
i

À Á
ω2

3π R2
e − R2

i

À Á × Δδ × Δγ × cos α × xm, ð7Þ

where ym = r sin α and xm = r cos α are the distance from the
mass element of the annulus relative to axes ox (Figure 2(a))
and to axis oy (Figure 2(b)), respectively; and the other com-
ponents are as specified above.

The centrifugal torques are distributed on the circle where
the mass elements of the annulus are located (Figures 2(a) and
2(b)). The action of the torques is defined by a concentrated
load at the centroid points at the semi-circles along axes oy
and ox. The known integrated equation calculates the disposi-
tion of the centroid (point A of Figure 2(a) and point B of
Figure 2(b)) [6–9].

li =
Ð π
α=0 f ct:zlmdαÐ π
α=0 f ct:zdα

, ð8Þ

where f ct:z = ðMðR3
e − R3

i Þω2/3πðR2
e − R2

i ÞÞ × Δδ × Δγ × sin α,
li is the centroid for the semi-circle i, and lm is ym or xm.

Substituting Equations (4) and (5) and other compo-
nents into Equation (8) and transformation yield the follow-
ing expression.

(i) About axis ox

r
m

T

T

Z

y y

Δδ

ωy

𝜔x

𝜔x

𝜔

x

Ri

oo

Re
𝜔

Figure 1: Schematic of the spinning annulus.

yA =
Ð π
α=0 f ct:zymdαÐ π
α=0 f ct:zdα

=
Ð π
α=0 M R3

e − R3
i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
Δδ × Δγ × 2/3ð Þ R3

e − R3
i

À Á
/ R2

e − R2
i

À ÁÀ Á
sin α sin αdαÐ π

α=0 M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
Δδ × Δγ sin αdα

= M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
ΔδΔγ

Ð π
α=02/3R sin2αdα

M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
ΔδΔγ

Ð π
α=0 sin αdα

= 2/ 3 × 2ð Þð Þ R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ ÁÐ π
0 1 − cos 2αð ÞdαÐ π

0 sin αdα

= R3
e − R3

i

À Á
/3 R2

e − R2
i

À ÁÀ ÁÐ π
0 1 − cos 2αð ÞdαÐ π

0 sin αdα
:

ð9Þ
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(ii) About axis oy
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Figure 2: Schematic of acting centrifugal forces, torques, and motions around axis ox (a) and oy (b) of the spinning annulus.

xB =
Ð π
α=0 f ct:zxmdαÐ π
α=0 f ct:zdα

=
Ð π
α=0 M R3

e − R3
i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
Δδ × Δγ × 2/3ð Þ R3

e − R3
i

À Á
/ R2

e − R2
i

À ÁÀ Á
cos α cos αdαÐ π

α=0 M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
Δδ × Δγ cos αdα

= M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
ΔδΔγ

Ð π
α=02/3R cos2αdα

M R3
e − R3

i

À Á
ω2/3π R2

e − R2
i

À ÁÀ Á
ΔδΔγ

Ð π
α=0 cos αdα

= 2/ 3 × 2ð Þð Þ R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ ÁÐ π
0 1 + cos 2αð ÞdαÐ π

0 cos αdα

= R3
e − R3

i

À Á
/3 R2

e − R2
i

À ÁÀ ÁÐ π
0 1 + cos 2αð ÞdαÐ π

0 cos αdα
,

ð10Þ
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where the expression ðMðR3
e − R3

i Þω2/3πðR2
e − R2

i ÞÞΔ
δ × Δγ is constant of Equations (9) and (10); the
expressions sin2α = ð1 − cos 2αÞ/2 and cos2α = ð1 +
cos 2αÞ/2 are a trigonometric identity, and other
parameters are as specified above.

Equations (6) and (7) are presented in differential and
integral forms. Substituting expressions of Equations (9) and
(10) into Equations (6) and (7), replacing sin α = Ð π

0 cos αdα
and cos α = −

Ð π
0 sin αdα by the integral expressions with

defined limits, respectively, the following equations emerge:

(i) About axis ox

ðTct

0
dTct =

M R3
e − R3

i

À Á
ω2

3π R2
e − R2

i

À Á ×
ðπ
0
dδ ×

ðγ
0
dγ ×

ðπ
0
cos αdα

× R3
e − R3

i

À Á
3 R2

e − R2
i

À Á ×
Ð π
0 1 − cos 2αð ÞdαÐ π

0 sin αdα
:

ð11Þ

(ii) About axis oy

ðTct

0
dTct =

M R3
e − R3

i

À Á
ω2

3π R2
e − R2

i

À Á ×
ðπ
0
dδ ×

ðγ
0
dγ × −ð Þ

ðπ
0
sin αdα

× R3
e − R3

i

À Á
3 R2

e − R2
i

À Á ×
Ð π
0 1 + cos 2αð ÞdαÐ π

0 cos αdα
:

ð12Þ

Solutions of integral Equations (11) and (12) yield the
following:

(i) About axis ox

Tct
Tct
0

��� = M
9 × R3

e − R3
i

R2
e − R2

i

� �2
ω2 × δ π

0jð Þ × γ
γ
0
��À Á

× 2 sin α π/2
0
��À Á

× 1 − 1/2ð Þ sin 2αð Þ π
0j

−cos α π
0j

:

ð13Þ

(ii) About axis oy

Tct
Tct
0

��� = M
9 × R3

e − R3
i

R2
e − R2

i

� �2
ω2 × δ π

0jð Þ × γ
γ
0
��À Á

× cos α π
0jð Þ × 1 + 1/2ð Þ sin 2αð Þ π

0j
2 sin α π/2

0
�� ,

ð14Þ

that gave rise to the following:

(i) About axis ox

Tct =
M
9

R3
e − R3

i

R2
e − R2

i

� �2
ω2 × π − 0ð Þ × γ − 0ð Þ × 2 1 − 0ð Þ

× π − 0ð Þ − 1/2ð Þ 0 − 0ð Þ½ �
− −1 − 1ð Þ = M

9
R3
e − R3

i

R2
e − R2

i

� �2
ω2πγ:

ð15Þ

(ii) About axis oy

Tct =
M
9

R3
e − R3

i

R2
e − R2

i

� �2
ω2 × π − 0ð Þ × γ − 0ð Þ × −1 − 1ð Þ

× π − 0ð Þ + 1/2ð Þ 0 − 0ð Þ½ �
2 1 − 0ð Þ = −

M
9

R3
e − R3

i

R2
e − R2

i

� �2
ω2πγ,

ð16Þ

where all components are as specified above.

Equations (15) and (16) are almost identical except for
the signs (±) of counter and clockwise action around axes
ox and oy. The inertial torque Tct depends on the variable
angle γ that expresses the angular velocity ωx of the annulus
rotation about axis ox per time t. The differential equation
expresses the change in torque Tct per time

dTct

dt
= ±M

9
R3
e − R3

i

R2
e − R2

i

� �2
ω2π

dγ
dt

, ð17Þ

where t = α/ω is the time taken relative to the angular veloc-
ity of the annulus.

The differential of time t is dt = dα/ω; the expression d
γ/dt = ωx is the angular velocity of the spinning annulus
around axis ox. Substituting the defined components into
Equation (17) and transforming yield:

ωdTct

dα
= ±M9

R3
e − R3

i

R2
e − R2

i

� �2
ω2ωxπ: ð18Þ

Separation of the variables of Equation (18), transforma-
tion, and presentation by the integral form with defined
limits yield:

ðTct

0
dTct = ±

ðπ
0

M
9

R3
e − R3

i

R2
e − R2

i

� �2
ωωxπdα: ð19Þ

Solution of Equation (19) yields

Tct
Tct
0

��� = ±M9
R3
e − R3

i

R2
e − R2

i

� �2
ωωxπα

π
0j : ð20Þ

The centrifugal torques act on the upper and lower sides of
the annulus about axis ox, and its left and right sides about axis
oy. Then, the total torque Tct acting about axes ox and oy is
increased double.
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Tct = ± 2M9
R3
e − R3

i

R2
e − R2

i

� �2
ωωxπ

2

= ± 4
9 R2

e + R2
i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 Jωωx,

ð21Þ

where J = ð1/2ÞMðR2
e + R2

i Þ is the annulus moment of inertia,
and other components are as specified above.

3. Coriolis Forces and Torques Acting on a
Spinning Annulus

The Coriolis acceleration and force generated by mass ele-
ments are revealed when the spinning annulus turns around
axis perpendicular to its axle. The integrated Coriolis force
produced by the rotating mass elements of the annulus gen-
erates the torque counteracting the external torque [10].
Figure 3 shows the rotation of the mass element m of the
annulus that turns on the angle Δγ around axis ox. The turn
of the annulus around axis ox changes the direction of the
tangential velocity vectors of mass elements. The change in
the tangential velocity of mass elements produces the accel-
eration in which a product with a mass yields the Coriolis
forces of the mass elements, where ΔV =V sin Δγ, V = r
cos α × ω, and sin Δγ = Δγ for the small angle (Figure 3).
The maximal changes of the velocity vectors V ∗ are on
the line of axis ox. The tangential velocity V whose vector
is parallel to axis ox, i.e., on 90o and 270o does not change.
The changes in tangential velocity vectors are presented by
the components Vz that are parallel to the annulus axle oz.

The torque generated by the Coriolis force of the rotat-
ing mass element is expressed by

ΔTcr = −f crym = −mazym, ð22Þ

where ΔTcr is the torque generated by Coriolis force f cr of
the annulus mass element m; az is the Coriolis acceleration
along with axis oz; ym = r sin α is the distance from the mass
element to axis ox; the sigh (-) means the action in the clock-
wise direction around axis ox, and the other components are
represented in Equation (2).

The differential form of changes in tangential velocity
vectors is dV/dt = az and change in the angle of rotation
around axis ox is dγ/dt = ωx.

Then, the Coriolis acceleration is:

αz = rωωx cos α: ð23Þ

The Coriolis force of the mass element is presented:

f cr =
M
2π × Δδrωωx cos α =

M
3π

R3
e − R3

i

R2
e − R2

i

� �
× Δδ × ωωx cos α:

ð24Þ

Then, the Coriolis torque is:

ΔTcr = −f crym = −
M
3π

R3
e − R3

i

R2
e − R2

i

� �
ωωx × Δδ × cos α × ym,

ð25Þ

where all parameters are as specified above.
The centroid for the torque ΔTcr is point C of Figure 3,

which is defined by Equation (8).

Δ𝛾

Δ𝛼

𝛼

y⁎
Tcr

T

yc

𝜔x

fcr f𝜎TcrT

y

y
V V

V⁎

V⁎

Z⁎

Zx

ΔVz

C

oo

r
Z

𝜔x

𝜔

m
𝜔

Figure 3: Schematic of the acting forces, torques, and motions of the spinning annulus.
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Substituting Equation (26) into Equation (25), replacing
cos α = Ð π

0 − sin αdα by the integral expression with defined
limits, and presenting other components by the integral
forms, the following equation emerges:

ðTcr

0
dTcr = −

M
3π

R3
e − R3

i

R2
e − R2

i

� �
ωωx ×

ðπ
0
dδ ×

ðπ
0
− sin αdα

× 2/3 R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ ÁÐ π
0 sin αd sin αÐ π

0 sin αdα
:

ð27Þ

Solution of integral Equation (27) yields:

Tcr
cr
0j = −

2M
9π

R3
e − R3

i

R2
e − R2

i

� �2
ωωx × δ π

0jð Þ × cos α π
0jð Þ

× 2 sin2α/2
À Á

π/2
0
��

2 sin α π/2
0
�� ,

ð28Þ

that gave rise to the following:

Tcr = −
2M
9π

R3
e − R3

i

R2
e − R2

i

� �2
ωωx × π − 0ð Þ

× −1 − 1ð Þ × 1 − 0ð Þ
−2 1 − 0ð Þ

= −
2M
9

R3
e − R3

i

R2
e − R2

i

� �2
ωωx ,

ð29Þ

where all components are as specified above.
The inertial torque Tcr acts on the upper and lower sides

of the annulus. Multiplying Equation (29) by two yields the
full expression of Tcr :

Tcr = −
2 × 2M

9
R3
e − R3

i

R2
e − R2

i

� �2
ωωx

= −
8

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
Jωωx,

ð30Þ

where J = ð1/2ÞMðR2
e + R2

i Þ is the annulus moment of inertia;
the sign (-) expresses the clockwise direction.

4. Attributes of Inertial Torques Acting on a
Spinning Annulus

The load torque applied to the spinning annulus produces
the system of the inertial torques generated by the rotating
mass [22]. Among them is the change in the angular
momentum of a spinning disc, which is Euler’s fundamental
principle of gyroscope theory [1–5]. The motion of the spin-
ning annulus around axis oy (Figure 3) manifests the change
in the annulus angular momentum in the counter-clockwise
direction which is called precession. The expression of the
change in the angular momentum is Tam = Jωωx where all
components are presented above. The system of the inertial
torques produces the resistance and precession torques and
motions of the spinning annulus around axes of the rotation.
Table 2 represents expressions of the inertial torques gener-
ated by pseudo forces of the spinning annulus.

The external torque T generates all inertial torques that
depend on the mass moment of the annulus’s inertia J , its
angular velocity ω, and the angular velocity ωx of the spin-
ning annulus about axis ox.

The action of all torques around axes ox and oy on the
spinning object is shown in Figure 4 for the given symmetri-
cal disposing of its supports [22]. The interrelated action of
the inertial torques is considered for the horizontal disposi-
tion of the spinning object.

The action of the inertial torques of the spinning annulus
around axes ox and oy expresses analytically the equality of
their mechanical energies that enables for deriving of the
dependency of its interrelated angular velocities around axes
of motions (Figure 4) [22].

−Tct:x − Tcr:x − Tct:y − Tam:y = Tct:x + Tam:x − Tct:y − Tcr:y ,
ð31Þ

where expressions of the inertial torques are presented by
Equations (21) and (30), and Tam = Jωωx.

yC =
Ð π
α=0 f in:ymdαÐ π
α=0 f in:dα

= M/3π R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á
ωωx × Δδ

Ð π
α=02/3 R3

e − R3
i

À Á
/ R2

e − R2
i

À ÁÀ Á
cos α sin αdα

M/3π R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á
ωωx × Δδ

Ð π
α=0 sin αdα

= 2/3 R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ ÁÐ π
0 sin αd sin αÐ π

0 sin αdα
:

ð26Þ
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Substituting expressions of the defined torques into
Equation (31) yields the following:

−
4

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 Jωωx

−
8

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
Jωωx

−
4

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 Jωωy − Jωωy

= 4
9 R2

e + R2
i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 Jωωx + Jωωx

−
4

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 Jωωy

−
8

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
Jωωy ,

ð32Þ

where the signs (-) and (+) mean the clockwise and counter-
clockwise directions of the action of the inertial torques
around two axes, respectively.

Simplification and transformation of Equation (32) yield
the following:

ωy = −
8/ 9 R2

e + R2
i

À ÁÀ ÁÀ Á
R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á2
π2 + 1
À Á

+ 1
1 − 8/ 9 R2

e + R2
i

À ÁÀ ÁÀ Á
R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á2
" #

ωx:

ð33Þ

The expressions of the inertial torques and their action,
and the dependency of interrelated angular velocities of the
spinning annulus around axes are presented in Table 2.

The expressions of torques and the dependency angular
velocities (Table 2) formulate the mathematical models for
the motions of the gyroscopic devices with the annulus
rotor. Comparative analysis of formulas for the spinning
annulus shows when its internal radius Ri =0, all of them
are converted to the formulas for the disc-type rotor pre-
sented in Table 1. This fact validates the mathematical cor-
rectness of the formulas. The values of formulas in Table 2
give results bigger than the formulas in Table 1.

5. Working Example

The annulus has a mass of 1.0 kg and the external and internal
radii of 0.1m and 0.06m, respectively. The annulus rotates at

Z

y y

𝜔y

o

T𝜔x
𝜔

𝜔y

Tct.x

Tct.x Tct.y

Tct.y

Tcr.x

Tct.x

Tct.y

Tcr.y

Tct.x Tcr.x T

Tam.x

Tam.y

Tam.x

Tam.yTct.y

Tcr.y

𝜔x

xo

𝜔

Figure 4: External and inertial torques acting around axes on the spinning object.

Table 2: The inertial torques acting on the spinning annulus generated by the external torque.

Type of the torque generated by Action Equation

Centrifugal forces, Tct

Resistance
Tct =

4
9 R2

e + R2
i

À Á R3
e − R3

i

R2
e − R2

i

� �2
π2 JωωxPrecession

Coriolis forces, Tcr Resistance Tcr =
8

9 R2
e + R2

i

À Á R3
e − R3

i

R2
e − R2

i

� �2
Jωωx

Change in angular momentum, Tam Precession Tam = Jωωx

Dependency of angular velocities of spinning disc rotations
about axes

ωy = −
8/ 9 R2

e + R2
i

À ÁÀ ÁÀ Á
R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á2
π2 + 1
À Á

+ 1
1 − 8/ 9 R2

e + R2
i

À ÁÀ ÁÀ Á
R3
e − R3

i

À Á
/ R2

e − R2
i

À ÁÀ Á2
" #

ωx
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3000 rpm around the axle and precesses with an angular veloc-
ity of 0.06 rpm. Determine the values of the torques generated
by the centrifugal and Coriolis force, the change in the angular
momentum, and the angular velocity of precession. Substitut-
ing the data into equations of Table 2 and transformation
yields the following results.

(i) The torque Tct generated by the centrifugal forces

Tct =
4

9 × 0:12 + 0:062
À Á × 0:13 − 0:063

0:12 − 0:062
� �2

× π2 × 0:0068

× 3000 × 2π
60 × 0:06 × 2π

60 = 0:06496634Nm2,

J = 1
2M R2

e + R2
i

À Á
= 1
2 × 1:0 × 0:12 + 0:062

À Á
= 0:0068Nm2:

ð34Þ

(ii) The torque generated by Coriolis Tcr forces

Tcr =
8

9 × 0:12 + 0:062
À Á × 0:13 − 0:063

0:12 − 0:062
� �2

× 0:0068

× 3000 × 2π
60 × 0:06 × 2π

60 = 0:013164Nm2:

ð35Þ

(iii) The torque Tam of the change in the angular
momentum

Tam = Jωωx = 0:0068 × 3000 × 2π
60 × 0:06 × 2π

60
= 0:013422Nm2:

ð36Þ

(iv) The angular velocity of precession

ωy = −
8/ 9 × 0:12 + 0:062

À ÁÀ ÁÀ Á
× 0:13 − 0:063

À Á
/ 0:12 − 0:062
À ÁÀ Á2

π2 + 1
À Á

+ 1
1 − 8/ 9 × 0:12 + 0:062

À ÁÀ ÁÀ Á
× 0:13 − 0:063

À Á
/ 0:12 − 0:062
À ÁÀ Á2

" #

× 0:06 × 2πð Þ
60 = 3:816023rad/s = 36:440337rpm:

ð37Þ

For the disc-type rotor (Table 1), the dependency of the
angular velocities is obtained if the Ri =0 in Table 2. Substitut-
ing data of the working example and computing yield:

ωy = 8π2 + 17
À Á

× 0:06 × 2π
60 = 0:602914rad/s = 5:682336rpm:

ð38Þ

The comparative results of the dependency of the angular
velocities rotation around axes of motions for the annulus and
disc-type rotor show their big differences. The radius of dispo-
sition of the distributed mass of the annulus is bigger than for
the disc-type rotor. Analysis of them yields the spinning annu-
lus generates bigger values of the inertial torques and the
dependency of the angular velocities than the spinning disc-
type rotor.

6. Results and Discussion

Gyroscopic effects are remaining as sophisticatedmathematical
problems because the inertial torques generated by the rotating
mass depend on the geometry of the spinning objects. The
practice of engineering designs of the gyroscopic devices shows
different geometry of their main components which are the
rotors. The value of the inertial torques generated by the spin-
ning rotors depends on their technical data. The working
example shows the spinning annulus generates bigger values
of the inertial torques and the dependency of the angular veloc-
ities than the disc-type rotor. This result gives the tip for the
practitioners to design gyroscopic devices with a high value of
the inertial torques and the angular velocity of precession. Prac-
titioners can design gyroscopic devices with a necessary output
of technical data that depends on the geometry of the spinning
rotor. This result opens a new analytical approach to finding
optimal designs of the spinning rotor that respond to the qual-
ity of gyroscope work.

7. Conclusion

Aerospace and engineering industries try to solve gyroscopic
problems and find optimal designs for gyroscopic devices that
give the necessary technical data. The new theory of gyro-
scopic effects for rotating objects opens newmethods for com-
puting the technical data for gyroscopic devices. The method
for deriving mathematical models for the gyroscopic effects
enables finding the output data of gyroscopic devices that
depend on the geometry of the main unit which is the spin-
ning rotor. Optimization of the rotor’s design by criteria of
the aerospace industry is a new direction for investigations
in engineering. The fundamental principles of the theory of
gyroscopic effects for rotating objects and methods enable
solving them in engineering. The known numerical modeling
for gyroscopic effects with expensive software is going past and
engineering science receives new analytical methods.

Data Availability

The authors declare that the data supporting the findings of
this study are available within the article. R. Usubamatov
wrote the mathematical models of inertial torques. S.
Kapayea corrected the text and references.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] F. J. B. Cordeiro, The Gyroscope, Createspace, NV, USA, 2015.
[2] G. Greenhill, Report on Gyroscopic Theory, Relink Books, Fall-

brook, CA, USA, 2015.
[3] J. B. Scarborough, The Gyroscope Theory and Applications,

Nabu Press, London, 2014.
[4] H. Weinberg, “Gyro mechanical performance: the most

important parameter. Analog Devices,” pp. 1–5, 2011, Techni-
cal Article MS2158.

9Advances in Mathematical Physics



[5] V. Apostolyuk, Coriolis Vibratory Gyroscopes, Springer Inter-
national Publishing Switzerland, 2016.

[6] R. C. Hibbeler and K. B. Yap, Mechanics for Engineers-Statics
and Dynamics, Prentice Hall, Pearson, Singapore, 14th ed. edi-
tion, 2020.

[7] D. R. Gregory, Classical Mechanics, Cambridge University
Press, New York, 2012.

[8] J. R. Taylor, Classical Mechanics, University Science Books,
California, USA, 2005.

[9] M. D. Aardema, Analytical Dynamics, Theory and Applica-
tion, Academic/Plenum Publishers, New York, 2005.

[10] F. Scheck, Mechanics, Springer-Verlag, Berlin Heidelberg,
2018.

[11] M. M. Bhatti and E. E. Michaelides, “Oldroyd 6-constant
electro-magneto-hydrodynamic fluid flow through parallel
micro-plates with heat transfer using Darcy-Brinkman-
Forchheimer model: a parametric investigation,”Mathematics
in Engineering, vol. 5, no. 3, pp. 1–19, 2022.

[12] W. C. Liang and S. C. Lee, “Vorticity, gyroscopic precession,
and spin-curvature force,” Physical Review D, vol. 87, no. 4,
article 044024, 2013.

[13] J. L. Crassidis and F. L. Markley, “Three-axis attitude estima-
tion using rate-integrating gyroscopes,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 7, pp. 1513–1526, 2016.

[14] Y. Nanamori and M. Takahashi, “An integrated steering law
considering biased loads and singularity for control moment
gyroscopes,” in AIAA Guidance, Navigation, and Control Con-
ference, Kissimmee, Florida, January 2015.

[15] Y. Chu and J. Fei, “Adaptive global sliding mode control for
MEMS gyroscope using RBF neural network,” Mathematical
Problems in Engineering, vol. 2015, Article ID 403180, 9 pages,
2015.

[16] Q. Doukhi, A. R. Fayjie, and F. D. Jin Lee, “Intelligent control-
ler design for quad-rotor stabilization in presence of parameter
variations,” Journal of Advanced Transportation, vol. 2017,
Article ID 4683912, 10 pages, 2017.

[17] B. Xu and P. Zhang, “Minimal-learning-parameter technique
based adaptive neural sliding mode control of MEMS gyro-
scope,” Complexity, vol. 2017, Article ID 6019175, 8 pages,
2017.

[18] W. Wang, H. Ma, M. Xia, L. Weng, and X. Ye, “Attitude and
altitude controller design for quad-rotor type MAVs,” Mathe-
matical Problems in Engineering, vol. 2013, Article ID 587098,
9 pages, 2013.

[19] Z. Zhu, Y. Bo, and C. Jiang, “A MEMS gyroscope noise sup-
pressing method using neural architecture search neural net-
work,” Mathematical Problems in Engineering, vol. 2019,
Article ID 5491243, 9 pages, 2019.

[20] R. Usubamatov, “Physics of gyroscope’s “antigravity effect”,”
Advances in Mathematical Physics, vol. 2019, Article ID
4197863, 7 pages, 2019.

[21] R. Usubamatov and D. Allen, “Corrected inertial torques of
gyroscopic effects,” Advances in mathematical physics,
vol. 2022, Article ID 3479736, 7 pages, 2022.

[22] R. Usubamatov, Theory of Gyroscope Effects for Rotating
Objects, Springer, Cham, Switzerland, 2nd ed. edition, 2022.

10 Advances in Mathematical Physics


	Inertial Forces and Torques Acting on a Spinning Annulus
	1. Introduction
	2. Centrifugal Forces and Torques Acting on a Spinning Annulus
	3. Coriolis Forces and Torques Acting on a Spinning Annulus
	4. Attributes of Inertial Torques Acting on a Spinning Annulus
	5. Working Example
	6. Results and Discussion
	7. Conclusion
	Data Availability
	Conflicts of Interest



