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The goal of this paper is study the mixed integral equation with singular kernel in two-dimensional adding to the time in the
Volterra integral term numerically. We established the problem from the plane strain problem for the bounded layer medium
composed of different materials that contains a crack on one of the interface. Also, the existence of a unique solution of the
equation proved. Therefore, a numerical method is used to translate our problem to a system of two-dimensional Fredholm
integral equations (STDFIEs). Then, Toeplitz matrix (TMM) and the Nystrom product methods (NPM) are used to solve the
STDFIEs with Cauchy kernel. Numerical examples are presented, and their results are compared with the analytical solution to
demonstrate the validity and applicability of the methods. The codes were written in Maple.

1. Introduction

Many problems of engineering, mathematical physical, and
contact problems in the theory of elasticity lead to singular
integral equations. Integral equations provide an important
tool for solving the ordinary and partial deferential equa-
tions. Therefore, many different methods are used to obtain
the solution of the linear and nonlinear integral equations.
Brunner and Kauthen [1] introduced collocation and iter-
ated collocation methods for solving the two-dimensional
Volterra integral equation (T-DVIE). In [2], authors pro-
posed a class of explicit Runge-Kutta-type methods of order
3 for solving nonlinear T-DVIE. In [3], authors studied the
approximate solution of T-DVIEs by the two-dimensional
differential transform method. Abdou, in [4, 5], used differ-
ent methods to obtain the solution of F-VIE of the first and
second kinds in which the Fredholm integral term is consid-
ered in position while the Volterra integral term is consid-
ered in time. EL-Borai et al., in [6], studied the numerical
solution for the T-DFIE with weak singular kernel, but they
have studied the problem on a rectangular path of the parties
only. AL-Bugami in [7] studied and discussed the solution of
the T-DFIE with applications in contact problems. AL-
Bugami in [8] studied and discussed the solution of the

two-dimensional singular Fredholm integral equation (T-
DFIE) with time. The solution of a large of mixed boundary
value problem of a great variety of contact and crack prob-
lems in solid mechanics, physical, and engineering can be
related to a system of the singular IEs have a simple
Cauchy-type singularity (Ref. [9]). In [10], the authors stud-
ied the linear two-dimensional Volterra integral equation
with continuous kernel numerically. In [11], the authors dis-
cussed continuous Fredholm-Volterra integral equation. Al-
Bugami, in [12], studied the singular Hammerstein-Volterra
integral equation and solved numerically. In [13], the author
studied the surface cracks of finite layers of fractional
materials.

In this work, we consider a mixed integral equation with
singular kernel in two-dimensional (MIE)

ηw x, tð Þ + λ

π

ð1
−1

ð1
−1
p1 x − uj jp2 y − vj jw u, v ; tð Þdudv

+ λ
ð1
−1
k x, yð Þw y, tð Þdy +

ðt
0
ζ t, τð Þw x, τð Þdτ = f x, tð Þ:

ð1Þ

Formula (1) is called the MIE with singular kernel in
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two-dimensional of the second kind with Cauchy kernel in
ðL2ð−1, 1Þ × L2ð−1, 1ÞÞ × Cð0 ; YÞ ; Y < 1, where the FI term
is considered in position with singular kernel, and the VI
term is considered in time with a positive and continuous
kernelζðt, τÞ. f ðx, tÞ is known function, while w ðx, tÞ is
unknown function to be determined. The numerical coeffi-
cient λ is called the parameter of the IE.

2. The Basic Formulas of the Problem

Consider the plane strain problem for the bounded layer
medium (Figure 1), composed of three different materials.
Let the medium material contain a crack on one of the inter-
face. Without any loss in generality, the half length of the
crack is assumed to be unity. We will consider with the effect
of the ratio of the layer thickness to the crack length on the
stress, intensity factors, and the strain energy release rate.
For interesting the disturbed stress state, while is variable
also with time, caused by the crack.

We assume that the overall stress distribution σð0Þ
ij ðx, y,

tÞ, in the imperfection free medium, is known. The stress

state σð1Þij ðx, y, tÞ, in the cracked medium, may be expressed
as

σ
1ð Þ
ij x, y, tð Þ = σ

0ð Þ
ij x, y, tð Þ + σij x, y, tð Þ, i, j = x, y, z, ð2Þ

where σij is the disturbed state, which may be obtained
by using the tractions

P1 x, tð Þ = −σ 0ð Þ
yy x, 0 ; tð Þ ; P2 x, tð Þ = −σ 0ð Þ

xy x, 0 ; tð Þ, xj j < 1, t ∈ 0, T½ �,
ð3Þ

which are the only external loads applied to the medium.
The problem can always be expressed as the sum of a sym-
metric component and an antisymmetric component. The
tractions are Piðx, tÞ, i = 1, 2, where

P1 x, tð Þ = P1 −x, tð Þ, P2 x, tð Þ = −P2 −x, tð Þ, xj j < 1, t ∈ 0, T½ �:
ð4Þ

The solution of the antisymmetric problem requires only
a slight modification. Let ui, vi be the x and y components of
the displacement vector in the i -th materials and satisfy the
filed equations in the form:

μi∇
2ui + λi + μið Þ ∂

∂x
∂ui
∂x

+ ∂vi
∂y

� �
= ρ

d2ui
dt2

, ð5Þ

μi∇
2vi + λi + μið Þ ∂

∂x
∂ui
∂x

+ ∂vi
∂y

� �
= ρ

d2ui
dt2

: ð6Þ

Then, assume the displacement functions in the follow-
ing:

i x, y, tð Þ =Ui x, yð Þ + F tð Þ, ð7Þ

vi x, y, tð Þ =Vi x, yð Þ + F tð Þ: ð8Þ
FðtÞ is known function of t. Hence, using (7) and (8) in

(5) and (6), we get

λi + 2μið Þ ∂
2Ui

∂x2
+ μi

∂2Ui

∂y2
+ λi + μið Þ ∂

2Vi

∂x∂y
= 0, ð9Þ

λi + 2μið Þ ∂
2Vi

∂y2
+ μi

∂2Vi

∂x2
+ λi + μið Þ ∂

2Ui

∂x∂y
= 0, ð10Þ

d2F tð Þ
dt2

= μi
ρ
F tð Þ: ð11Þ

Formula (11) has a solution

F tð Þ = Be−
ffiffiffi
μi
ρ

p
, F ∞ð Þ⟶ 0: ð12Þ

For solving the two formulas (9) and (10), we use the
Fourier integral transform:

Ui x, yð Þ = 2
π

ð∞
0
wi α, yð Þ sin αxdα, i = 1, 2, 3ð Þ, ð13Þ

Vi x, yð Þ = 2
π

ð∞
0
ψi α, yð Þ cos αxdα: ð14Þ

Then, we have

−α2 λi + 2μið Þwi + μi
d2wi

dy
− α λi + μið Þ dψi

dy
= 0, ð15Þ

−α2 λi + 2μið Þψi + μi
d2ψi

dy
+ α λi + μið Þ dwi

dy
= 0: ð16Þ

After solving the system of Eqs. (15) and (16), and then
using the two formulas (13) and (14), we get

Ui x, yð Þ = 2
π

ð∞
0

Ai1 +Ai2yð Þe−αy + Ai3 + Ai4yð Þeαy½ � sin αxdα,

Vi x, yð Þ = 2
π

ð∞
0

Ai1 +
Ki

α
+ y

� �
Ai1

� �
e−αy + −Ai3 +

Ki

α
− y

� �
Ai4

� �
eαy

� �
cos αxdα,

ð17Þ

where Ki has physical meaning and Ki = 3 − 4υi for
plane strain and Ki = ð3 − υiÞ/ð1 + υiÞ for generalized plane
stress, υi is Poisson’s coefficient for each materials, and Ai,j

III (𝜇3, 𝜐3)

I (𝜇1, 𝜐1)

II (𝜇2, 𝜐2)

Figure 1: The layers of materials.

2 Advances in Mathematical Physics



, j = 1, 2, 3, 4 are functions of α which can be determined
from the boundary conditions. After obtaining, the values
of Ui,Vi, the stresses may be evaluated by Hooks law.

The components of the stress vector at the interfaces and
boundaries may be expressed as

1
2μi

σiyy =
2
π

ð∞
0

− α Ai1 + Ai2yð Þ + 2 1 − υið ÞAi2½ �e−αyf

+ −α Ai3 + Ai4yð Þ + 2 1 − υið ÞAi4e
αy½ �g cos αxdα,

1
2μi

σixy =
2
π

ð∞
0

− α Ai1 + Ai2yð Þ + 1 − υið ÞAi2½ �e−αyf

+ α Ai3 + Ai4yð Þ − 1 − 2υið ÞAi4½ �eαyg sin αxdα:

ð18Þ

On the boundaries, the medium may have formally any
one of the following four groups of homogeneous boundary
conditions

σiyy = 0 = σixy , ui = 0 = vi,

σi
xy = 0 = vi, σiyy = 0 = ui, i = 1, 2, 3:

ð19Þ

The continuity requires that on the interfaces, the stress
and displacement vectors in the adjacent layers be equal, i.e.,

ui+1 − ui = 0, vi+1 − vi = 0,
σi+1yy − σiyy = 0, σi+1xy − σixy = 0, i = 1, 2, 3:

ð20Þ

Now, to obtain the integral equation, we first assume
that at y = 0, the bond between the two adjacent layers is
perfect except for the dislocations at y = 0 and x = y defied by

∂
∂x

u+2 − u−3ð Þ = f1 x, tð Þ, ∂
∂x

v+2 − v−3ð Þ = f2 x, tð Þ, ð21Þ

where the superscripts + and – refer to the limiting
values of the displacement as y approaches zero from +
and – sides, respectively. In addition to (21), on the interface
y = 0, we have the following conditions

σ2
yy − σ3yy = 0, σ2xy − σ3

xy = 0,  0 ≤ x <∞, y = 0ð Þ: ð22Þ

The components of the stress vector at y = 0 and x > 0

Table 1: The values of exact, approximate, and absolute error values by TMM and PNM for (fiber υ = 0:22).

T N x Exact sol. Approx. T . Error. T . Approx. N . Error. N .

0.02

10

-1.00 0.00400000 0.00045299 0.0000529901 0.00445921 0.00045921

-0.60 0.00014400 0.00014029 0:370969 × 10 − 5 0.00202874 0.00188474

-0.20 0.00001600 0.00002022 0:422877 × 10 − 5 0.00264946 0.00263346

0.20 0.00001600 0.00002022 0:422877 × 10 − 5 0.00483289 0.00481689

0.60 0.00014400 0.00014029 0:37096 × 10 − 5 0.00797219 0.00782819

1.00 0.00400000 0.00045299 0.0000529901 0.00246812 0.00153187

20

-1.00 0.00400000 0.00047952 0.0000795200 0.00443268 0.00043268

-0.60 0.00014400 0.00014464 0:6491943 × 10 − 6 0.00202439 0.00188039

-0.20 0.00001600 0.00002348 0:7485778 × 10 − 5 0.00264620 0.00263020

0.20 0.00001600 0.00002348 0:748577 × 10 − 5 0.00482963 0.00481363

0.60 0.00014400 0.00014464 0:6491944 × 10 − 6 0.00796748 0.00782384

1.00 0.00400000 0.00047952 0.0000795200 0.00244159 0.00155840

0.2

10

-1.00 0.04000000 0.08709172 0.047091725 0.08217952 0.04217952

-0.60 0.01440000 0.02430491 0.009904913 0.02213587 0.00773587

-0.20 0.00160000 0.00238484 0.000784841 0.00028484 0.00131515

0.20 0.00160000 0.00238484 0.000784841 0.00246827 0.00086827

0.60 0.01440000 0.02430491 0.009904913 0.01619242 0.00179242

1.00 0.04000000 0.08709172 0.047091725 0.08417060 0.04417060

20

-1.00 0.04000000 0.09251755 0.05251755 0.08760535 0.04760535

-0.60 0.01440000 0.02518075 0.01078075 0.02301171 0.00861171

-0.20 0.00160000 0.00302813 0.00142813 0.00035844 0.00124155

0.20 0.00160000 0.00302813 0.00142813 0.00182498 0.00022498

0.60 0.01440000 0.02518075 0.01078075 0.01706826 0.00266826

1.00 0.04000000 0.09251755 0.05251755 0.08959643 0.04959643
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may be expresses as

1 + K3
μ3

σ3yy x, 0, tð Þ = lim
y⟶0−

2
π

ð∞
0
eαx α11A1 α, tð Þ + α12A2 α, tð Þf g cos αxdα

+ 2
π

ð∞
0

H11 αð ÞA1 α, tð Þ +H12 αð ÞA2 α, tð Þf g cos αxdα

+
ðt
0
F τð Þf i x, 0, τð Þdτ,

ð23Þ

−
1 + K3
μ3

σ3
xy x, 0, tð Þ = lim

y⟶0−
2
π

ð∞
0
eαx α21A1 α, tð Þ + α22A2 α, tð Þf g sin αxdα

+ 2
π

ð∞
0

H21 αð ÞA1 α, tð Þ +H22 αð ÞA2 α, tð Þf g sin αxdα

+
ðt
0
F τð Þf i x, 0, τð Þdτ,

ð24Þ
where HðαÞ is the Heaviside functions, and Ai is the

Fourier transforms of f i defined as follows:

A1 α, tð Þ =
ð∞
0
f1 z, tð Þ cos αzdz, A2 α, tð Þ =

ð∞
0
f2 z, tð Þ sin αzdz:

ð25Þ

The constants aij depend on the elastic properties of the
materials adjacent to the crack only and are given by

a11 = −a22 = 1 + λ2λ4ð Þ/λ4, a12 = −a21 = − 1 + 2λ4 − λ2λ4ð Þ/λ4,
λ2 = K2μ3 − K3μ2ð Þ/ μ2 + K2μ3ð Þ, λ4 = μ3 + μ2K3ð Þ/ μ2 + μ3ð Þ,

ð26Þ

Table 2: The values of exact, approximate, and absolute error values by TMM and PNM for (Plutonium υ = 0:21).

T N x Exact sol. Approx. T . Error T . Approx. N . Error N .

0.02

10

-1.00 0.00400000 0.000443078 0.000043078 0.00446912 0.00046912

-0.60 0.00014400 0.000140836 0:316366 × 10 − 5 0.00202819 0.00188419

-0.20 0.00001600 0.000020081 0:408164 × 10 − 5 0.00264960 0.00263360

0.20 0.00001600 0.000020081 0:408164 × 10 − 5 0.00483303 0.00481703

0.60 0.00014400 0.000140836 0:316366 × 10 − 5 0.00797164 0.00782764

1.00 0.00400000 0.000443078 0.0000430784 0.00247804 0.00152196

20

-1.00 0.00400000 0.00046333 0.000063339 0.00444887 0.00044887

-0.60 0.00014400 0.00014484 0:843735 × 10 − 6 0.00202419 0.00188019

-0.20 0.00001600 0.00002309 0:7095783 × 10 − 5 0.00264659 0.00263059

0.20 0.00001600 0.00002309 0:7095783 × 10 − 5 0.00483002 0.00481402

0.60 0.00014400 0.00014484 0:843735 × 10 − 6 0.00796764 0.00782364

1.00 0.00400000 0.00046333 0.000063339 0.00245778 0.00154221

0.2

10

-1.00 0.04000000 0.07863996 0.038639964 0.07372776 0.03372776

-0.60 0.01440000 0.02389663 0.009466379 0.02172759 0.00732759

-0.20 0.00160000 0.00258811 0.000988111 0.00008157 0.00151842

0.20 0.00160000 0.00258811 0.000988111 0.00226500 0.00066500

0.60 0.01440000 0.02389663 0.009496637 0.01578414 0.00138414

1.00 0.04000000 0.07863996 0.038639964 0.07571884 0.03571884

20

-1.00 0.04000000 0.08232299 0.04232299 0.07741079 0.03741079

-0.60 0.01440000 0.02462094 0.01022094 0.02245190 0.00805190

-0.20 0.00160000 0.00312893 0.001528933 0.00045924 0.00114075

0.20 0.00160000 0.00312894 0.001528933 0.00172417 0.00012417

0.60 0.01440000 0.02462094 0.010220943 0.01650845 0.00210845

1.00 0.04000000 0.08232299 0.042322994 0.07940187 0.03940187

Fibber 𝜐 = 0.22

0.01
x

Error

0
0
0.005

0.015
0.02 1

0.5
0

–0.5
–1

2e–06
4e–06
6e–06
8e–06
1e–05

t

Figure 2: The value absolute error by TMM at N = 10 and T = 0:02
.
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where μi is the shear modules, and λ’s is Lame’s
constants.

Note that once the dislocations f iðxÞ on the interface are
specified, formulas (23)and (24) give the stresses for all
values of x. The crack problem under consideration f iðxÞ
is zero for ∣x ∣ >1 and is unknown for ∣x ∣ <1. On the other
hand, the stress vector on the interface y = 0 is unknown
for ∣x ∣ >1 that is given by the following known functions

for ∣x ∣ <1, i.e.,

f1 x, tð Þ = f1 −x, tð Þ, f2 x, tð Þ = −f2 −x, tð Þ: ð27Þ

Then,

ð∞
0
H αð Þ cos αxdα

ðt
0
f1 z, tð Þ cos αzdz

= 1
2

ð1
−1

ð1
−1
f ∗1 z,tð Þf ∗∗1 z, tð Þdxdx

ð∞
0
H αð Þ cos α z − xð Þdα:

ð28Þ

Hence, we obtain

−
1 + K3
μ3

P1 x, tð Þ = lim
y⟶0−

a11
π

ð1
−1

ð1
−1
f ∗1 z,tð Þf ∗∗1 z, tð Þdzdz

ð∞
0
eαy cos α z − xð Þdα

�

+ a12
π

ð1
−1

ð1
−1
f ∗2 z,tð Þf ∗∗2 z, tð Þdzdz ×

ð∞
0
eαy sin α z − xð Þdα

+ 1
π

ð1
−1

ð1
−1
〠
2

j=1
k∗1j x,zð Þk∗∗1j x, zð Þf ∗j z,tð Þf ∗∗j z, tð Þdzdz

+
ðt
0
F τð Þf1 x, τð Þdτ

�
,

ð29Þ

−
1 + K3
μ3

P3 x, tð Þ = lim
y⟶0−

a21
π

ð1
−1

ð1
−1
f ∗1 z,tð Þf ∗∗1 z, tð Þdzdz

ð∞
0
eαy sin α z − xð Þdα

�

+ a22
π

ð1
−1

ð1
−1
f ∗2 z,tð Þf ∗∗2 z, tð Þdzdz ×

ð∞
0
eαy cos α z − xð Þdα

+ 1
π

ð1
−1
〠
2

j=1
k2j x, zð Þf j z, tð Þdz +

ðt
0
F τð Þf2 x, τð Þdτ

#
:

ð30Þ

Evaluating the infinite integrals in (30), passing to the

Fibber 𝜐 = 0.22

t x

Error

0
0.002
0.004
0.006
0.008

0
0.005

0.01
0.015

0.02 1
0.5

0
–0.5

–1

Figure 3: The value absolute error by PNM at N = 10 and T = 0:02.
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0.015
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0.5

0
–0.5

–1

Figure 4: The value absolute error by TMM at N = 20 and T = 0:02
.
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0.015
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0.5

0
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Figure 5: The value absolute error by PNM at N = 20 and T = 0:02.
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0.003

0
0.05

0.1
0.15
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0.5

0
–0.5
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Figure 6: The value absolute error by TMM at N = 10 and T = 0:2.
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Cauchy theorems, we have

−
1 + K3
a12μ3

P1 x, tð Þ = γw1 x, tð Þ + 1
π

ð1
−1

ð1
−1

w2 u, v ; tð Þ
x − uð Þ y − vð Þ dudv

−
1

a12π

ð1
−1
〠
2

j=1
k1j x, yð Þwj y, tð Þdy + 1

a12

ðt
0
F τð Þw1 x, τð Þdt,

−
1 + K3
a21μ3

P2 x, tð Þ = 1
π

ð1
−1

ð1
−1

w1 u, v ; tð Þ
x − uð Þ y − vð Þ dudv

− γw2 x, tð Þ − 1
a21π

ð1
−1
〠
2

j=1
k2j x, yð Þwj y, tð Þdy + 1

a21

ðt
0
F τð Þw2 x, τð Þdt,

ð31Þ

where

γ = a11
a12

= a22
a21

= μ2 + K3μ2ð Þ − μ2 + K2μ3ð Þ
μ2 + K2μ3ð Þ + μ3 + K3μ2ð Þ : ð32Þ

The two formulas of (31) represent a system of MIE with
Cauchy kernel. For one layer, we can have the following
MIE, on noting the difference notations.

ηw x, tð Þ − 1
π

ð1
−1

ð1
−1

w u, v ; tð Þ
x − uð Þ y − vð Þ dudv −

1
πa12

ð1
−1
k x, yð Þw y, tð Þdy

+ 1
a12

ðt
0
F t, τð Þw x, τð Þdτ = f x, tð Þ:

ð33Þ

In general, we can write Eq. (33) in the form:

ηw x, tð Þ + λ

π

ð1
−1

ð1
−1
p1 x − uj jp2 y − vj jw u, v ; tð Þdudv

+ λ
ð1
−1
k x, yð Þw y, tð Þdy + λ

ðt
0
ζ t, τð Þw x, τð Þdτ = f x, tð Þ,

where p1 x − uj jp2 y − vj j = 1
x − uð Þ y − vð Þ ð34Þ

3. The Existence and Uniqueness of
the Solution

We write this formula in the integral operator form

�Ww x, tð Þ = 1
η
f x, tð Þ −Ww x, tð Þ, η ≠ 0ð Þ, ð35Þ

Ww =Hw +Dw + ζw,

Fibber 𝜐 = 0.22
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Figure 7: The value absolute error by PNM at N = 10 and T = 0:2.
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Figure 8: The value absolute error by TMM at N = 20 and T = 0:2.
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Figure 9: The value absolute error by PNM at N = 20 and T = 0:2.
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Figure 10: The value absolute error by TMM at N = 10 and T =
0:02.
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Hw = λ

ηπ

ð1
−1

ð1
−1
p1 x − uj jp2 y − vj jw u, v ; tð Þdudv,Dw

= λ

η

ð1
−1
k x, yð Þw y, tð Þdy, ζw = λ

η

ðt
0
ζ t, τð Þw x, τð Þdτ:

ð36Þ

We assume the following conditions:

(1) The singular kernel of FI term satisfies in L2½−1, 1�
× L2½−1, 1� the discontinuity condition

ð1
−1

ð1
−1

ð1
−1

ð1
−1

p1 x − uj jp2 y − vj jk k
� �2

dxdudtdv
1
2 =M, M is a constantð Þ:

ð37Þ

(2) The kernel of VI term ζ(t, τ) is continuous in the
Banach space C½0, T�, 0 ≤ τ ≤ t ≤ T <∞ and satisfies

ζ t, τð Þ ≤N , ∀t, τ ∈ 0, T½ �j j: ð38Þ

(3) The continuous kernel jkðx, yÞj ≤ L

f x, tð Þk k = max
0≤t≤T

ðt
0

ð1
−1
f 2 x, τð Þdx

� �1
2

dτ = R,  R is a constantð Þ:

ð39Þ

(4) wðx, tÞ in the space, L2½−1, 1� × L2½−1, 1� × C½0, T�,
behaves as the known function f ðx, tÞ

Theorem 1. Eq. (34) has an exact unique solution in L2½−1
, 1� × L2½−1, 1� × C½0, T�, under the condition

ηj j > λj j M
π

+
ffiffiffi
2

p
T L +Nð Þ

� �
, T = max

0≤t≤T
t: ð40Þ

Lemma 1. The integral operator �W maps L2½−1, 1� × L2½−1,
1� × C½0, T� into itself.
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Figure 11: The value absolute error by PNM at N = 10 and T =
0:02.
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Figure 12: The value absolute error by TMM at N = 20 and T =
0:02.
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Figure 13: The value absolute error by PNM at N = 20 and T =
0:02.
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Figure 14: The value absolute error by TMM at N = 10 and T = 0:2
.
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Proof. From (35) and (40), the normality of the integral
operator takes the forms

�Ww x, tð Þ		 		 ≤ 1
η










 f x, tð Þk k + λ

πη











ð1
−1

ð1
−1
p1 x − uj jp2 y − vj jw u, v ; tð Þdudv

				
				

+ λ

η

ð1
−1
∣ k x, yð Þ w y, tð Þk ∣ dy

				
				










 + λ

η











ðt
0
∣ ζ t, τð Þ w x, τð Þk ∣ dτ

				
				:

ð41Þ

Applying Cauchy-Schwarz inequality, we have

Hwk k ≤ λ

πη












ð1
−1

ð1
−1
p21 x − uj jp22 y − vj jdudv

� �1
2 ð1

−1

ð1
−1
w2 u, v ; tð Þdudv

� �1
2

					
					:

ð42Þ

Using the definition of the norm in the space L2½−1, 1�
× L2½−1, 1� × C½0, T�, we get

Hwk k ≤ λ

πη











ð1
−1

ð1
−1

ð1
−1

ð1
−1
p21 x − uj jp22 y − vj jdudv

� �
dudv

� �1
2

max
0≤t≤T

ðt
0

�
ð1
−1

ð1
−1
w2 u, v ; tð Þdudv

� �1
2

dτ:

ð43Þ

Then, using condition (1), we obtain

Hwk k ≤ λ

πη










M wk k: ð44Þ

Also, the term Dw takes the form

Dwk k ≤ λ

η











ð1
−1

k x, yð Þ w y, tð Þkj jdy
				

				: ð45Þ

Using condition (3), we get

Dwk k ≤ λ

η










L max

0≤t≤T

ðt
0

ð1
−1
w2 y, τð Þ ∣ dy1

2dτ
� �				

				: ð46Þ

Hence,

Dwk k ≤ λ

η










 ffiffiffi

2
p

LT wk k: ð47Þ

In the same manner, we can write

ζwk k ≤ λ

η











ðt
0
∣ ζ t, τð Þ w x, τð Þk ∣ dτ

				
				: ð48Þ

Using condition (2), we obtain

ζwk k ≤ λ

η










N max

0≤t≤T

ðt
0

ð1
−1
w2 y, τð Þdy

� �1
2

dτ

					
					: ð49Þ

Thus, one has

ζwk k ≤ λ

η










 ffiffiffi

2
p

NT wk k, T = max
0≤t≤T

t: ð50Þ

Hence, with the aid of conditions (5), (44), (47), and
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Figure 15: The value absolute error by PNM at N = 10 and T = 0:2.
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Figure 16: The value absolute error by TMM at N = 20 and T = 0:2
.
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Figure 17: The value absolute error by PNM at N = 20 and T = 0:2.

8 Advances in Mathematical Physics



(50), Eq. (41) takes the form

�Ww
		 		 ≤

R
ηj j + α wk k,  α = η−1λ



 

 M
π

+
ffiffiffi
2

p
T L +Nð Þ

��
, T = max

0≤t≤T
t:

ð51Þ

The inequality (51) involves the boundedness of the
operators W and �W.☐

Lemma 2. The integral operator (35) under the condition
(40) is continuous and contraction operator.

Proof. For the functions w1ðx, tÞ,w2ðx, tÞ in the space L2½−
1, 1� × L2½−1, 1� × C½0, T�, formula (35) yields

�Ww1 − �Ww2
� �

x, tð Þ		 		 = W w1 −w2ð Þ x, tð Þk k: ð52Þ

Hence, we have

�Ww1 − �Ww2
� �

x, tð Þ		 		 ≤ λ

ηπ











ð1
‐1

ð1
‐1
∣ p1 x − uj jp2 y − vj j w1 u, v ; tð Þk −w2 u, v ; tð Þ ∣ dudv

				
				

+ λ

ηπ











ð1
‐1
∣ k ∣x, y ∣ð Þ ∣w1 y, tð Þ −w2 y, tð Þ ∣ dy

				
				

+ λ

η











ðt
0
∣ ζ t, τð Þ ∣w1 x, τð Þ −w2 x, τð Þ ∣ dτ

				
				:

ð53Þ

Using formula (53) with the conditions (1), (2), and (3),
then applying Cauchy-Schwarz inequality, we obtain

�Ww1 − �Ww2
		 		 ≤ α w1 −w2k k,  α = η−1λ



 

 M
π

+
ffiffiffi
2

p
T L +Nð Þ

� �� �
:

ð54Þ

Hence, �W is a continuous operator in the space L2½−1,
1� × L2½−1, 1� × C½0, T�, and under the condition ðα < 1Þ, �W
is a contraction operator.☐

4. THE STDFIEs

Consider Eq. (34). In this section, we divide the interval ½0
, T�, 0 ≤ t ≤ T <∞,0 = t0 < t1<⋯<tn = T , where t = ti, i = 0, 1
, 2, ::, n,, to get

ηw x, tið Þ + λ

π

ð1
−1

ð1
−1

w u, v, tið Þ
x − uð Þ y − vð Þ dudv + λ

ð1
−1
k x, yð Þw y, tið Þdy

+ λ
ðti
0
ζ ti, τð Þw x, τð Þdτ = f x, tið Þ:

ð55Þ

Using the quadrature formula, the Volterra term
becomes

ðti
0
ζ ti, τð Þw x, τð Þdτ = 〠

i

j=0
κjζ ti, t j

� �
w x, t j
� �

+ R x, tið Þ: ð56Þ

κj is the weight, where κ0 = 1/2h0, κi = 1/2hi, κi = hj, 0 <
j < i, h denotes the constant step size for integration. Using

(56) in (55), we have

ηwi xð Þ + λ

π

ð1
−1

ð1
−1

wi u, vð Þ
x − uð Þ y − vð Þ dudv + λ

ð1
−1
k x, yð Þwi yð Þdy + λ〠

i

j=0
κjζi,jwj xð Þ

= f i xð Þ + Ri xð Þ:
ð57Þ

Formula (57) can be adapted in the form

η + λκiζi,j
� �

wi xð Þ = f i xð Þ − λ

π

ð1
−1

ð1
−1
p1 ∣x − u ∣ð Þp2 ∣y − v ∣ð Þwi u, vð Þdudv

− λ
ð1
−1
k x, yð Þwi yð Þdy‐λ〠

i

j=0
κjζi,jwj xð Þ, 0 ≤ j ≤ i − 1:

ð58Þ

Then, the general form of Eq. (58) can be represented as

μiwi xð Þ + λ

π

ð1
−1

ð1
−1
p1 ∣x − u ∣ð Þp2 ∣y − v ∣ð Þwi u, vð Þdudv

+ λ
ð1
−1
k x, yð Þwi yð Þdy = ψi xð Þ,

ð59Þ

where

μi = η + λκiζi, j
� �

, ψi = f i xð Þ − λ〠
i−1

j=0
κj ζi,jwj xð Þ �

, i = 0, 1,⋯, n:

ð60Þ

Formula (59) represents a linear system of TDFIEs of the
second kind, which contains ðn + 1Þ equation of ðn + 1Þ
unknown functions of wiðxÞ corresponding to the time
interval [0,T].

5. Some Numerical Methods

5.1. The TMM. We present the TMM to obtain numerical
solution of TDFIE of the second kind with Cauchy form,
which it expresses in the form

μiwi xð Þ + λ

π

ð1
−1

ð1
−1
p1 ∣x − u ∣ð Þp2 ∣y − v ∣ð Þwi u, vð Þdudv

+ λ
ð1
−1
k x, yð Þwi yð Þdy = ψi xð Þ,

ð61Þ

which it may be adapted as

μw xð Þ = ψ xð Þ − λ

π

ð1
−1

ð1
−1
F x − u, y − vð Þw u, v ; tð Þdudv,

ð62Þ
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where

F x − u, y − vð Þ = 1 + πk x, yð Þ y − xð Þð Þ
x − uð Þ y − vð Þ = 1

x − uð Þ y − vð Þ
� �

1 + πk x, yð Þ y − xð Þð Þ:

ð63Þ

Then, write the integral term in Eq. (62) as the form

ð1
−1

ð1
−1
F x − u, y − vð Þw u, v ; tð Þdudv

= 〠
N

n=−N

ðnh+h
nh

F x − u, y − vð Þw u, v ; tð Þdudv, h = 1
N

� �
:

ð64Þ

Formula (64) reduces as

ð1
−1

ð1
−1
F x − u, y − vð Þw u, v ; tð Þdudv

= 〠
N

n=−N
〠
M

m=−M
F x − u, y − vð Þw u, v ; tð Þdudv h = 1

N

� �
:

ð65Þ

Then,

ðnh+h
nh

ðmh+h

mh
F x − u, y − vð Þw u, v ; tð Þdudv

= An,m x, yð Þw nh,mhð Þ + Bn,m x, yð Þw nh + h,mh + hð Þ + R:

ð66Þ

Then, we put wðu, vÞ = 1:1, uv in Eq. (66), and then we
obtain

An,m x, yð Þ = 1
h

nh + hð Þ mh + hð ÞI
nh +mh + hð Þ −

J
nh +mh + hð Þ

� �
,

Bn,m x, yð Þ = 1
h

J
nh +mh + hð Þ −

nhð Þ mhð ÞI
nh +mh + hð Þ

� �
,

ð67Þ

where

I x, yð Þ =
ðnh+h
nh

ðmh+h

mh
k t − τj j, x − yj jð Þdudv,

J x, yð Þ =
ðnh+h
nh

ðmh+h

mh
uv ⋅ k x − uj j, y − vj jð Þdudv:

ð68Þ

Eq. (65) becomes

ð1
−1

ð1
−1
F x − u, y − vð Þw u, v ; tð Þdudv

= 〠
N−1

n=−N
〠
M−1

m=−M
An,m x, yð Þw nh,mh ; tð Þ + Bn,m x, yð Þw nh + h,mh + h ; tð Þ½ �

= 〠
N‐1

n=−N
〠
M−1

m=−M
An,m x, yð Þw nh,mh ; tð Þ + 〠

N

n=−N
〠
M

m=−M
B n−1ð Þ m−1ð Þ x, yð Þw nh,mh ; tð Þ

= 〠
N

n=−N
〠
M

m=−M
Dn,m x, yð Þw nh,mh ; tð Þ,

ð69Þ

where

Dn,m x, yð Þ =
A−N x, yð Þ n =m = −N ,
An x, yð Þ + Bn−1 x, yð Þ −N < n =m <N ,
BN−1 x, yð Þ n =m =N:

8>><
>>:

ð70Þ

Thus, the IE (62) becomes

μw x, yð Þ + λ

π
〠
N

n=−N
〠
M

m=−M
Dn,m x, yð Þw nh,mh ; tð Þ = f x, yð Þ:

ð71Þ

If we put x = kh, y = lh, then we get

μwk,l +
λ

π
〠
N

n=−N
〠
M

m=−M
Dkln,mwnm = f kl  −N ≤ k ≤N ,−M ≤ l ≤M,

ð72Þ

where

Dkln,m =
A−N kh, lhð Þ n =m = −N ,
An kh, lhð Þ + Bn−1 kh, lhð Þ −N < n =m <N ,
BN−1 kh, lhð Þ n =m =N:

8>><
>>:

ð73Þ

The matrix Dkln,m may be written as Dkln,m =Gkln,m −
Ekln,m, where

Gkln,m = An kh, lhð Þ + Bn−1 kh, lhð Þ,  −N ≤ k, l, n, ≤N ð74Þ

is the TM of order 2N + 1, and the matrix

Ekln,m =
B−N−1 kh, lhð Þ n =m = −N ,
0 −N < n =m <N ,
AN kh, lhð Þ n =m =N:

8>><
>>: ð75Þ

However, the solution of the system can be obtained in
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the form

wk,l = μI − λ Gkln − Eklnð Þ½ �−1 f kl, ð76Þ

where I is the identity matrix and jμI − λðGkln − EklnÞj ≠ 0:.

5.2. The PNM. Consider

μw xð Þ = ψ xð Þ − λ

π

ð1
−1

ð1
−1
p x − u ; y − vð Þ�k x − uj j ; y − vj jð Þw u, v ; tð Þdudv,

ð77Þ

where

p x − u ; y − vð Þ�k x − uj j ; y − vj jð Þ = 1
x − uð Þ y − vð Þ

� �
1 + πk x, yð Þ y − xð Þð Þ,

ð78Þ

where pand �k are badly behaved and well-behaved func-
tions of their arguments, respectively. We approximate the
integral term in (77) when fψsðxi, yiÞg by

ð1
−1

ð1
−1
p xi − u ; ys − vð Þ�k xi − uj j ; ys − vj jð Þw u, v ; tð Þdudv

≈ 〠
N

j=0
〠
M

i=0
κijsl

�k xi − uj j ; ys − vj jð Þw uj, vl
� �

,

ð79Þ

where κijsl is the weights. Also, we approximate the integral
term in (77) in the form:

ð1
−1

ð1
−1
p xi − u ; ys − vð Þ�k xi − uj j ; ys − vj jð Þw u, v ; tð Þdudv

= 〠
N

j=0
〠
M

i=0

ðu2 j+2
u2 j

ðv2 j+1
v2 j

p xi − u ; ys − vð Þ�k xi − uj j ; ys − vj jð Þw u, v ; tð Þ,

ð80Þ

where xi = ui = yi = vi = a + ih, i = 0, 1,⋯,N with h = b
− a/N and N even. Now, if we approximate the nonsingular
part of the integrand over each interval ½u2j, u2j+2�, ½V2l, v2l+2�
, by the second degree Lagrange interpolation polynomial
that interpolates, we find

ð1
−1

ð1
−1
p ui − u, vi − vð Þ~k ui − u, vi − vð Þw u, v ; tð Þdudv = 〠

N−2
2

j=0
〠
M−2
2

l=0

ðu2 j+2
u2 j

ðv2l+2
v2l

p ui − u, vi − vð Þ

×
u2j+1 − u
� �

v2l+1 − vð Þ u2 j+2 − u
� �

v2l+2 − vð Þ
2h2
� �

2h2
� � ~k ui − u2j, vi − v2l

� �
w u2 j, v2l ; t
� �(

+
u − u2j
� �

v − v2lð Þ u2j+2 − u
� �

v2l+2 − vð Þ
h2
� �

h2
� � ~k ui − u2 j+1, vi − v2l+1

� �
w u2 j+1, v2l+1 ; t
� �

+
u − u2j
� �

v − v2lð Þ u − u2j+1
� �

v − v2l+1ð Þ
2h2
� �

2h2
� � ~k ui − u2 j+2, vi − v2l+2

� �
w u2 j+2, v2l+2 ; t
� �)

dudv

= 〠
N

j=0
〠
M

l=0
wijwil

~k ui − uj, vi − vl
� �

w ui, vl ; tð Þ,

ð81Þ

where uj = jh, uj+1 = ðj + 1Þh, uj − uj+1 = vl − vl+1 = −h.

If we define

αij ui, vsð Þ = 1
4h4

ðu2 j
u2 j−2

ðv2 j
v2 j−2

p ui, u ; vs, vð Þ u − u2j−2
� �

v − v2j−2
� �

� u − u2j−1
� �

v − v2j−1
� �

dudv,

βij ui, vsð Þ = 1
4h4

ðu2 j
u2 j−2

ðv2 j
v2 j−2

p ui, u ; vs, vð Þ u2j−2 − u
� �

v2j−2 − v
� �

� u2j − u
� �

v2j − v
� �

dudv,

γij ui, vsð Þ = 1
4h4

ðu2 j
u2 j−2

ðv2 j
v2 j−2

p ui, u ; vs, vð Þ u − u2j−2
� �

v − v2j−2
� �

� u − u2j−1
� �

v − v2j−1
� �

dudv:

ð82Þ

In general, assume K0 thus (82) become

αij ui, vsð Þ = h2

4

ð2
0

ð2
0
ζδ ζ − 1ð Þ ζ − 1ð Þp ui, u2j−2 + ζh

� �
; vs, v2l−2 + δhð Þ� �

dζdδ,

βij ui, vsð Þ = h2

4

ð2
0

ð2
0
ζ − 1ð Þ ζ − 2ð Þ ζ − 1ð Þ ζ − 2ð Þp ui, u2j−2 + ζh

� �
; vs,

�
� v2l−2 + δhð ÞÞdζdδ,

γij ui, vsð Þ = h2

4

ð2
0

ð2
0
ζδ 2 − ζð Þ 2 − ζð Þp ui, u2j−2 + ζh

� �
; vs, v2l−2 + δhð Þ� �

dζdδ:

ð83Þ

If we define ψk =
Ð 2
0
Ð 2
0ξ

kδkpðui − ðu2j−2 + ξhÞ, vi − ðv2l−2
+ δhÞÞdξdδ, k = 0, 1, 2 and let ui − u2j−2 = ði − 2j + 2Þh, vi −
v2l−2 = ði − 2l + 2Þh, we have ψk =

Ð 2
0
Ð 2
0ξ

kδkpðjz − ζÞhj, jðg −
δÞhjÞdζdδ, k = 0, 1, 2, z = i − 2j + 2, g = s − 2l + 2:

6. Numerical Applications and Discussions

In this section, we state some applications and numerical
results to discuss the approximate solution (i.e., the treat of
the surface cracks that occurs in the materials as a result,
the constant in finite of materials, which the deformation
increases as well as the time increases in the interval ½0, T�.
The TMM and PNM are used to get numerical solution for
values of μ = 1, and for different materials, plutonium υ =
0:21 and fiber υ = 0:22, where the Poisson ratio is 0 ≤ υ < 1
, λ = �λ/2G, �λ = 2Gυ/ð1 − 2υÞ, ðG shearmodulesÞ.We divided
the position interval by N = 10, 20 units. Since 0 ≤ t ≤ T<∞
, we choose the time T = 0:02, 0.2. Tables 1 and 2 are as fol-
lows: exact sol. → the exact solution, Approx.T . →approxi-
mate solution of TMM, error.T . → the absolute error of
TMM, Approx.N . →approximate solution of PNM, and
error.N . → the absolute error of PNM. Figures 2–17 show
the value absolute error by TMM and PNM at N = 10, 20
and the time T = 0:02, 0.2, for the materials plutonium υ =
0:21 and fiber υ = 0:22.
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Consider

μw x, tð Þ = f x, tð Þ − λ

μ

ð1
−1

ð1
−1

1
x − uð Þ y − vð Þw u, v ; tð Þdudv

− λ
ð1
−1
∣x − y∣w y, tð Þdy −

ðt
0
tτw x, τð Þdτ, μ = 1ð Þ:

ð84Þ

The exact solution ϕðx, yÞ = x2y2.

7. The Conclusion

We have presented a successful technique for the numerical
solution of MIE with singular kernel in two-dimensional by
using TMM and PNM which is established from the plane
strain problem for the bounded layer medium composed of
different materials. From Tables 1 and 2 and Figures 2–17,
we note that the errors due to the TMM are less than the
errors due to PNM. In addition, we note that N increases
for the two different materials (fiber υ = 0:22) (plutonium υ
= 0:21), the values of kðjgðxÞ − gðyÞjÞ = cot ðgðyÞ − gðxÞ/2Þ
and x ∈ ½−π, π�, ϕð±π, tÞ = 0: are fixed, and the error values
increase. The approximate solution is nearly coincident with
the exact solution for t > 0 at each value of x ∈ ½−1, 1�.
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