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The goal of this paper is study the mixed integral equation with singular kernel in two-dimensional adding to the time in the
Volterra integral term numerically. We established the problem from the plane strain problem for the bounded layer medium
composed of different materials that contains a crack on one of the interface. Also, the existence of a unique solution of the
equation proved. Therefore, a numerical method is used to translate our problem to a system of two-dimensional Fredholm
integral equations (STDFIEs). Then, Toeplitz matrix (TMM) and the Nystrom product methods (NPM) are used to solve the
STDFIEs with Cauchy kernel. Numerical examples are presented, and their results are compared with the analytical solution to
demonstrate the validity and applicability of the methods. The codes were written in Maple.

1. Introduction

Many problems of engineering, mathematical physical, and
contact problems in the theory of elasticity lead to singular
integral equations. Integral equations provide an important
tool for solving the ordinary and partial deferential equa-
tions. Therefore, many different methods are used to obtain
the solution of the linear and nonlinear integral equations.
Brunner and Kauthen [1] introduced collocation and iter-
ated collocation methods for solving the two-dimensional
Volterra integral equation (T-DVIE). In [2], authors pro-
posed a class of explicit Runge-Kutta-type methods of order
3 for solving nonlinear T-DVIE. In [3], authors studied the
approximate solution of T-DVIEs by the two-dimensional
differential transform method. Abdou, in [4, 5], used differ-
ent methods to obtain the solution of F-VIE of the first and
second kinds in which the Fredholm integral term is consid-
ered in position while the Volterra integral term is consid-
ered in time. EL-Borai et al., in [6], studied the numerical
solution for the T-DFIE with weak singular kernel, but they
have studied the problem on a rectangular path of the parties
only. AL-Bugami in [7] studied and discussed the solution of
the T-DFIE with applications in contact problems. AL-
Bugami in [8] studied and discussed the solution of the

two-dimensional singular Fredholm integral equation (T-
DFIE) with time. The solution of a large of mixed boundary
value problem of a great variety of contact and crack prob-
lems in solid mechanics, physical, and engineering can be
related to a system of the singular IEs have a simple
Cauchy-type singularity (Ref. [9]). In [10], the authors stud-
ied the linear two-dimensional Volterra integral equation
with continuous kernel numerically. In [11], the authors dis-
cussed continuous Fredholm-Volterra integral equation. Al-
Bugami, in [12], studied the singular Hammerstein-Volterra
integral equation and solved numerically. In [13], the author
studied the surface cracks of finite layers of fractional
materials.

In this work, we consider a mixed integral equation with
singular kernel in two-dimensional (MIE)

A

nw(x,t)+;J J pilx —ulp,|y — viw(u, v; t)dudv

-1J41
t

+ /\Jilk(x, yw(y, t)dy + Jof(t, T)w(x, 7)dt = f(x, ).
(1)

Formula (1) is called the MIE with singular kernel in
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two-dimensional of the second kind with Cauchy kernel in
(Ly(-1,1) xL,(-1,1)) x C(0; Y) ; Y < 1, where the FI term
is considered in position with singular kernel, and the VI
term is considered in time with a positive and continuous
kernell(t,7). f(x,t) is known function, while w(x,t) is
unknown function to be determined. The numerical coeffi-
cient A is called the parameter of the IE.

2. The Basic Formulas of the Problem

Consider the plane strain problem for the bounded layer
medium (Figure 1), composed of three different materials.
Let the medium material contain a crack on one of the inter-
face. Without any loss in generality, the half length of the
crack is assumed to be unity. We will consider with the effect
of the ratio of the layer thickness to the crack length on the
stress, intensity factors, and the strain energy release rate.
For interesting the disturbed stress state, while is variable

also with time, caused by the crack.
(0)

We assume that the overall stress distribution ;" (x, y,

t), in the imperfection free medium, is known. The stress
(1)

state 07, (x, , t), in the cracked medium, may be expressed

as
0(~1>(x y t) = 0<9)(x y t) +(f~(x y t) ij——x "z (2)
1] bl bl l] bl bl 1] b bl » b b bl bl

where 0;; is the disturbed state, which may be obtained
by using the tractions

Py(x 1) ==00))(x,051) 3 Py(x, £) = =0 (x,051), |x| < 1, £ € [0, T,
3)

which are the only external loads applied to the medium.
The problem can always be expressed as the sum of a sym-
metric component and an antisymmetric component. The
tractions are P,(x,t),i=1,2, where

Pi(x,t) =P (=x,t), Py(x,t) = =P, (=x, t), |x| < 1,t € [0, T].
(4)
The solution of the antisymmetric problem requires only
a slight modification. Let u;, v; be the x and y components of

the displacement vector in the 7 -th materials and satisfy the
filed equations in the form:

0

Ju; Ov; d*u.
Vi+N+p) — [ — + 2 ) = p 5
Aut M,-I—( l+kut)ax(ax + ay> pdtz ( )
0 [Ou; Ov, d*u.
V2. + (). e [ — + L) =p—1. 6
b vt+(,+u,)ax<ax+ay> Pp (6)

Then, assume the displacement functions in the follow-
ing:

i(6y:t) =U(xy) + E(t), (7)
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T II (4,, v5)
//,'1 (b 00
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/

I (ps3, v3)

F1GURE 1: The layers of materials.

V(% 1) = Vi(x, y) + F(t). (8)

F(t) is known function of ¢. Hence, using (7) and (8) in
(5) and (6), we get

o*U, *U, *V,
. N1t ot . Nt = 9
Wi+ 2u) 5z Tty + Nt ) =0 )

2 o’V *U,
2 iy, 2 i, 10
N+ 2u) 55 gz + (it 550=0, (10)
d*F(t
g ) _Hi () (11)
dt 1%

Formula (11) has a solution
F(t)=Be V%, F(co) — 0. (12)

For solving the two formulas (9) and (10), we use the
Fourier integral transform:

00

Ui(x,y) = EJ w;(a, y) sin axda, (i=1,2,3), (13)

0

2 (6]
Vi(xy) = EJ v, (@, ) cos axda. (14)
0
Then, we have

d*w; dy,
42w+ 5 2 e+ ) i 2, 15
@+ 2w+ py=g -t g) =0, (15)

iy, dw,
—a?(A, M, +p,—L ) = 16
@t 2yt pyg el r ) =0 (16)

After solving the system of Egs. (15) and (16), and then
using the two formulas (13) and (14), we get

2 [
Ui(xy) = ;J (A +Apy)e™ + (A3 + Ayy)e?] sin axda,
0

Vi(x.y) = %J:o{ [Aﬂ + (% +y>A“]e’“y + [—Ai3 + (% —y)AM] e”y} cos axda,
(17)
where K; has physical meaning and K;=3-4v,; for

plane strain and K; = (3 —v;)/(1 +v;) for generalized plane
stress, v; is Poisson’s coeflicient for each materials, and A, ;
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TasBLE 1: The values of exact, approximate, and absolute error values by TMM and PNM for (fiber v = 0.22).
T N x Exact sol. Approx. T. Error. T. Approx. N. Error. N.
-1.00 0.00400000 0.00045299 0.0000529901 0.00445921 0.00045921
-0.60 0.00014400 0.00014029 0.370969 x 10 —° 0.00202874 0.00188474
-0.20 0.00001600 0.00002022 0.422877 x 10 - > 0.00264946 0.00263346
10 0.20 0.00001600 0.00002022 0.422877 x 10 - ° 0.00483289 0.00481689
0.60 0.00014400 0.00014029 0.37096 x 10 —° 0.00797219 0.00782819
0.02 1.00 0.00400000 0.00045299 0.0000529901 0.00246812 0.00153187
-1.00 0.00400000 0.00047952 0.0000795200 0.00443268 0.00043268
-0.60 0.00014400 0.00014464 0.6491943 x 10 - ° 0.00202439 0.00188039
-0.20 0.00001600 0.00002348 0.7485778 x 10 —° 0.00264620 0.00263020
20 0.20 0.00001600 0.00002348 0.748577 x 10 - > 0.00482963 0.00481363
0.60 0.00014400 0.00014464 0.6491944 x 10 — ¢ 0.00796748 0.00782384
1.00 0.00400000 0.00047952 0.0000795200 0.00244159 0.00155840
-1.00 0.04000000 0.08709172 0.047091725 0.08217952 0.04217952
-0.60 0.01440000 0.02430491 0.009904913 0.02213587 0.00773587
10 -0.20 0.00160000 0.00238484 0.000784841 0.00028484 0.00131515
0.20 0.00160000 0.00238484 0.000784841 0.00246827 0.00086827
0.60 0.01440000 0.02430491 0.009904913 0.01619242 0.00179242
02 1.00 0.04000000 0.08709172 0.047091725 0.08417060 0.04417060
-1.00 0.04000000 0.09251755 0.05251755 0.08760535 0.04760535
-0.60 0.01440000 0.02518075 0.01078075 0.02301171 0.00861171
20 -0.20 0.00160000 0.00302813 0.00142813 0.00035844 0.00124155
0.20 0.00160000 0.00302813 0.00142813 0.00182498 0.00022498
0.60 0.01440000 0.02518075 0.01078075 0.01706826 0.00266826
1.00 0.04000000 0.09251755 0.05251755 0.08959643 0.04959643

,j=1,2,3,4 are functions of a« which can be determined
from the boundary conditions. After obtaining, the values
of U;, V,, the stresses may be evaluated by Hooks law.

The components of the stress vector at the interfaces and
boundaries may be expressed as

1, 2@ "
2_!4ioyy - ;JO {=lw(Ay + Apy) +2(1 —v;)Ap)e™

+[-a(As +Ayy) +2(1 - v;)A,e]} cos axda,

1 i 2 0 —ay
ZTAI-OW = i {~[a(A;; +Apy) + (1 -v;)A,)e

+[a(A +Ay) — (1-2v;)A,]e”} sin axda.

(18)

On the boundaries, the medium may have formally any
one of the following four groups of homogeneous boundary
conditions

i __ Al — 0=
0,=0=0,, u;=0=v, (19)
0, =0=v, o), =0=u, i=123.

The continuity requires that on the interfaces, the stress
and displacement vectors in the adjacent layers be equal, i.e.,

il _ i i+l _ g i=1.2.3 (20)
Ty =0y =0 Oy ~0h=0 17055

Now, to obtain the integral equation, we first assume
that at y =0, the bond between the two adjacent layers is
perfect except for the dislocations at y = 0 and x = y defied by

o, . o, .
a(”z —uz) =fi (% 1), a("z -v3)=f(x 1), (21)

where the superscripts + and - refer to the limiting
values of the displacement as y approaches zero from +
and - sides, respectively. In addition to (21), on the interface
y =0, we have the following conditions

2 _ 3 23
0y, —0,,=0, 0,,-0;,=0, (0<x<oo0,y=0). (22)

The components of the stress vector at y=0 and x>0
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TaBLE 2: The values of exact, approximate, and absolute error values by TMM and PNM for (Plutonium v = 0.21).
T N x Exact sol. Approx. T. Error T. Approx. N. Error N.
-1.00 0.00400000 0.000443078 0.000043078 0.00446912 0.00046912
-0.60 0.00014400 0.000140836 0.316366 x 10 - 0.00202819 0.00188419
-0.20 0.00001600 0.000020081 0.408164 x 10 - 0.00264960 0.00263360
10 0.20 0.00001600 0.000020081 0.408164 x 10 -° 0.00483303 0.00481703
0.60 0.00014400 0.000140836 0.316366 x 10 -° 0.00797164 0.00782764
0.02 1.00 0.00400000 0.000443078 0.0000430784 0.00247804 0.00152196
-1.00 0.00400000 0.00046333 0.000063339 0.00444887 0.00044887
-0.60 0.00014400 0.00014484 0.843735x 10 - ¢ 0.00202419 0.00188019
-0.20 0.00001600 0.00002309 0.7095783 x 10 - ° 0.00264659 0.00263059
20 0.20 0.00001600 0.00002309 0.7095783 x 10 - ° 0.00483002 0.00481402
0.60 0.00014400 0.00014484 0.843735x 10 - ¢ 0.00796764 0.00782364
1.00 0.00400000 0.00046333 0.000063339 0.00245778 0.00154221
-1.00 0.04000000 0.07863996 0.038639964 0.07372776 0.03372776
-0.60 0.01440000 0.02389663 0.009466379 0.02172759 0.00732759
10 -0.20 0.00160000 0.00258811 0.000988111 0.00008157 0.00151842
0.20 0.00160000 0.00258811 0.000988111 0.00226500 0.00066500
0.60 0.01440000 0.02389663 0.009496637 0.01578414 0.00138414
02 1.00 0.04000000 0.07863996 0.038639964 0.07571884 0.03571884
-1.00 0.04000000 0.08232299 0.04232299 0.07741079 0.03741079
-0.60 0.01440000 0.02462094 0.01022094 0.02245190 0.00805190
20 -0.20 0.00160000 0.00312893 0.001528933 0.00045924 0.00114075
0.20 0.00160000 0.00312894 0.001528933 0.00172417 0.00012417
0.60 0.01440000 0.02462094 0.010220943 0.01650845 0.00210845
1.00 0.04000000 0.08232299 0.042322994 0.07940187 0.03940187

may be expresses as

1+K; 4

»y y—0 1 ),

2 00
05,(x,0,t)= lim — [ e {a A (o t) + a, Ay (o 1)} cos axda

+ %J‘X’{Hu(a)Al(oc, t) + Hyy(a) A, (a, 1)} cos axda

0

Jo

1+K;
T
U3

2 [
x,0,t) = lim —J

y—0" 7 ),

+ [tF(T)fi(x, 0, 7)dr,

(23)

e {ay A (a, 1) + a5y A, (o, 1)} sin axda

+ ;{:O{Hu((x)Al(a, t) + Hyy(a)A, (o, t) } sin axda

0

+ J.r F(1)f,(x,0,7)dr,

(24)

where H(«) is the Heaviside functions, and A; is the
Fourier transforms of f; defined as follows:

(00)

Al (a,t) =J f1(z, t) cos azdz,

0

Ay(a,t) = J f,(z,t) sin azdz.
0

(25)

Error

le-05
8e-06
6e-06
4e-06
2e-06

0

Fibber v = 0.22

FIGURE 2: The value absolute error by TMM at N =10 and T = 0.02

The constants a;; depend on the elastic properties of the
materials adjacent to the crack only and are given by

ay =—ay =1+ MLA)/Ay,  ap =—ay, =—(1+20 - AA,)/4,,

Ay = (Kyps = Ky (1, + Koty),

Ay = (py + 1K) (1 + ph3)s

(26)



Advances in Mathematical Physics 5

Fibber v =0.22

Fibber v = 0.22
FIGURE 6: The value absolute error by TMM at N =10 and T'=0.2.

F1GURE 3: The value absolute error by PNM at N =10 and T = 0.02.

for |x| <1, ie.,

Error

fHi(xt) =fi(=x1), f,(x 1) = =f,(-x 1). (27)

Then,

00 t
J H(a) cos ocxdocJ fi(z,t) cos azdz
0

0

Fibber v = 0.22 1t 00
= —J J fiztfi" (= t)dxde H(a) cos a(z — x)da.
F1GURE 4: The value absolute error by TMM at N =20 and T =0.02 2)4)a 0

(28)

Hence, we obtain

1+K;

s

11
P, (x, t)— hm {AJ J f1@@t)f1 (1) dzdzJ e” cos a(z - x)da
1)1

M3

11
#J J (z.0)f5" (2, t)dzdz x J e” sin a(z - x)da
1)
1

JIIJ, i (5 2)f} (21)f]" (2 t)dzdz

j=1

L
J T)f; (% T dT:| s

(29)

Fibber v = 0.22

F1GURE 5: The value absolute error by PNM at N =20 and T = 0.02.

a,

1
tK 3Py(x,t) = lim [—
U3 y

J J fi@0f (2 )dzdzJ e sin a(z - x)da

where y; is the shear modules, and A’s is Lame’s

constants. + %LIJ f3(z0)f5" (2, t)dzdz x [0 e¥ cos a(z — x)da
Note that once the dislocations f,(x) on the interface are
specified, formulas (23)and (24) give the stresses for all i J_l ]Zl kaj(%.2)f (2 1)dz +J Fmh(x T)dT} :

values of x. The crack problem under consideration f;(x)
is zero for |x|>1 and is unknown for |x| <1. On the other
hand, the stress vector on the interface y =0 is unknown
for |x|>1 that is given by the following known functions Evaluating the infinite integrals in (30), passing to the

(30)
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Fibber v =0.22

FIGURE 7: The value absolute error by PNM at N =10 and T'=0.2.
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F1GURE 8: The value absolute error by TMM at N =20 and T =0.2.
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FIGURE 9: The value absolute error by PNM at N =20 and T =0.2.

Cauchy theorems, we have

1 pl

Py(x, 1) = ywy (%, ) + %JJ

1

1+K;5

OV

w,(u, v;t)

aE-u)y-v)

1 2 1t
J D k(% y)w; (s t)dy + TJ F(T)w, (x, 7)dt,
-1j=1 12Jo

dudv

a;,m
(1 1 .
_1+1<3P2(X,t>:1‘ [ wi(wvit) o
ks )l (x-u)y-v)

1 e 1
—yw,(x, t) - —J Zkzj(x,y)wj(y, t)dy + a_J F(t)w,(x, 7)dt,
-1j3 21 Jo

(31)
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Plutonium v =0.21

FiGUre 10: The value absolute error by TMM at N =10 and T =
0.02.

where

_ 9 . (32)
v (M + Kops) + (5 + K3,y)

The two formulas of (31) represent a system of MIE with
Cauchy kernel. For one layer, we can have the following
MIE, on noting the difference notations.

nw(x,t) - %J'—l.[—l %dadv— %Jilk(x,y)w(y, t)dy
+ QLJ[F(L TYw(x, 7)dt = f(x, ).

(33)

In general, we can write Eq. (33) in the form:

1ol
nw(x,t)+ij J Pylx = ulp,|y - viw(u, v; t)dudy
-1J-1
t

+ )»J_lk(x,y)w(y, t)dy + /\J {(t, T)Yw(x, T)dT = f(x, 1),

0

where p,|x—ulp,|y-v|= (34)

o
(x=u)(y =)

3. The Existence and Uniqueness of
the Solution

We write this formula in the integral operator form

Wuw(x, f) = % Fot) - Wwln 1), (1£0),  (35)

Ww = Hw + Dw + {w,
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Plutonium v = 0.21

FIGURE 11: The value absolute error by PNM at N=10 and T =
0.02.

Error

Plutonium v =0.21

F1GURE 12: The value absolute error by TMM at N =20 and T =
0.02.

1 rl
Huw = iJ J Py lx—ulp,ly — viw(u, v; t)dudv, Dw
-1J1

t

! A
Ejilk(x,y)w(y, t)dy, {w = EJ {(t, T)w(x, T)dT.

0

(36)

We assume the following conditions:

(1) The singular kernel of FI term satisfies in L,[-1, 1]
x L,[-1, 1] the discontinuity condition

2

1l Lol
U J J J lp1|x = u|p, |y = V||| dxdudtdvi = M, (M is a constant).
—1)-1) 1)

(37)

(2) The kernel of VI term ((t, ) is continuous in the
Banach space C[0, T],0 <7<t < T < 0o and satisfies

Plutonium v = 0.21

FiGURe 13: The value absolute error by PNM at N=20 and T =
0.02.

Plutonium v = 0.21

FIGURE 14: The value absolute error by TMM at N =10 and T =0.2

(t,7) <N, Vt,T€[0,T]|. (38)

(3) The continuous kernel |k(x, y)| <L

1

If (%, t)|| = max Jt Ul_ f2 (%, T)dx] idT =R, (Risaconstant).

0<t<T )

(39)

(4) w(x,t) in the space, L,[-1,1]xL,[-1, 1] x C[0, T],
behaves as the known function f(x, t)

Theorem 1. Eq. (34) has an exact unique solution in L,[—1
, 1] x L,[-1, 1] x C[0, T], under the condition

1| > Al (% + ﬁT(L+N)>, T=maxt.  (40)

0<t<T

Lemma 1. The integral operator W maps L,[-1, 1] x L,[-1,
1] x C|0, T] into itself.
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FIGURE 15: The value absolute error by PNM at N=10and T =0.2.
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F1GURE 16: The value absolute error by TMM at N =20 and T'=0.2

Plutonium v = 0.21

FIGURE 17: The value absolute error by PNM at N =20 and T =0.2.

Proof. From (35) and (40), the normality of the integral
operator takes the forms

_ 1 A 1 1
ot <[glife i+ || [ e sty vs s
n ) 1) -1
ALY Al [
4k J k() w( £) | dy| | + E‘ J 18t 7) w(x, 7) | del|.
1 0

(41)

Advances in Mathematical Physics

Applying Cauchy-Schwarz inequality, we have

1

1l T/l 3
i‘ (J J pﬂx—u|p§|y—v|dudv> <J j wz(u,v;t)dudv> .
m -1J-1 -1J-1

(42)

[Hw|| <

Using the definition of the norm in the space L,[-1, 1]
x L,[~1,1] x C[0, T], we get

AT (1 L, , 1 ;
— xX—u —v|dudv |dudv maxJ
m’]‘ U—lJ-l (J_1J_1p1| P2y =] ) } 0<I<T |

1

1 1 2
. U J wz(u,v;t)dudv} dr.
-1J1

[Hw| <

(43)
Then, using condition (1), we obtain
A
[Hw|[ < |— \M|jw]. (44)
n
Also, the term Dw takes the form
/1 1
o< || e 9
-1
Using condition (3), we get
1 e 1
pwi = ol fmax [ [ wouoy1ayiae] | o)
Hence,
A
D] < 21 V2L (47)
In the same manner, we can write
A t
[|ISw|| < EHJ [¢(t, ) ||w(x, 7) | dT||. (48)
0
Using condition (2), we obtain
A top 3
[ICw|| < E’N ggtggjo (le s T)dy> dr||. (49)
Thus, one has
A
[{w| < [<|V2NT|jw|, T =maxt. (50)
7’] 0<t<T

Hence, with the aid of conditions (5), (44), (47), and
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(50), Eq. (41) takes the form

[[Ww|| < — +afw]|, <a= [77'A| <AT;I +V2T(L +N), T'= maxt.
(51)
The inequality (51) involves the boundedness of the
operators W and W.OJ O

Lemma 2. The integral operator (35) under the condition
(40) is continuous and contraction operator.

Proof. For the functions w (x, t), w,(x, t) in the space L,[—
1,1] x L,[-1, 1] x C[0, T], formula (35) yields

H(le Ww2) (x, t H = || W(w, —w,)(x, 1) (52)
Hence, we have

(W, - Waw) (3, wx ulpaly = Vllwy (v £) = wy (v ) | dudy

Koy 1) lw () - wz(y,mdy\

+

P J\((tT)Iw.xr) w,(x, 7) | dr||.

(53)
Using formula (53) with the conditions (1), (2), and (3),
then applying Cauchy-Schwarz inequality, we obtain
_ _ (M
||Ww1 - Ww2H < aflw; —w, ||, ((x: ‘17 /\| (; + \/ET(L+N)>).
(54)

Hence, W is a continuous operator in the space L, -1,
1] x L,[-1, 1] x C[0, T], and under the condition (a<1), W
is a contraction operator.(J O

4. THE STDFIEs

Consider Eq. (34). In this section, we divide the interval [0
,T),0<t<T<00,0=t,<t;<---<t,=T,where t=t,i=0,1
»2, .5 1, 1O get

+ /\Jti(f(ti, T)w(x, T)dT = f(x, 1;).

0

1
dudv+AJ k(x, y)w(y, t;)dy
1

(55)

Using the quadrature formula, the Volterra term
becomes

JtiC(t T)w iKJC (x.1;) +R(x.1;). (56)

0 j=0

k; is the weight, where &, = 1/2h, x; = 1/2h;, 1= h;, 0 <
j<1i,h denotes the constant step size for integration. Using

9
(56) in (55), we have
nw;(x) + %J—IJ—I %dwﬁu )LJ k(x, y)w;(y)dy + AZK i w;(x
=) + R(x).
(57)

Formula (57) can be adapted in the form

(1+ M) (2) = ) - ijj pal =)y =y o)

T

1
—A[ dy/\ZKC,]w} ),0<j<i-1.

(58)
Then, the general form of Eq. (58) can be represented as
A 1 rl
pe) + 2 [ | =l patly v o, )y
-1J-1

+Aj_lux,y)w,»(y)dywxx»

(59)
where
i-1
#i:("]"')”ci(i,j)’ v;=fi(x)-A Kj[(tjwj(x)]’ i=0,1,-n
=0
(60)

Formula (59) represents a linear system of TDFIEs of the
second kind, which contains (n+1) equation of (n+1)
unknown functions of w;(x) corresponding to the time
interval [0,T].

5. Some Numerical Methods

5.1. The TMM. We present the TMM to obtain numerical
solution of TDFIE of the second kind with Cauchy form,
which it expresses in the form

pan@)+ 5[ [ pis=l)pally=v o )

+Ajilk(x,y)wi<y>dy=%<x>’
(61)

which it may be adapted as

pw(x) =y (x) - /\Jl Jl F(x—u,y—v)w(u,v;t)dudv,

-1J-1

(62)



10
where

(k) (1 ey
re -0 = EEEERES - (g 0=

(63)

Then, write the integral term in Eq. (62) as the form

1 1
J J F(x—u,y—v)w(u,v;t)dudv

-1J-1

N nh+h 1
=) J F(x—u,y=v)w(u,v;t)dudy, (hz N)'

=-N Jnh
(64)

Formula (64) reduces as

1ol
J J F(x—u,y—v)w(u,v;t)dudv

-1J-1

Mz
I M=

F(x—u,y—v)w(u,v;t)dudv (h = ]1]) )

(65)

=—N m=

-M

Then,

nh+h mh+h
J J F(x—u,y—v)w(u,v;t)dudv

wm (% y)w(nh, mh) + B,
(66)

Then, we put w(u, v) = 1.1, uv in Eq. (66), and then we
obtain

1 [(nh+h)(mh+h)I B ]
S nh+mh+h (nh+mh+h)|
1 ] (nh)(mh)I
Bun(e3)= [(nh+mh+h) (nh+mh+h))’
(67)
where
nh+h pmh+h
I(x,y)=J J k(|t = 7|, |x = y|)dudv,
nh mh
nh+h pmh+h (68)
](x,y)zJ J uv-k(|x—ul, |y - v|)dudv.
nh m

m(% y)w(nh+h,mh+h)+R.

Advances in Mathematical Physics
Eq. (65) becomes

1 1
[ [ F(x=u,y-v)w(u,v;t)dudv
J-1J-1

N-1

M-1

> [Aum( y)w(nh, mhs t) + B, (x, y)yw(nh + b, mh + h; )]
”;,i“”f?‘ "
= z D Ay (3 y)w(nh, mh; ) Z D" By ety (% y)w(nth, mhs )
n=-N m=-M n=—N m=—M
M
Z D, (%, y)w(nh, mh;t),
n=-N m=-M
(69)
where
A—N(x’y) n=m=-N,
Dy (%) =4 Au(xy) + B, (xy) —N<n=m<N,
By_1 (%) n=m=N.
(70)

Thus, the IE (62) becomes

w(nh, mh; t) = f(x, y)-

x, +—Z ZD

n=—N m=—-M
(71)
If we put x = kh, y = [h, then we get
A N M
pwg+ = Y Y Dyt =fy -N<k<N-M<I<M,
T W=oN m=—M
(72)
where
A_y(kh, Ih) n=m=-N,
Dyym =< A, (kh,Ih) +B,_,(kh,lh) —-N<n=m<N,
By_,(kh, Ih) n=m=N.
(73)

The matrix Dy, ,, may be written as Dy, = G, =
Eyy,, m» Where
-N<kln<N (74)

A, (kh, Ih) + B,_, (kh, Ih),

len,m =

is the TM of order 2 N + 1, and the matrix

B_y_ (kh,lh) n=m=-N,
Eypm=14 0 -N<n=m<N, (75)
Ay (kh, Ih) n=m=N.

However, the solution of the system can be obtained in
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the form

wy; = [l = MGy = Eg)) ™ fip (76)

where I is the identity matrix and |uI — M(Gy,, — E,)| # 0.

5.2. The PNM. Consider

) =(s) = [ [ pl= sy =)=l byl v

(77)

where

ol wsy = k(= sy =1) = (g ) 0 ks )= 9)
(78)
where pand k are badly behaved and well-behaved func-

tions of their arguments, respectively. We approximate the
integral term in (77) when {y (x;, y,)} by

1 1
j j P, = 145y, = VR(Jx, — w3 [y, — v])w(us, v £)dudy
-1

N M B
= Z Z k(s = ul 5 [y, = v))w (), ),
(79)

where «;,; is the weights. Also, we approximate the integral

ijsl
term in (77) in the form:

1 1
j J<M&—u;n—Vﬁﬂ&—uhD@-ﬂﬁ%%v;ﬂmdv
-1J-1

ZZJ%TM' —usy, - V)R(lx -

j=01i=0 J 1y T vy

vw(u,v;t),

(80)

ulsly, -

where x;=u;=y,=v;=a+ih,i=0,1,--,N with h=»b
—a/N and N even. Now, if we approximate the nonsingular
part of the integrand over each interval [u,;, uy,, ], [Vai, V1.0
, by the second degree Lagrange interpolation polynomial
that interpolates, we find

M2
7

» J‘Hm mep(u,» )
% { (szﬂ - H)(Vzhzz;;’)) E;Zj;)z - u) (Varea = v) I”((ui gy le)w(uzj, v t)
(” ”z;)(" V1) (“z,+z “)(Vzt+z v)
7))
(” Uy )(" Va1) (“ Uyj. +1)(V Vo) 3
e k

DA

(gL ~
J J p(u; =, v; = v)k(u; = u, v, = v)w(u, v t)dudv =
-1

.
i

i‘(“ — Ui ViT V21+1)1U(“2]+1’ Vals1 5 t)

(” ~ Uy Vi Vzl+z)w(”2j+z> Va2 s t) }d”d"

M
Zw,] 1,k Uy = vy = v)w(up vy t),
=

[\/]z

i
S

J

(81)

where u; = jh, Ujpy = (j+1)h, Uj—Uj =V =V = —h.
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If we define

Uy

1 i (V2
(U v) = — J J p(upusve,v) (u - ”2]*2) (V - 1/2]-,2)
4h Upjrd Vyjo

(=) (v = vy ) dudv,

Uy

1 i (V2
Bij(uis v) = ant L Jv Py 15 v V) (5 = 1) (Va5 = V)
hj-2Y Vaja

(g = 1) (v -
1 i (V2
Vij (i vs) = 4—h4L Jv Pl us v v) (= thyjs) (v = v30)
2j-2% V2j2

(u=tyyy) (V= vy ) dudy.

v)dudv,

(82)

In general, assume K, thus (82) become

hZ 2 (2
(s vg) = ZJUJUC‘S(( = 1)(§=1)p(ups (g0 + Ch) 5 ves (v + Oh))dld,

h222
Bt )= [ [ €= 1€-DE-1E-2pluy (04 )5,

0J0

- (Voo + Oh))d(dS,

V(U vy) = " JJC&(Z O -Op(w (uzj,2+Ch);vs,(vz,,2+5h))d(d6.

(83)
If we define vy, = féfékakp(u, = (gjy + &), v; = (Vs
+6h))déds, k=0,1,2 and let u; —u,; , = (i—2j+2)h,v; -

Vyy = (i—21+2)h, we have y, = [2[28"6"p(]z - {)hl,|(g -
O)h|)dCdd, k=0,1,2,z=i-2j+2,g=5s-2]+2.

6. Numerical Applications and Discussions

In this section, we state some applications and numerical
results to discuss the approximate solution (i.e., the treat of
the surface cracks that occurs in the materials as a result,
the constant in finite of materials, which the deformation
increases as well as the time increases in the interval [0, T].
The TMM and PNM are used to get numerical solution for
values of y=1, and for different materials, plutonium v =
0.21 and fiber v =0.22, where the Poisson ratio is 0<v <1
,A=A2G, A =2Gv/(1 - 2v), (G shear modules). We divided
the position interval by N = 10, 20 units. Since 0 <t < T<co
, we choose the time T'=0.02, 0.2. Tables 1 and 2 are as fol-
lows: exact sol. — the exact solution, Approx.T. —approxi-
mate solution of TMM, error.T. — the absolute error of
TMM, Approx.N. —approximate solution of PNM, and
error.N. — the absolute error of PNM. Figures 2-17 show
the value absolute error by TMM and PNM at N =10, 20
and the time T =0.02, 0.2, for the materials plutonium v =
0.21 and fiber v =0.22.
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Consider

pw(x, t) =f(x,t) - 2J1J1 (x—u)l(y—v)w(u’ v; t)dudy
- AJ,I lx = ylw(y, t)dy — Jt ttw(x, T)dT, (u=1).

0 (84)

The exact solution ¢(x, y) = x2y*.

7. The Conclusion

We have presented a successful technique for the numerical
solution of MIE with singular kernel in two-dimensional by
using TMM and PNM which is established from the plane
strain problem for the bounded layer medium composed of
different materials. From Tables 1 and 2 and Figures 2-17,
we note that the errors due to the TMM are less than the
errors due to PNM. In addition, we note that N increases
for the two different materials (fiber v = 0.22) (plutonium v
=0.21), the values of k(|g(x) — g(y)|) = cot (g(y) — g(x)/2)
and x € [-m, 7], ¢(27, t) = 0. are fixed, and the error values
increase. The approximate solution is nearly coincident with
the exact solution for ¢ > 0 at each value of x € [-1, 1].
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